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Abstract. Abnormal activation of the phosphatidylinositol 
3‑kinase (PI3K) pathway has been demonstrated in certain 
types of cancer, including cholangiocarcinoma (CCA). This 
pathway may therefore be a promising target for CCA treat-
ment. The present study assessed the inhibitory effect of 
NVP‑BKM120, a pan‑class I PI3K inhibitor, on CCA cell 
growth. This inhibitory effect was determined using CCA cell 
lines and in CCA‑inoculated mice. The result from sulforho-
damine B (SRB) assay demonstrated that NVP‑BKM120 
treatment inhibited CCA cell growth in a dose‑dependent 
manner, even at the lowest tested concentration. The in vivo 
study revealed that oral administration of NVP‑BKM120 
(10 or 30 mg/kg) to CCA‑inoculated nude mice led to a reduc-
tion in tumor growth when compared with controls, which 
was indicated by an immunohistochemical assay for Ki67 
expression. In addition, the result from TUNEL assay demon-
strated that NVP‑BKM120 induced cancer cell death without 
any signs of toxicity, which indicated by the body weight of 
mice (data not shown). Western blot analysis demonstrated 
that NVP‑BKM120 inhibited CCA cell growth by suppressing 
RAC serine/threonine protein kinase/mechanistic target of 
rapamycin activation and inhibiting the phosphorylation of 
phosphatase and tensin homolog, which is the inactivation 
form of the negative regulator of this pathway. Therefore, 
the results of the present study indicated that NVP‑BKM120 
should be considered as a therapeutic agent against CCA that 
could be used to improve treatment.

Introduction

Cholangiocarcinoma (CCA) is a malignant tumor of the bile 
duct epithelium. The incidence of CCA is highest in northeast 
Thailand, where the liver fluke (Opisthorchis  viverrini, 
hereafter Ov) infection rate is high (1). The association between 
Ov infection and CCA is well established in this region (2,3) 
and Ov infection is defined as a major risk factor for CCA (4).

The majority of patients with CCA have a poor prognosis 
as early stage CCA being difficult to diagnose and the onset of 
symptoms only occurring in advanced stages, causing patients 
to seek treatment in later stages of disease (5). Surgical resec-
tion is curative only for patients that present at an early stage, 
not for those at late or advanced stages (6,7). Therefore, novel 
approaches, particularly those involving targeted therapy, are 
urgently required.

Multiple protein kinases are activated in CCA tissues and 
cell lines; these include protein kinases of the phosphatidylino-
sitol 3‑kinase (PI3K)/RAC serine/threonine‑protein kinase 
(Akt) pathway (8). The PI3K/Akt signaling pathway serves an 
important role in a number of cellular processes, including cell 
growth, the cell cycle and programmed cell death (9,10). The 
activation of this pathway is thus involved in the progression 
of various types of cancer, including CCA (9‑13). Therefore, 
targeting the PI3K/Akt pathway may be beneficial for CCA 
therapy.

Buparlisib or NVP‑BKM120 is a highly selective 
pan‑class I PI3K inhibitor (14). The ability of NVP‑BKM120 
to induce apoptosis or exert anti‑proliferative effects via the 
PI3K/Akt/mechanistic target of rapamycin (mTOR) pathway 
has been demonstrated in various types of cancer (15‑18). In 
acute myeloid leukemia, NVP‑BKM120 has been demon-
strated to induce cell growth arrest and apoptosis by inhibiting 
this signaling pathway (15). In addition, the antitumor activity 
of NVP‑BKM120 has also been demonstrated in bone and 
soft tissue sarcoma, multiple myeloma and glioma (16‑18). 
Increased PI3K/Akt/mTOR activation has been revealed 
in multiple types of cancer, including CCA  (8,10,19,20); 
NVP‑BKM120 may thus possess the potential to inhibit the 
progression of cancer. Therefore, the present study aimed 
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to evaluate the inhibitory effect of NVP‑BKM120 on CCA 
progression and to assess the molecular mechanism by which 
NVP‑BKM120 suppresses the development of CCA.

Materials and methods

Cell lines and cell culture. The human CCA M213, KKU100, 
M055, M139 and OCA17 cell lines, were established by 
Dr Banchop Sripa at the Cholangiocarcinoma Research 
Institute (CARI), Khon Kaen University (Khon Kaen, 
Thailand)  (21). Cell lines were cultured in Ham's F‑12 
medium (Gibco; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) supplemented with 2  mg/ml sodium bicar-
bonate, 10% fetal bovine serum (Gibco; Thermo Fisher 
Scientific, Inc.), 100 U/ml penicillin and 100 µg/ml strepto-
mycin in a humidified atmosphere at 37˚C which contained 
5% CO2.

Antibodies and reagents. The antibodies used in the present 
study were as follows: Rabbit polyclonal anti‑Ki67 antibodies 
(1:300, cat. no. ab15580; Abcam, Cambridge, UK), rabbit mono-
clonal anti‑Akt antibodies (1:500, cat. no. ab32505; Abcam), 
rabbit polyclonal anti‑phospho‑phosphatase and tensin homolog 
(PTEN; Ser380) antibodies (1:500, cat. no. ab47332; Abcam), 
rabbit polyclonal anti‑phospho‑Akt (Ser473) antibodies 
(1:1,000, cat. no.  9271; Cell Signaling Technology, Inc., 
Danvers, MA, USA), rabbit monoclonal anti‑mTOR antibodies 
(1:1,000, cat. no. 2983; Cell Signaling Technology, Inc.), rabbit 
polyclonal anti‑phospho‑mTOR (Ser2448) antibodies (1:1,000, 
cat. no. 2971; Cell Signaling Technology, Inc.), rabbit poly-
clonal anti‑B‑cell lymphoma‑2 (Bcl‑2) antibodies (1:1,000, cat. 
no. 2876; Cell Signaling Technology, Inc.), mouse monoclonal 
anti‑Bcl‑2 associated protein X (Bax) antibodies (1:1,000, 
cat. no. 610983; BD Biosciences, Franklin Lakes, NJ, USA) 
and mouse monoclonal anti‑β‑actin antibodies (1:10,000, cat. 
no. 5541; Sigma‑Aldrich, Merck KGaA, Darmstadt, Germany). 
NVP‑BKM120 was purchased from Active Biochem Ltd. 
(Hong Kong, China).

Growth inhibition assay. The growth inhibitory effect of 
NVP‑BKM120 was determined using a sulforhodamine 
B (SRB) assay. CCA cells (5x103  cells in 100  µl Ham's 
F-12 medium) (Gibco; Thermo Fisher Scientific, Inc.) were 
seeded in 96‑well plates and incubated overnight at 37˚C and 
5% CO2. The cells were then treated with NVP‑BKM120 
in various concentrations, including 1, 10, 100, 1,000, 
10,000 and 100,000 nM, and incubated for 48 h. Following 
this, cells were fixed with 10% cold trichloroacetic acid for 
1 h at 4˚C and stained with 0.4% w/v SRB in 1% v/v acetic 
acid for 30 min at room temperature. Excess dye was washed 
with 1% acetic acid and stained cells were solubilized with 
200 µl of 10 mM unbuffered Tris‑base. The absorbance was 
measured using a microplate reader (Sunrise; Tecan Group 
Ltd., Maanedorf, Switzerland) at 540 nm. The percentage of 
growth inhibition (% GI) in three independent experiments was 
calculated using the formula, % GI=1‑(Nt/Nc) x100. Nt and 
Nc refer to the absorbance of the treated and control groups, 
respectively. The half‑maximal inhibitory concentration (IC50) 
was evaluated using interpolation from dose‑response curves, 
as described previously (22).

Animal study. The six‑week‑old, female athymic BALB/c nude 
mice (3 mice/group) weight range 18‑20 g were purchased 
from the National Animal Laboratory (Mahidol University, 
Nakhon Pathom, Thailand). Mice were housed under 
pathogen‑free conditions and given ad libitum access to food 
and water in a temperature‑controlled room of 23±2˚C, with a 
12/12 h light/dark cycle, 10‑15 air changes/h, room humidity 
of 30‑60% and light levels 350‑400 lux at the Animal Center, 
Faculty of Medicine, Khon Kaen University. Mice were 
injected subcutaneously with 3x106 cells of the M213 CCA 
cell line. When a tumor became visible, mice were divided 
into three groups. The control group was orally administrated 
with the vehicle (NMP‑PEG3000; Sigma‑Aldrich, Merck 
KGaA), whilst the treatment groups received 10 or 30 mg/kg 
of NVP‑BKM120 orally for 14 days. Body weight and tumor 
volume (tumor volume=0.5 x width2 x length) were deter-
mined twice a week. Relative tumor volume was calculated by 
using the formula: Relative tumor volume=tumor volume day 
x/tumor volume day 0). After three weeks of the experiment, 
the mice were anesthetized with 2% isoflurane and cervical 
dislocation was used for euthanasia. The tumor and organs 
collected for further experimentation. All experiments were 
approved by the Animal Ethics Committee of the Khon Kaen 
University (NELAC22/2557).

Immunohistochemical assay for Ki67. Nude mice tumor 
tissues were fixed in 10% buffered formaldehyde at room 
temperature for a week, embedded in paraffin blocks and then 
sectioned at a thickness of 4 µm. Ki67 Immunostaining was 
performed to determine cell proliferation using tissue sections. 
Tissue sections were deparaffinized and rehydrated with xylene 
and an ethanol series. The antigen was then retrieved with 
Tris‑EDTA buffer (pH 9) using a pressure cooker at 120˚C for 
3 min. Endogenous enzymes and non‑specific bonding were 
blocked using 0.3% hydrogen peroxide and 10% skimmed 
milk with 30 min agitation at room temperature, respectively. 
Anti‑Ki67 antibodies were incubated at room temperature for 
1 h followed by a further incubation at 4˚C overnight in a mois-
ture chamber. The sections were then incubated with secondary 
antibodies conjugated to horseradish peroxidase (Envision; 
Dako; Agilent Technologies, Inc., Santa Clara, CA, USA) at 
room temperature for 1 h and the signal was developed using 
0.1% diaminobenzidine tetrahydrochloride for 5 min. Sections 
were counterstained with hematoxylin at room temperature 
for 2 min and dehydrated using an ethanol series followed by 
xylene prior to mounting. Sections were observed using a light 
microscope (Nikon Eclipse Ni‑U; Nikon, Tokyo, Japan). Ki67 
positive cells in each tumor section were counted in at least 
five fields of view at a magnification of x400 (NIS‑Elements 
version 4.0; Nikon, Tokyo, Japan) and the percentage of Ki67 
positive cells were calculated.

In situ terminal deoxynucleotidyl transferase dUTP nick‑end 
labeling (TUNEL) assay for apoptosis. A TUNEL assay was 
performed to detected DNA fragments in apoptotic cells. The 
TUNEL assay was performed using paraffin‑embedded tumor 
tissue from nude mice using the in situ Cell Death Detection kit, 
POD (cat. no. 11 684 817 910; Roche, Mannheim, Germany). 
Briefly, nude mice tumor tissues were fixed in 10% buffered 
formaldehyde at room temperature for a week, embedded in 
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paraffin blocks and then sectioned at a thickness of 4 µm. 
Tissue sections were deparaffinized and rehydrated with 
xylene and an ethanol series (100, 90, 80 and 70% ethanol) and 
treated with 20 µg/ml proteinase K at 37˚C for 30 min. TUNEL 
reaction mixture was added 50 µl/section, incubate at 37˚C 
for 1 h. Converter‑POD (anti‑fluorescein antibody conjugated 
with horseradish peroxidase) was added 50 µl/section. Tissue 
sections were incubated at 37˚C for 30 min and the signal was 
developed using 0.1% diaminobenzidine tetrahydrochloride 
for 5 min. Tissue sections were dehydrated prior to mounting 
(Bio Optica Milano SpA, Milan, Italy). The percentage of 
TUNEL‑positive cells was determined using the light micro-
scope from at least five fields of view at a magnification of 
x400 (NIS‑Elements version 4.0; Nikon).

Western blot analysis. Total protein was extracted from 
50 mg of frozen nude mouse tumor tissue, stored at ‑80˚C. 
Tumor tissues were lysed in 200 µl radioimmunoprecipitation 
assay lysis buffer (150 mM NaCl, 0.5 M Tris‑HCl pH 7.4, 1% 
Tween‑20, 1% sodium deoxycholate and 0.1% SDS) for 10 min 
on ice. then homogenized using a grinder. Whole lysates were 
then centrifuged at a speed of 14,000 g at 4˚C for 5 min and the 
supernatant was collected and stored at ‑80˚C until further use. 
Protein concentration was determined using a bicinchoninic 
acid protein assay kit (Thermo Fisher Scientific, Inc.). Protein 
extract were solubilized in 4X SDS buffer (1 M Tris‑HCL 
pH 6.8, SDS, glycerol, β‑mercaptoethanol, bromophenol blue) 
containing dithiothreitol and boiled at 95˚C for 5 min. Protein 
was loaded (30 µg/well) and separated by SDS‑PAGE (10% gel) 
and then transferred to a polyvinylidene difluoride membrane 
(EMD Millipore, Billerica, MA, USA). The membrane was 
blocked using 10% skimmed milk in TBS overnight at 4˚C, 
then incubated with antibodies against Bax, Bcl‑2, p‑Akt, Akt, 
p‑mTOR, mTOR, p‑PTEN and β‑actin at room temperature 
for 1 h. The membrane was then rinsed using TBS containing 
0.1% polyoxyethylenesorbitan monolaurate (TTBS) and incu-
bated with secondary antibodies conjugated to horseradish 
peroxidase (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) 
at room temperature for 1 h prior to rinsing with TTBS followed 
by TBS. The signal was developed using an ECL Prime 
Western Blotting Detection system using ImageQuant™ LAS 
4000 Control Software (GE Healthcare, Chicago, IL, USA). 
Human β‑actin was used as a loading control.

Statistical analysis. The results of the growth inhibition assay, 
Ki67 staining, apoptosis assay and relative tumor volume of 
nude mice are represented as the mean ± standard deviation. 
Statistical comparisons between two groups of Ki67 staining 
and apoptosis assay was determined using unpaired Student's 
t‑test. The relative tumor volume of mice from different groups 
was analyzed using two‑way analysis of variance followed with 
the Bonferroni method. Statistical analysis was performed 
using GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, 
CA, USA). P<0.05 was considered to indicate a statistically 
significant result.

Results

Growth inhibitory effect of NVP‑BKM120 on CCA cell lines 
and CCA‑inoculated nude mice. NVP‑BKM120 inhibits CCA 

cell growth in a dose‑dependent manner (Fig. 1), with the 
following IC50 values: M213, 85±38 nM; KKU100, 33±15 nM; 
M055, 4±4 nM; M139, 318±158 nM; and OCA17, 253±129 nM 
(Table I). Furthermore, NVP‑BKM120 at concentrations of 
10 and 30 mg/kg significantly suppressed tumor growth when 
compared with the control on days 14 and 12, respectively 
(P<0.01; Fig. 2).

NVP‑BKM120 inhibits cancer cell proliferation and induces 
apoptosis in the CCA mouse model. As demonstrated in vitro, 
NVP‑BKM120 inhibits CCA cell growth. Therefore, the 
effect of NVP‑BKM120 on the mouse model was assessed. 
An immunohistochemical assay was performed to detect the 
Ki67 proliferation marker in the paraffin‑embedded tumor 
tissues of nude mice. The percentage of Ki67 nuclear staining 
in the tumor cells of 30 mg/kg NVP‑BKM120 treated mice 
was significantly decreased when compared with the control 
mice (P<0.05; Fig. 3A and B). In addition, NVP‑BKM120 
treatment caused a significant increase in the percentage of 
apoptotic cells in treatment groups when compared with those 
in the control groups (10 mg/kg, P<0.001; 30 mg/kg, P<0.01; 
Fig.  3C  and  D). Western blot analysis demonstrated that 
NVP‑BKM120 induced the expression of the pro‑apoptotic 
protein Bax, whereas the expression of Bcl‑2, which is 
anti‑apoptotic, was decreased (Fig. 3E and F).

Molecular mechanisms by which NVP‑BKM120 suppresses 
CCA cell growth. The present study also assessed the 
molecular mechanism by which NVP‑BKM120 suppressed 
CCA cell growth via the PI3K/Akt pathway using a western 
blot assay. The results indicated that NVP‑BKM120 inhibits 
Akt and mTOR phosphorylation in a dose‑dependent manner. 
In addition, the drug also inhibits the phosphorylation of 
PTEN, which is a negative regulator of the PI3K/Akt/mTOR 
pathway (Fig. 4).

Discussion

PI3K/Akt/mTOR is a signaling pathway that serves a notable 
role in various cellular processes, including growth, the cell 
cycle and cell survival (23‑25). Previous studies have impli-
cated this pathway in the progression of certain types of cancer 
that are associated with poor patient outcome (20,26‑28). A 
previous study observed an increase in PI3K/Akt/mTOR 
pathway activation in CCA tissue and cell lines (8). Additionally, 
Yothaisong et al (10) demonstrated that the increased activa-
tion of this pathway was associated with CCA metastasis. 
Therefore, targeting the PI3K/Akt/mTOR pathway in the 
treatment of patients with CCA may be a beneficial approach.

Buparlisib or NVP‑BKM120 is a highly selective pan‑class I 
PI3K inhibitor. It specifically blocks PI3K with a specificity at 
least 50‑fold higher than for other protein kinases (14). The 
effect of NVP‑BKM120 on the inhibition of tumor growth and 
apoptosis induction has been demonstrated in various types 
of cancer. It has been revealed to inhibit cell growth, induce 
apoptosis and reduce the number and size of colonies in bone 
and soft tissue sarcomas (16). Koul et al (29) revealed that 
NVP‑BKM120 treatment inhibits glioma cell proliferation. In 
addition, Martin et al (17) demonstrated that NVP‑BKM120 
treatment inhibited the growth of multiple myeloma cells, and 
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the antitumor effect of NVP‑BKM120 was also detected in 
breast cancer (30). Therefore, the current study investigated 
the inhibitory effect of NVP‑BKM120 on CCA cells and 
evaluated its potential use in CCA therapy.

The present study demonstrated that NVP‑BKM120 
treatment inhibited CCA cell growth in a dose‑dependent 
manner at nanomolar concentrations. However, the IC50 

levels of NVP‑BKM120 in glioma, breast cancer and lung 

adenocarcinoma exhibited the same effects at micromolar 
ranges (29‑31).

The present study assessed the effect of NVP‑BKM120 
on CCA development using the CCA‑inoculated nude mouse 
model. The oral administration of NVP‑BKM120 at 10 and 
30 mg/kg concentrations significantly inhibited CCA cell 
growth when compared with controls. This is consistent 
with the results of previous studies, which demonstrated the 
growth inhibitory effect of NVP‑BKM120 in breast cancer 
and glioblastoma  (32,33). NVP‑BKM120 also exhibited 
minimal or no toxic effects in normal cells (34). The growth 
inhibitory effect of NVP‑BKM120 is indicated by immunos-
taining for the proliferation marker Ki67. The results of the 
present study indicated that the percentage of Ki67‑positive 
nuclear‑stained cells in tumor tissues of the 30  mg/kg 
NVP‑BKM120‑treated group was significantly lower than 
that of control group, similar to a previous result reported 
in colorectal cancer (35). The effect of NVP‑BKM120 treat-
ment on apoptosis using a TUNEL assay was then assessed. 
The number of apoptotic cells was significantly increased 
in the tumor tissue of mice treated with 10 or 30 mg/kg 
NVP‑BKM120 when compared with tissue from control 
animals. Furthermore, there was an increase in expression 
of the pro‑apoptotic protein Bax and a reduction in that of 
the anti‑apoptotic protein Bcl‑2 in NVP‑BKM120‑treated 
mice. These results indicated that NVP‑BKM120 treatment 
inhibited CCA progression via the induction of apoptosis, 
which reflect the results of a previous study into acute 
lymphoblastic leukemia (36).

There is considerable evidence to indicate that increased 
activation of the PI3K/Akt signaling pathway can be induced 
by various mechanisms, including mutation of PI3K or 
Akt, constitutive activation of an upstream regulator, the 
loss of PTEN expression and an increased expression of 
phospho‑PTEN, which is the inactive form (10,37). In addition, 
the results of the present study revealed that increased activa-
tion of the PI3K/Akt signaling pathway in CCA is primarily 
caused by, loss of function of the negative regulator PTEN 
function via loss of expression, increased phosphorylation and 
increased expression of the pathway components (10). Thus, 
the molecular mechanism by which NVP‑BKM120 inhibits 
CCA development was assessed. The current study analyzed 
the expression and phosphorylation of Akt, mTOR and PTEN, 
which are over expressed in CCA and involved in tumor 

Figure 2. Antitumor activity of NVP‑BKM120 in CCA inoculated nude 
mice (3 mice in each group). (A) Representative images of the M213 CCA 
cell line‑implanted tumors in mice after 21 days of experiment. Mice were 
orally administered 10 or 30 mg/kg of NVP‑BKM120 for 14 days. (B) Tumor 
growth in mice that received 10 or 30 mg/kg NVP‑BKM120 orally for 
14 days was significantly decreased when compared with control mice. 
Data in (B) are expressed as the mean ± standard deviation (3 mice in each 
group) using two‑way analysis of variance. **P<0.01 vs. the control. CCA, 
cholangiocarcinoma. 

Table I. Growth inhibitory effect of NVP‑BKM120 on CCA 
cell lines.

CCA cell line	 IC50 of NVP‑BKM120, nM

M213	 85±38
KKU100	 33±15
M055	 4±4
M139	 318±158
OCA17	 253±129

Data presented as the mean ± standard deviation. IC50, half‑maximal 
inhibitory concentration; CCA, cholangiocarcinoma.

Figure 1. Growth inhibition effect of NVP‑BKM120 on CCA cell lines. The 
CCA M213, KKU100, M055, M139 and OCA17 cell lines were exposed to 
1‑105 nM NVP‑BKM120. Following 48 h, cell proliferation was detected 
using the sulforonamide B assay. Values of percent cell growth inhibition 
are expressed as the mean ± standard deviation of three independent experi-
ments. CCA, cholangiocarcinoma.
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cell proliferation. The results demonstrated that 30 mg/kg 
NVP‑BKM120 treatment markedly reduced Akt phosphoryla-
tion. These are congruent to the results of a previous study 
of follicular lymphoma, which revealed that 30  mg/kg 
NVP‑BKM120 treatment also reduced the phosphorylation 
of Akt (38). Furthermore, these results are similar to a study 
concerning acute lymphoblastic leukemia, which demonstrated 
that NVP‑BKM120 (at 1, 10 and 50 µM) inhibits the phosphor-
ylation of Akt and mTOR in a dose‑dependent manner (36). 
In addition, the present study also revealed a decrease in 
phospho‑PTEN in the tumor tissues of NVP‑BKM120‑treated 
mice. These results revealed that NVP‑BKM120 inhibits CCA 
cell growth via the inhibition of Akt, mTOR and PTEN phos-
phorylation.

In conclusion, the present study revealed that 
NVP‑BKM120 exhibited antitumor activity against CCA, 
inhibiting of CCA cell growth at nanomolar concentra-
tions. NVP‑BKM120 suppressed CCA growth and induce 
apoptosis in CCA‑inoculated mice without toxicity (data not 
shown). The current study also revealed that NVP‑BKM120 
exerted an anticancer effect by blocking Akt, mTOR and 
PTEN activation. These results indicated that targeting the 
PI3K/Akt/mTOR signaling pathway with NVP‑BKM120 
led to the suppression of CCA cell growth and the induction 
of cell death. The present study thus provides data neces-
sary for the development of NVP‑BKM120 treatment for 

CCA alone or in combination with conventional chemothera-
peutic drugs.

Figure 4. Molecular mechanisms by which NVP‑BKM120 suppresses CCA 
cell growth. Western blot analysis revealed a decrease in p‑Akt, p‑mTOR 
and p‑PTEN expression in protein extracted from the tumor tissue of 
NVP‑BKM120 treated mice. CCA, cholangiocarcinoma; p‑Akt, phosphory-
lated RAC serine/threonine‑protein kinase; mTOR, mechanistic target of 
rapamycin; PTEN, phosphatase and tensin homolog.

Figure 3. NVP‑BKM120 inhibits cancer cell proliferation and induces apoptosis in a CCA mouse model. (A) Proliferative cells in nude mouse tumor tissue 
sections were determined using Ki67 immunostaining (magnification, x400). (B) The percentage of proliferative cells were significantly reduced in mice treated 
with 30 mg/kg NVP‑BKM120 when compared with controls. (C) Apoptotic cells were detected using a in situ terminal deoxynucleotidyl transferase dUTP 
nick end labeling assay (magnification, x400). (D) NVP‑BKM120 treatment significantly induced cell death in a dose‑dependent manner when compared with 
the control group. (E) Western blot analysis demonstrated an increase in the expression of the pro‑apoptotic protein, Bax, whereas that of the anti‑apoptotic 
protein Bcl‑2, was decreased. (F) Protein expression ratio of Bax/Bcl‑2. Data in (B) and (D) are presented as the mean ± standard deviation (3 mice in each 
group) analyzed using a Student's t‑test for independent samples. Data in (F) are presented as the mean ± standard deviation of protein band intensity, which 
was normalized with β‑actin. *P<0.05, **P<0.01, ***P<0.001. CCA, cholangiocarcinoma; Bax, Bcl‑2 associated protein X; Bcl‑2, B‑cell lymphoma‑2. 
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