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Abstract

thus showing its potential for clinical applications.

regulatory circuit

Background: Sublancin is a novel and distinct antimicrobial glycopeptide that can be used as an alternative to
conventional antibiotics. The reported production of sublancin by Bacillus subtilis 168 is poor because transcriptional
regulatory circuit of sunA, a gene that encodes presublancin, is complex and difficult to control.

Results: A strong inducible and easy to control vegetative o* promoter of Py was introduced to replace that of
sunA in situ in B. subtilis 1A747 [SPBc, prototroph, the derivative of B. subtilis 168 (trpC2)]. Meanwhile, other two
strong promoters of P43 and P,,,s were respectively placed before sunl and sunT-bdbA-sunS—bdbB, encoding five
functional proteins that involved in the biosynthesis of mature sublancin. 642 mg sublancin was obtained from

1 L culture supernatant of recombinant B. subtilis 1A747 strains. Analysises of electrospray ionization mass
spectrometry and circular dichroism spectrum showed that mature sublancin had a molecular weight of
3877.642 Da and displayed a a-helical conformation that are consistent with reported results. In addition, the
mature sublancin was proved to be a potent antimicrobial glycopeptide with broad activity spectrum, moderate
cytotoxicity and good conditional stability under high temperature, extreme pH and protease-rich environments,

Conclusions: Our present findings suggest that recombinant B. subtilis 1A747 strains can effectively and
efficiently biosynthesize mature sublancin. The replacement of native promoters provides an extra method for
production improvement of some other complicated peptides such as nisin and subtilin.
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Background

Natural peptides with post—translational modification
are rapidly expanding class of agents with diverse biological
activities [1]. Sublancin (Genbank accession number
P68577.1) is a novel distinct peptide that is synthesized by
Bacillus subtilis 168. This peptide can effectively kill specific
pathogenic bacteria such as Staphylococcus aureus and
Streptococcus pyogenes [2]. Sublancin is encoded by SPP
prophage in strains that lysogenize the SPB bacteriophage
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and inhibits the growth of non-lysogenic strains [3]. Similar
to lantibiotics [4], sublancin is firstly synthesized as a pre-
cursor with a double-glycine leader peptide in N—terminal
and a core peptide in C—terminal, and the latter was post—
translationally modified into mature peptide. However, un-
like lantibiotics, sublancin has a unique post—translational
S—glucosylation modification and is therefore considered as
a distinct glycopeptide [5].

The DNA fragment responsible for biosynthesizing
mature sublancin is located in the prophage SPp genome
and includes two adjacent transcriptional units (sunl and
sunA—-sunT-bdbA—sunS—bdbB) with a length of 4.5 kb
(Figure 1a). sunl provides the genetic basis for sublancin
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producer immunity [6]. Adjacently, an operon with five
successive genes, sunA-sunT-bdbA—sunS—bdbB, is lo-
cated immediately downstream of sunl. However, a ter-
minator structure is present between sunA and sunT
that, in some events such as sporulation happens in the
DSM media, causes premature termination of the tran-
script (Figure la and e). The whole transcript of sunA-
sunT—bdbA-sunS—bdbB is transcribed when mature
sublancin is biosynthesized [7,8]. sunA is immediately lo-
cated downstream of sunl and encodes the presublancin
[2], and SunT is an ABC-type transporter with a proteo-
lytic domain that removes the leader peptide from sublan-
cin during its translocation across the membrane [9,10].
BdbA still remains unclear in sublancin biosynthesis al-
though it has been presumed to have thiol oxidase activity
[11]. BdbB belongs to the thiol-disulfide oxidoreductases
and involved in the post—translational modification of disul-
fide bond formation in sublancin [9,11,12]. SunS is a S—gly-
cosyltransferase that has a CxxS motif; and is involved in
biosynthesis of mature sublancin by glucosylating Cys*
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[13]. S—glycoside moiety of sublancin is important for con-
ferring the antimicrobial activity [5].

Sublancin biosynthesis is controlled by a complex regu-
latory network that involves a minimum of five transcrip-
tional regulators, namely Abh, AbrB, Rok, YvrG and YvrH
(Additional file 1) [7,14,15]. Abh and AbrB directly bind
to the overlapping regions within sunA regulatory region
(Figure 1b). Abh plays a positive role in regulating the
transition—stage sunA expression during vegetative growth.
AbrB is a paralog of Abh that can transcriptionally repress
the biosynthesis of sublancin [14,16]. The in vitro studies
have shown that Rok can bind to sunA transcriptional regu-
latory region and its deletion improves the transcription of
sunA and sunT [15]. YvrG and YvrH comprise of a novel
two—component system, and simultaneously positively
regulate the transcriptional units of sunA and sunT-bdbA—
sunS—bdbB [7].

ECF o factors belong to a subfamily of sigma 70 class
and respond to various extracellular changes [17], and the
regulation of antibiotic resistance functions is commonly
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Figure 1 Schematic of the sublancin gene cluster. (a) The gene cluster of sublancin in B. subtilis 168 consists of the immunity protein gene
sunl, precursor gene sunA, ABC-transporter gene sunT, two thiol-disulfide oxidoreductase genes bdbA and bdbB, and glycosyltransferase gene
sunS. (b) Abr and AbhB binding sites are located upstream of the promoter of sunA. (c) A typical o promoter is located upstream of sunA. (d) A
palindromic sequence and a ribosome-binding site without promoter are located between sunA and sunT. (e) A hairpin structure is formed from
the palindromic sequence after transcription.
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mediated by these factors. B. subtilis harbors a minimum
of seven known ECF o factors viz, o™, 6%, 0, 0", 0%, 0",
and 072 [18]. Of them, two ECF o factors o™ and o™ with
overlapping promoter specificity are involved in the bio-
synthesis—regulating of sublancin in B. subtilis 168 cells
(Additional file 1) [19]. The monocistron sunA—sunT-
bdbA-sunS—bdbB with a hairpin structure in between
sunA and sunT (Figure 1d and e) is transcriptionally con-
trolled under a * promoter (Figurela and c), and its typ-
ical motifs of -35 and -10 region are TTGACA and
TATAAT with a consensus spacing of 17 nucleotides.

Natural production of sublancin biosynthesized by B.
subtilis 168 is poor owing to its complex transcriptional
regulatory mechanism [2]. Comparing to single polypep-
tide consisting of common amino acids [20], the mature
sublancin undergoes further post—translational modifica-
tion, including formation of the characteristic glucosyla-
tion moiety and disulfide bridges. It is not suitable for
commercial production through conventional recombin-
ant DNA technology or common peptide chemosynthesis
method [1,2,5]. Considering the possibility of displacing
the complex transcriptional regulatory mechanism to effi-
ciently biosynthesize sublancin, we altered the transcrip-
tional regulatory network of sunA in situ with a strong
inducible P, vegetative o” promoter [21]. Meanwhile,
other two strong promoters of P43 [22] and Pj,s [23]
were placed before sunl and sunT-bdbA—sunS—bdbB,
respectively.

Results and discussion

Construction of recombinant B. subtilis 1A747 strain
Three strong characteristic promoters including vegeta-
tive—and—stationary double functional promoter P43
[22], the maltose—inducible promoter P, [21] and vege-
tative promoter Py, [23], were in situ chromosome—in-
tegrated into B. subtilis 1A747 and respectively placed
before two genes of sunl and sunA and one gene cluster
of sunT-bdbA-sunS—bdbB that are responsible for mature
sublancin biosynthesis. Then, recombinant B. subtilis 1A747
strains were constructed for the efficient biosynthesis of sub-
lancin for commercial applications (Figure 2).

Contribution of P43, Py, and P;,,s on over-transcription
of relative genes

Recombinant B. subtilis 1A747 strains were cultured in
modified Medium A [2,24] at 37°C and induced at 12®
hour after fermentation start according to bacterial
strain growth curve (Figure 3a). Meantime, the same
culture system without maltose treatment served as a
positive control and non—recombinant B. subtilis 1A747
strain with maltose treatment served as a negative con-
trol (Figure 3a). That the transcript amount of sunA
and relative genes in recombinant strain induced by 5%
maltose were 2 to 5 times higher than those of negative
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control when these strains reached the late logarithmic
phase (Figure 3a and b) suggested that recombinant
B. subtilis 1A747 strains have an obvious advantage in
effective biosynthesis of mature sublancin (Figure 3c).

Improved biosynthesis of mature sublancin

A maximum amount of 642 mg sublancin from 1 L cul-
ture supernatant of recombinant strain was achieved
(Figure 3c), which is statistically significantly higher than
those of 67 mg/L with maltose treatment (Figure 3c) and
at most 60 mg/L without maltose treatment [2] both ob-
tained from non-recombinant parental B. subtilis 1A747.
Electrospray ionization mass spectrometry analysis showed
that molecular weight of purified mature sublancin was
3877.642 KDa (Additional file 2), which is consistent with
previous reports [2,5] and the result of tricine—~SDS-PAGE
analysis of 3.9 KDa (Figure 3d—a). Western blot analysis
confirmed the result of tricine-SDS—-PAGE analysis and
showed that sublancin existed in culture supernatant
(Figure 3d-b). The analysis of circular dichroism
spectrum showed that purified mature sublancin in the
liposome solution had a double—negative peak at 207
and 222 nm and thus displayed an a-helical conform-
ation (Additional file 3) that is also in agreement with
other study [25].

The above findings suggest the importance and advan-
tages of this recombinant DNA technology in effective
and efficient biosynthesis of mature sublancin. Recently,
the synthesis of this type S—linked glycopeptide has be-
come an interesting target through a complicated chem-
ical [26] or semi—chemical [5] method, and several S—
linked glycopeptides have been chemically synthesized
[27-30]. However, both chemical and semi—chemical
methods are suitable for small and linear glycopeptide
synthesis but not for complicated glycopeptides like sub-
lancin. The biosynthesis of S—linked glycopeptides with
disulfide bridges such as sublancin using recombinant
DNA technology has been rarely reported.

Several gene clusters such as those responsible for syn-
thesizing mature nisin or subtilin in other microorganisms
[31] are similar to that of sublancin, and also include the
genes for precursor peptides and post—transcriptional
modification enzymes. Their core peptides have different
sequence identities but also contain abundant cysteine resi-
dues. In future, these specific post—transcriptionally modi-
fied antimicrobial peptides may become more common
than currently appreciated. Therefore, it is assumed that
more antimicrobial agents with post—transcriptional modi-
fication such as S-linked glycopeptides could be efficiently
biosynthesized when to increase the possibilities of in situ
utilizing vegetative or other appropriate promoters to adjust
the transcriptional regulatory circuits of relative gene
clusters.
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Figure 2 Construction of recombinant B. subtilis 1A747 strain. (a) The plasmid pDM035 containing resistance genes of chloramphenicol and
spectinomycin were double digested with Xhol and Xbal. (b) The fusion fragment of the P43-sun/-P;,~sunA-P;,s—two homologous arms with
Xhol and Sacl was inserted into the vector pDMO035 by displacing B-galactosidase gene to yield pDM036 (c). (d) The pDMO036 was digested and
linearized with BamHI. (e) The linearized pDMO036 was inserted into the prophage SPB genome of B. subtilis 1A747. (f) The recombinant B. subtilis
1A747 strain was generated.
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Figure 3 Improved biosynthesis of sublancin in B. subtilis 1A747 [SPBc, prototroph, derivative of B. subtilis 168 (trpC2)] based on three
strong heterologous promoters. (a) The absorbances of B. subtilis cell cultures at OD595 of, harbouring Py, P43, and Py, induced by maltose
(e) and not induced by maltose (o), and not harbouring those three promoters also treated by maltose (A). (b) Real-time PCR analysis of the
transcription amounts of sunA (), sun/ (o), sunT (A), bdbA (8), sunS (m), and bdbB (o) of B. subtilis 1A747 harbouring Py, P43, and Pj,.s induced
by maltose, compared with the control harbouring native promoters also treated with maltose. (¢) Cumulative sublancin production in B. subtilis
culture supernatant harbouring those three strong promoters induced by maltose (e) and not harbouring those promoters also induced by
maltose (o), the maximum production of 628 mg sublancin was obtained from 1 L recombinant bacteria culture supernatant at 36 h after
fermentation. (d) Tricine-SDS-PAGE analysis (a) and western blot analysis (b) of total extracellular proteins from B. subtilis 1A747 induced by
maltose, harbouring those three strong promoters (lane 1) or not (lane 2). Bands of sublancin indicated by arrow presented in (a) were confirmed
by western blotting (b). Marker lane, broad range protein marker (#P7702, New England Biolabs, USA).
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Determination of conditional stability

As a potential alternative to conventional antibiotics in
treating some bacterial-mediated inflammations like
mastitis and gastroenteritis, the conditional stabilities of
sublancin were evaluated using the simulated in vivo
conditions i.e., specific pH, different temperatures and
protease—rich environments. Our data show that tem-
peratures ranging from 20°C to 70°C for 30 min can
slightly affect the antimicrobial potency of sublancin
(Figure 4a), while pH from 4.0 to 9.0 did not show sig-
nificant effect on the antimicrobial activity (Figure 4b).
The pH in body blood maintains at between 7.25 to 7.45
[32], whereas gastric juice, proximal small intestine, ter-
minal ileum and cecum constantly maintain mean pH at
1.0 to 2.5, 6.6, 7.5, and 6.4, respectively [33]. Thus, these
tissues besides stomach could provide optimum environ-
ments for potent biological activities of sublancin.

Proteolytic susceptibility of sublancin should also be
considered in various applications such as in treating
bacterial-mediated mastitis or bacterial-mediated gastro-
enteritis. Therefore, a number of bacterial proteases and
gastrointestinal digestive enzymes, e.g., P. aeruginosa elas-
tase and S. aureus V8 protease, pepsin and trypsin would
certainly be encountered [34]. The results showed that
sublancin maintained a majority of its activities when ex-
posed to these proteases (Figure 4c). All experiments were
performed in vitro; therefore in vivo studies should be
conducted prior to clinical applications. Similar study
about conditional stability of sublancin has not been previ-
ously documented. In contrast, a remarkable antimicrobial
potency reduction of Bovicin HC5 was observed in
Streptococcus bovis HC5 when exposed with protein-
ases, peptidases and heat [35], which can represent a
common problem with regard to easy degradability of
antimicrobial peptide.

Sugar linkages like glucose to cysteine can produce
more stable products than conjugation to serine at high or
low pH [36-38]. Mechanism of conditional stability of sub-
lancin may be attributed to two disulfide bridges. Their
coupling with glucose glycosylation probably provide the
exceptional stability for sublancin by reducing the config-
urational entropy of unfolding; thus, conformational con-
straints are exerted, and conformational and biochemical
stability are conferred on this agent [5].

Activity of sublancin

Antibacterial activity and cytotoxicity of sublancin were
also evaluated. Sublancin showed a potent antimicrobial
activity towards nine bacterial strains including five typical
and four drug—resistant strains, especially against S. aureus
with MIC < 0.4 mg/L (Table 1). These findings are consist-
ent with previously reported study [2] and is almost equal
to that of nisin that is a common and typical antimicrobial
peptide from Lactococcus lactis, and is widely used in
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the identical reaction systems without sublancin were used
correspondingly as the negative controls. The residual activity ratios

were calculated according to the description in the text.

clinical and food preservation applications [39], with MIC
of 0.5 mg/L against S. aureus. In addition, sublancin exhib-
ited an ICs5y > 200 mg/L toward HT-29 cells, indicating its
moderate cytotoxicity.

An almost unaffected growth curve of recombinant B.
subtilis 1A747 strain under high sublancin concentration
was observed after the maltose induction (Figure 3a and
¢), hence confirming that the producer possessed the
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Table 1 MICs of sublancin for different strains

Strains MIC (mg/L)
E. faecalis ATCC 29212 73+035
gentamicin-resistant E. faecalis 68+0.29
S. aureus ATCC 25923 06+0.14
methicillin-resistant S. aureus 04+0.21
S. agalactiae ATCC 27956 214035
erythromycin-resistant S. agalactiae 14+024
S. pyogenes ATCC 19615 08+0.22
erythromycin-resistant S. pyogenes 1.0+ 036
B. cereus ATCC 10987 34+0.21

The data derived from average values for three independent replicate
experiments and almost identical triplicate sets of data.

immunity against sublancin owning to the contribution
of Sunl generated simultaneously with sublancin [6].

Conclusions

In our present study, we for the first time developed a
recombinant B. subtilis 1A747 strain by displacing native
promoters of genes responsible for mature sublancin
biosynthesis with three distinctive promoters of P43, P,
and Py,.s, and the developed recombinant strain is cap-
able of efficiently producing sublancin. The biosynthe-
sized mature sublancin showed a rational molecular
weight and conformation, displayed a potent and broad
activity spectrum with a moderate cytotoxicity and illus-
trated a good conditional stability under the treatment
with high temperatures, extreme pH and specific prote-
ases. These findings are important for this recombinant
strain in allowing for effective and efficient biosynthesis
of sublancin. The promoter replacement provides an
extra choice for high production of some other compli-
cated peptide such as nisin and subtilin.

Materials and methods

Construction of mutant strains of B. subtilis 168

The pDMO035 (Figure 2a) (kept in our laboratory), a shuttle
vector able to replicate both in E.coli and B. subtilis and
containing resistance genes against chloramphenicol and
spectinomycin, was double digested with X#hol and Xbal.
The fusion fragment of P43—sunl-Pg,—sunA—P,s—two
homologous arms with Xhol and Sacl (Figure 2b) was syn-
thesized at AuGCT Co. Ltd. (Beijing, China). The fragment
was inserted into vector pDMO35 by displacing f—galactosi-
dase gene to generate pPDMO036 (Figure 2c). The resultant
pDMO036 was transferred into Escherichia coli, and the posi-
tive clones were selected using 5 pg/mL chloramphenicol.
B. subtilis 1A747 [SPPc, prototroph, derivative of B. subtilis
168 (trpC2)] (Bacillus Genetic Stock Center, USA)
competent cells were transformed with linearized
pDMO036 digested with BamHI using the electropor-
ation approach [40].
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The positive—recombinant B. subtilis cells were se-
lected from LB agar with 5 pg/mL chloramphenicol and
50 pg/mL spectinomycin resistances. These strains were
cultured in 50 mL modified Medium A [2,24] in 250 mL
shake flask with agitation speed of 225 rpm at 37°C. The
culture mixture was not supplied with 5% maltose until
the late logarithmic phase of strains [41]. After another
24 h culture, the fermentation broth was harvested and
centrifuged at 12,000 x g for 15 min at 4°C and the su-
pernatants were collected. B. subtilis 1A747 strains were
used as control that was performed as recombinant B.
subtilis was done. Crude sublancin concentrations in fer-
mentation supernatant were measured by HPLC using
the method described below.

Isolation of total RNA and Real-time PCR

The cultures were collected once every 3 h from 3 h
until 48 h after fermentation. Total bacterial RNAs were
isolated by a SV total RNA isolation kit (#23100; Promega,
USA). Extracted total RNA was reverse—transcribed into
¢DNA chain by a Reverse Transcription System Kit
(#A3500; Promega, USA). Real-time PCR was carried out
using Real time PCR Kit (#¥DRR041S; TaKaRa, Japan). The
genes of sunl, sunA, sunT, bdbA, sunS and bdbB were
amplified by primers as shown in Table 2. 16 s rDNA of B.
subtilis 168 was amplified as control using 16 s—up/16 s—
down primers. PCR protocols were as follows: 2 min at
50°C and 10 min at 95°C, followed by 35 cycles consisting
of 42 s at 95°C, 60 s at the annealing temperatures shown
in Table 2, and 30 s at 72°C. Reactions were performed in
IQ5 Real-time PCR detection system (Bio—RAD, USA).

Western blotting

The culture supernatants at 36 h were collected at 12000 g
for 10 min, mixed with 4 x Laemmli loading buffer (3:1)
and heated in boiling water for 5 min. Subsequently, the tri-
cine sodium dodecyl sulfate polyacrylamide gel electrophor-
esis (tricine—-SDS—-PAGE) [42] analysis was performed using
10% gel (Figure 3d—a) and then electro—transferred to
PVDF membrane (Millipore, USA) for protein immunoblot
analysis (Figure 3d—b). The preparation and purification of
mouse anti—sublancin monoclonal antibody was performed
by Cwbiotech (Beijing, China). After incubation with HRP—
conjugate secondary antibody, bands were visualized by
chemiluminescence using a ChemiDoc XRS imaging sys-
tem and analysis software Quantity One (Bio—Rad, USA).

Purification of sublancin

Isolation and purification of sublancin were performed
as described previously [2] with slight modification. The
harvested supernatant was placed in 1 M NaCl and then
subjected to a hydrophobic interaction chromatography
using 25 mL Toyo pearl Butyl-650 column (Tosoh,
Tokyo, Japan), equilibrated with 1 M NaCl and 50 mM
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Table 2 Primers and annealing temperatures used in real-time PCR
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Gene Primer Sequence Annealing temperature (°C)

sunl sunl-up AAGAGTCAGACAAGTATGGAGTT 48
sunl-down TTAAATGGAGCTCAACAATTTA

SUNA SunA-up GAACTGGAAAATCAAAAAGGT 49
sunA-down CAAAACTGCCGGTAATTCT

sunT sunT-up GGGGATAAGGAAGGCTATAG 50
sunT-down TAATGTCCATATTCCTCCCC

bdbA bdbA-up GCAGCAGCCATTAGTATTTTC 51
bdbA-down CAAGGAGGACAACTTGTCTCA

suns SuNS—-up GGCTATGCCGATTCTTTATT 50
sunS—-down CCGCATGTTATTGTAGGAGTA

bdbB bdbB-up CCATGTGTTCTATGTTGGTATC 49
bdbB-down CCAATTTCACATACGACACTT

NaAc (pH 4.0). The unbound proteins were washed with
loading buffer, and 50 mM NaAc (pH 4.0) was used to
elute sublancin. The elution was placed in 0.1% TFA and
subjected to HPLC using a semi—preparative Zorbax
300SB-C8 column (250 mm x 9.4 mm, 5 pm particle
size, 300 A pore size; Agilent, Englewood, CO), equili-
brated in 0.1% (v/v) TFA and 10% acetonitrile. The elu-
tion was subsequently developed with a linear 0% to 60%
acetonitrile gradient at a flow rate of 1.0 mL/min. Frac-
tions from different retention times were tested for anti-
microbial activity. Active fractions were collected and
then subjected to HPLC using an analytical Zorbax
300SB-C8 column (150 mm x 4.6 mm, 5 pm particle
size, 300 A pore size; Agilent, Englewood, CO) under
the same conditions as used in the first step. The absor-
bances at 214, 254 and 280 nm were monitored and S.
aureus was designated as indicator strain in antimicro-
bial activity assays. The concentration of purified sublan-
cin was determined by UV spectrophotometry [43,44].
The molecular weights of sublancin were obtained by
electrospray ionization mass spectrometry (Agilent,
USA; Figure 4). The pooled solution of sublancin was
freeze—dried in a vacuum freeze dryer (SIM Inter-
national Group Co., Ltd., USA) at -80°C for further
experiment.

Secondary structure analysis

Using a 1 mm path—length quartz cuvette, the second
structure of sublancin at 50 mg/L in Palmitoyl-oleoyl—phos-
phatidylglycerol (POPG) liposome solution was detected
using a Jasco 810 spectropolarimeter (Jasco Corporation,
Japan) at room temperature, within the range of 190 nm to
250 nm at 10 nm/min, as described previously [45]. The lipo-
some solution without sublancin was used as a reference.
POPG liposomes (Sigma, USA) were prepared with the fol-
lowing slight modification: a specific amount of POPG was

dissolved into 10 mM PBS (pH 7.4) to prepare the stock so-
lution of 100 uM POPG.

Antimicrobial activity

B. cereus ATCC 10987, Enterococcus faecalis ATCC 29212,
S. aureus ATCC 25923, S. agalactiae ATCC 27956, and
S. pyogenes ATCC19615 were obtained from ATCC
(Rockville, MD, USA). Erythromycin—resistant S. agalac-
tiae, erythromycin—resistant S. pyogenes, gentamicin—resist-
ant E. faecalis and methicillin—resistant S. aureus were kept
in our laboratory. MIC assay was performed depending on
a microtiter broth dilution method, as described previously
[46], with slight modification. A packed volume with
DEAE-Sephacel (Sigma—Aldrich, Schnelldorf, Germany)
was equilibrated with deionized water, 2 M NaCl, 0.1 M
NaOH, 70% ethanol, and 10 mM Tris buffer (pH 7.4). Ap-
proximately 100 mL of LB broth in the same Tris buffer
was subjected to the treated column to prepare a refined
medium, and then sterilized using 0.22 pL of the mem-
brane filter. In addition, the peptide sample was dissolved
into Tris buffer to prepare 10—fold serial dilutions. After
overnight culture, the tested strains were rinsed with Tris
buffer and diluted to 5x10° CFU/mL in refined LB
medium. Aliquots of 90 pL of bacteria solution were added
into the wells of a 96—well microtiter plate. Subsequently,
10 pL of the serial 10—fold dilutions were placed into corre-
sponding wells and produced a serial working concentra-
tion of 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.12 and 0.06 mg/L.
The mixtures were incubated at 37°C for 21 h, and then
measured as described previously [47]. A negative control
was also prepared using same reaction system without
sublancin. These experiments were repeated three times
(hereinafter the same). MIC was defined as the lowest con-
centration of an antimicrobial agent required to inhibit 90%
of microorganism growth after overnight incubation.
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HT-29 lytic activity

The human colorectal adenocarcinoma cell line HT-29
were obtained from the ATCC and cultured in RPMI-1640
medium (Invitrogen, USA) supplemented with 0.2 g/L
streptomycin, 0.1 g/L penicillin, 10% heat—inactivated fetal
calf serum (FCS, Germany). Cells were maintained at 37°C
in 5% CO,. For assays, the HT-29 cells were first starved
for 24 h in serum—free medium, and then were seeded in a
24—well plate (Nunc, Germany) at 1x10° cells/well. At
subconfluency, medium was replaced, and the cells were in-
cubated with the serial sublancin dilutions of 200, 100, 50,
25, 12, 6, and 3 mg/L in a volume of 100 pl for 24 h. Cell
viability was assessed in exposed cultures by using a
colorimetric 3—(4,5—dimethylthiazol-2-yl)-2,5 diphe-
nyltetrazoliumthiazolyl blue assay (MTT, Roche Diag-
nostics, Germany). The reaction samples were detected
at 570 nm with a microtiter ELISA reader (EpochTM,
BioTek-° instruments, Inc., USA).

Assessment of stability

The effect of different factors including enzymes, pH
and temperatures on sublancin stability was evaluated.
The evaluation was performed in accordance to the
method described in the antimicrobial activity section
with slight modification. Aliquots of 5 mg/L sublancin
in PBS (pH 7.4) were treated under different protease
[HNE (Innovative Research, Novi, MI), PE (Innovative
Research), pepsin (Sigma), V8 (BioCol GmbH), and tryp-
sin (Sigma Chemical Co., St. Louis, MO)] at a substrate:
protease molar ratio of 300:1 at 37°C, gradient pH values
(pH 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0) at 37°C and
gradient temperatures (20, 30, 40, 50, 60, 70, 80 and 90°C),
all treatments were performed for 30 min. After the treat-
ment, the indicator bacteria were mixed with 100 pL
treated peptide solution. Approximately 5 x 10° CFU/mL
solution was obtained and then incubated at 37°C for
21 h. At the same time, a similar reaction system at 30°C
(pH 7.0) was set as positive control; the same systems
without sublancin were correspondingly used as negative
controls. S. aureus was used as indicator strain. The effect
of these factors on sublancin stability was evaluated
through residual activity using the following formula:

residual activity ratio (%) = (A1-A4)/(A1-A2) x 100%

where A, A;, and A, represent the absorbance of the
different factors, negative controls and positive control,
respectively.

Statistical analysis
The experiments were repeated for three times, and the
mean values were expressed as mean + standard deviation.
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