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Deformable image registration (DIR) has been proposed for lung ventilation calcula-
tion using 4D CT. Spatial accuracy of DIR can be evaluated using expert landmark 
correspondences. Additionally, image differences between the deformed and the 
target images give a degree of accuracy of DIR algorithms for the same image 
modality registration. DIR of the normal end-expiration (50%), end- inspiration 
(0%), midexpiration (30%), and midinspiration image (70%) phases of the 4D 
CT images was used to correlate the voxels between the respiratory phases. Three 
DIR algorithms, optical flow (OF), diffeomorphic morphons (DM), and diffeo-
morphic demons (DD) were validated using a 4D thorax model, consisting of a 
4D CT image dataset, along with associated landmarks delineated by a radiolo-
gist. Image differences between the deformed and the target images were used to 
evaluate the degree of registration accuracy of the three DIR algorithms. In the 
validation of the DIR algorithms, the average target registration error (TRE) for 
normal end-expiration-to-end-inspiration registration with one standard deviation 
(SD) for the DIR algorithms was 1.6 ± 0.9 mm (maximum 3.1 mm) for OF, 1.4 ± 
0.6 mm (maximum 3.3 mm) for DM, and 1.4 ± 0.7 mm (maximum 3.3 mm) for 
DD, indicating registration errors were within two voxels. As a reference, the 
median value of TRE between 0 and 50% phases with rigid registration only was 
5.0 mm with one SD of 2.5 mm and the maximum value of 12.0 mm. For the OF 
algorithm, 81% of voxels were within a difference of 50 HU, and 93% of the voxels 
were within 100 HU. For the DM algorithm, 69% of voxels were within 50 HU, 
and 87% within 100 HU. For the DD algorithm, 71% of the voxels were within 
50 HU, and 87% within a difference of 100 HU.  These data suggest that the three 
DIR methods perform accurate registrations in the thorax region. The mean TRE 
for all three DIR methods was less than two voxels suggesting that the registration 
performed by all methods are equally accurate in the thorax. 
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I. IntroductIon

In image registration, images are aligned by establishing a correspondence between features 
in both images. We can categorize these algorithms into two categories: rigid registration and 
deformable image registration (DIR). Rigid registration simply aligns the images, whereas DIR 
can take into account complex changes such as deformation due to breathing, patient weight 
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loss, or tumor shrinkage. The purpose of DIR is to find a transformation from one image set to 
another, such that the differences between the deformed and the target image sets are minimized 
by providing a voxel-to-voxel deformation matrix. DIR has been studied since the early 1980s. 
For many years, neurosciences and neurosurgery have been the driving force for developing 
various deformation techniques.(1,2) A more recent application of DIR is its use in the calcula-
tion of ventilation from four-dimensional computed tomography (4D CT), which is also our 
motivation for validating the DIR methods.(3-11)

An application of DIR as exemplified in this paper is image registration of two images from 
two different times during a breathing cycle (4D CT). DIR finds a mapping between a voxel 
in one phase of the image (e.g., end expiration) to a corresponding voxel in the second phase 
(e.g., end inspiration).  

A variety of DIR algorithms have been implemented. While the goal of these algorithms 
is the same, the algorithms are based on aligning different image features, how they measure 
similarity, and what type of deformations they allow. In this paper, DIR between different 
phases (0%, 30%, 50%, and 70%) of the breathing cycle was evaluated by three different DIR 
algorithms, optical flow (OF),(12-15) diffeomorphic demons (DD),(16-18) and diffeomorphic mor-
phons (DM).(19) A more thorough description of these algorithms is given in the corresponding 
Methods section.

For all DIR algorithms, it is highly desirable to provide an estimate of the accuracy of their 
registration for the desired application.(20-26) The algorithms investigated in this paper were 
all evaluated using an anatomical landmark-based model, point-validated pixel-based breath-
ing model (POPI),(23,24) and the image differences between the deformed and the target lung 
images. The model consists of anatomical landmarks in the lung chosen by expert radiologists. 
The intention of the model is to have landmarks that are spread uniformly and correspond to 
anatomical features such as the carina, calcified nodules, division branch of the pulmonary 
artery, and apical pulmonary vein of the upper lobe and various bifurcations of smaller structures 
that could be uniquely identified in each image set by four different medical experts. A more 
detailed procedure for obtaining the landmarks is given by Sarrut et al.(22)  

The POPI model is a useful tool that has been made available to researchers, which can be 
used to estimate the deformation accuracy in the lung. This paper evaluates the accuracy of 
OF, DD, and DM DIR algorithms that are used for registration of the 4D CT image sets for the 
application of accurate DIR for the lung.

 
II. MAtErIALS And MEtHodS

A.  deformable image registration algorithms
Three different registration algorithms, OF,(12-14,27) DM,(25,28) and DD(18,25,29) were used to 
deform the end-expiration image (50%) to the end-inspiration (0%), midexpiration (30%), and 
midinspiration image (70%).

A.1  Optical flow 
OF finds the voxel correspondence by computing a displacement field describing the apparent 
motion represented by the two image sets by matching the intensity gradients.(13-15) OF assumes 
that Houndsfield Unit (HU) values remain constant for the corresponding voxels. HU of a voxel 
at time t is equal to the HU at a later time t + δt, that is:
   
   (1)
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where  is the HU value at time t. Applying Taylor series expansion of the terms on the 
right-hand side of Eq. (1) and ignoring terms higher than the first derivative, we obtain the 
optical flow constraint equation:

  (2)
 

where  is the velocity and it consists of the displacement between a point in the first

image, , and the corresponding point in the second image  divided by 
the time between the two images, δt. A velocity constraint, which requires that nearby points 
move in a similar manner to each point, is introduced in order to obtain a single solution from 
Eq. (2) for each voxel. Using calculus of variations, an iterative approach was applied to solve 
for the displacement vector field in the implemented OF computer program.(13,27)

A.2  Diffeomorphic demons
Maxwell’s demon was adapted by Thirion(17) to a diffusion-based algorithm as a fast technique 
for deformable registration of medical images. In DIR using DD algorithms, the matching 
is based on HU values between image sets. The goal of DD, similar to the OF algorithm, is 
the minimization of HU differences between the voxels in the moving image (M), which is 
the image to be deformed, and the corresponding voxels in the target image (T), which is the 
image that M is deformed to match. As illustrated in Fig. 1, demons forces are applied on the 
moving image until there is an overlap in HU between the two. The difference in HU between 
the two images (M – T) determines the applied force and its direction. When the difference in 
HU between the two is greater than zero, M moves in the direction of ; however, when the 
difference is less than zero, M moves against . The demons stop exerting force when the 
images overlap completely. The optical flow equation was used to calculate the force applied 
by the demons, but is renormalized because of the effects of small image intensity gradients.

It was demonstrated by Pennec et al.(16) that this method resembles an optimization of a 
second order gradient descent of the sum of the squared intensity differences (SSD). This 
indicates that demons would function well in single modality registration, where SSD gradient 
descent is also appropriate.

Demons algorithm is adapted to include the gradients of the moving and target images. 
This optimization makes demons more efficient, and is the method that is implemented for our 
demons registrations. Additionally, to create physical displacement fields, the demons algorithm 
is updated to make it diffeomorphic.(18) A diffeomorphism is a map between manifolds, which 
is differentiable, and its inverse is differentiable, as well.(18) Organs can be compressed and 
deformed and undergo invertible spatial transformation. 

Fig. 1. Illustration of the demons forces (a) with target image (T) in gray and moving image (M) in transparent blue; the 
demons indicated by vector arrows warp the image by applying a force in the direction of the image gradient. In (b), there 
is a better overlap between the images and, as a result, the corresponding force is reduced, indicated by shorter vectors. In 
(c), the images overlap and there is no applied force by the demons because there is no difference in the gradient.
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The deformation field produced by DD is smoothed by a Gaussian filter, and iteratively 
used to transform the moving image, and register on to the static image. The displacement 
vectors during deformation are calculated independently for every voxel. Due to the image 
noise, the displacement field may not be smooth, so regularization is applied to get a smoother 
deformation field. 

A.3  Diffeomorphic morphons
The DM algorithm is based on matching of edges and lines.(25) The difference between this 
algorithm and OF and DD is that the computation of the field is based on the local phase differ-
ence rather than the intensity difference between images. The phase difference between periodic 
signals with the same frequency allows the estimation of the spatial difference between these 
signals. The morphon iteratively deforms a moving image into a target image by morphing 
the moving image. The process can be divided into three parts: estimation of displacement, 
accumulation of the deformation field, and deformation. 

The estimation of displacement has the aim to find the ways and indications on how to deform 
the moving image into the target image. Estimation of displacement is based on quadrature phase 
difference. The accumulation of the deformation field uses the estimate of the displacement to 
update the deformation field. Finally, the deformation morphs the moving image to the target 
image according to the accumulated deformation field. These steps are done iteratively, as long 
as the displacement estimates indicate further morphing to be done.(19,25)

Quadrature phase difference is a method used to estimate local displacement between two 
images. The advantage of this method over other methods, such as the ones based on gradient 
and polynomial expansion, is its invariance to image intensity and weak gradients.(19) Edges 
between bright and dark areas have one phase, dark lines have one phase, and lines on dark 
background have a phase as well as bright patches. The transition as we move from one phase 
to another is continuous. Therefore, the difference in local phase between the moving and 
target images is a good measure of how much the moving image has to move to fit the target 
image. The local displacement is a function of the local phase along its associated direction. 
To estimate the local displacement a least square estimate is used. 

The moving image is deformed based on the accumulated field and then it is compared to the 
target image in order to estimate a displacement field for the current iteration being performed. 
The updated field is formed by combining the accumulated field and the displacement field from 
the current iteration. After acquiring the update field as well as the certainty from the field, a 
weighted accumulation is used to determine the accumulated displacement field. Additionally, 
estimation of the displacement vectors is combined with a measure of the estimation confi-
dence, which results in a certainty map. In order to prevent folding, the morphons algorithm is 
optimized to become diffeomorphic. As in the DD algorithm, the deformation field produced 
by the DM is smoothed by a Gaussian filter, and iteratively used to transform the moving image 
and register to the static image. 

A.4  Implementation
All three DIR algorithms are implemented in an iterative and multiscale scheme. A lower 
resolution deformation is first approximated, then used for the next level of deformations with 
a higher resolution of the images to be registered. This process continues until the deformation 
has been approximated at the highest resolution.(14,18,19,22)

OF is implemented using C++ with four scales of resolution, and 98 iterations at each 
scale, which was determined to be the optimal number of iterations for OF. DD and DM were 
implemented using MATLAB (The MathWorks, Natick, MA). The settings were the same as 
the ones described in Janssens et al.(25) that is using eight scales, with a minimum of 10 and a 
maximum of 20 iterations at each scale, and a Gaussian smoothing with a standard deviation 
σ = 2. The iterative process was stopped if the changes measured in terms of the sum of the 
squared differences (SSD) were less than 0.01%.(25)
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B.  Validation of deformable image registration algorithms
All three DIR algorithms were evaluated using the POPI model. The POPI model consists of 
a typical clinical 4D CT image dataset of a lung with the images binned into 10 phases along 
with 41 associated anatomical landmarks. The 4D CT images were acquired using a Phillips 
Brilliance Big Bore CT (Philips Healthcare, Andover, MA), and an air bellows belt with a pres-
sure transducer was used to convert the pressure waveform into respiratory phase information, 
which was used for the 4D image phase tagging.(24,30) The landmarks are anatomically homolo-
gous points that were manually delineated by radiologists at all 10 phases of the original 4D 
CT image sets.(24) They are based on anatomical features that correspond to various locations 
in the lung such as the carina, calcified nodules, culmen-lingula junction, division branch of 
pulmonary artery, and apical pulmonary vein of the upper lobe. The CT image sets consisted 
of 512 × 512 × 141 voxels with voxel dimensions of 0.97 × 0.97 × 2 mm3 (2 mm slice thick-
ness). The phases used for the evaluation of the DIR algorithms were normal end inspiration 
(0% phase), midexpiration (30% phase, the phase that lies between the end inspiration and end 
expiration), normal end expiration (50% phase), and the 70% phase which is midinspiration 
or the phase that lies between the end expiration and end inspiration. For all the methods, the 
original datasets were used for this validation without any changes to the images. 

Using deformable registration, one phase is registered to the second phase (e.g., end-
expiration-to-end-inspiration phase). This generates deformation vector fields (DVFs) that 
approximate the anatomical displacements voxel-by-voxel. The vector fields point from the 
target positions to the new displaced positions of the anatomical features. For this study the 
0%, 30%, and 70% phases were each registered to the 50% phase. 

The resulting deformation fields were used to calculate the new location of the landmarks 
on the end-expiration phase. Then, the positions of the calculated landmarks were compared 
to the inspiration phase landmarks, as determined by the radiologists. TRE was then assessed 
by calculating the displacement between the calculated and the anatomically determined land-
marks for each of the radiologist identified points (TRE = Xa - Xb, where Xa is the anatomical 
position of the landmark and Xb is the calculated position of the landmark). This displacement 
was used as the metric to assess the accuracy of the registration algorithms. For comparison 
purposes, the difference in position between landmarks with rigid registration (RIG) only was 
calculated. That difference is defined as the position of the landmarks in the inspiration phase 
minus the position of the landmarks in the expiration phase. 

Additionally, the DIR algorithms were evaluated on a voxel-to-voxel basis by calculating 
the HU differences between the deformed image and the static image. Inspecting image differ-
ences is convenient and may provide qualitative evaluation of the accuracy of the DIR. After 
an accurate deformation, the HU differences between the deformed and static images should be 
small. However, in reality, small misalignments can have a big effect and the differences can be 
large, especially near interfaces. The difference in HU between the deformed and target images 
is used as an indicator of the accuracy of the registration.  A region of interest (ROI) was drawn 
to include only the voxels inside the lung and exclude the rest of the image. For comparison, 
the differences between the moving and the target images were calculated using RIG only.  

 
III. rESuLtS 

Only 39 of 41 landmarks in the POPI model were used. Two of the landmarks were intention-
ally not used for the evaluation because one of them was outside the area of interest and the 
other one corresponded to a 4D CT artifact.  

Table 1 shows a summary of the statistics of target registration errors for the OF, DM, 
and DD algorithms for registration between the end-expiration and end-inspiration (50% and 
0%) phases, 50% and 30%, 50% and 70%, respectively. The data show that the registration 
errors were within two voxels. One-way analysis of variance (ANOVA) was used to assess the 
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 differences between the three DIR algorithms. The differences between the TREs using OF, 
DM, and DD were not significant, p-value of 0.37. Box plot graphical representations of the 
ANOVA results are shown in Fig. 2. 

Table 1. Summary of the magnitude of the target registration errors for the three DIR algorithms and the distances 
between landmarks with RIG only: (upper) for 50%–0%, (middle) for 50%–30%, (lower) for 50%–70%.

  50%–0%
 Phases OF DM DD RIG

 Median (mm)  1.5 1.3 1.3 5.0
 SD (mm)  0.9 0.6 0.7 2.5
 Max (mm) 3.7 3.3 3.3 12.0
 Min (mm) 0.2 0.2 0.3 2.5

    50%–30%
 Phases OF  DM DD RIG

 Median (mm)  1.4 1.2 1.2 4.0
 SD (mm)  1.7 0.7 0.7 2.2
 Max (mm) 6.3 3.8 3.1 10
 Min (mm) 0.4 0.2 0.2 0.3

    50%–70%
 Phases OF DM DD RIG

 Median (mm)  0.7 1.1 0.6 2.1
 SD (mm)  0.7 0.5 0.4 1.1
 Max (mm) 3.3 2.7 2.1 4.3
 Min (mm) 0.1 0.1 0.1 0.3

Fig. 2. Box plot graphical representation of the ANOVA results for: (a) AP, (b) LAT, (c) SI, and (d) magnitude TRE for 
the OF, DM, and DD DIR. 
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Figures 3 to 6 show TRE plots of the 0%–50% registration for each point, and the dashed 
lines in these figures represent a ± two voxel error. Figure 3(a) shows a plot of TRE in the 
anterior–posterior (AP) direction for the three DIR algorithms (OF, DM, and DD), and Fig. 3(b) 
shows the distance between the phases of landmarks in the AP with RIG only.  

Figure 4(a) shows a plot of TRE in the lateral (LAT) direction for the three DIR algorithms, 
and Fig. 4(b) shows the distance between the phases of landmarks in the LAT without any reg-
istration. Figure 5(a) shows a plot of TRE in the superior–inferior (SI) direction for the three 
DIR algorithms, and Fig. 5(b), shows the distance between the phases of landmarks in the SI 
without any registration. Figure 6(a) shows the magnitude of the TRE for DIR and Fig. 6(b) 
shows the magnitude of landmark distance without DIR.  

Image difference is another validation method for the DIR algorithms to determine the degree 
of accuracy of deformable registration. Figure 7 shows a representative slice of the image differ-
ence for the three DIR algorithms and the differences between the two image phases with RIG 
only. For the OF algorithm, 81% of voxels were within a difference of 50 HU and 93% of the 
voxels were within 100 HU. For the DM algorithm, 69% of voxels were within 50 HU and 87% 
within 100 HU. For the DD algorithm, 71% of the voxels were within 50 HU and 87% within a 
difference of 100 HU. The image differences with RIG only between the moving and the target 
images were 50% within 50 HU and 69% within 100 HU. Figure 8 displays a histogram of the 
differences between the target and the deformed images as a percentage of the total voxels for 
all the algorithms, as well as the difference between the target and the moving images without 
a DIR to set a baseline. Overall differences between the DIR algorithms are small.

 

Fig. 3. Target registration errors (TRE) of the three DIR methods (a) in the anterior–posterior (AP) direction with 0%–50% 
registration (the maximum TRE for all three DIRs was less than two voxels, marked with the dashed lines); the distance 
in AP (b) between the landmarks without any registration. 

Fig. 4. Target registration error in the lateral direction (a) with 0%–50% registration; all three DIR methods performed 
similarly and had target registration error within two voxels, shown by the two dashed lines. The distance in lateral (b) 
between the landmarks without any registration. 
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Fig. 5. Target registration error in the superior–inferior (SI) direction (a), with 0%–50% registration; the target registration 
errors were within two voxels, shown by the two dashed lines. The distance in SI direction (b) between the landmarks 
without any registration.

Fig. 6. The magnitude of target registration errors (a) for the DIR methods with 0%–50% registration. The maximum 
TRE for all three methods was within two voxels, as denoted by the dashed line. OF mean TRE = 1.6 ± 0.9 mm, DM 
mean TRE = 1.4 ± 0.6 mm, and DD mean TRE = 1.4 ± 0.7 mm. The distances (b) between the landmarks without any 
registration. The mean landmark distance with RIG was 5.7 ± 2.5 mm.

Fig. 7. Image differences between the deformed and the target images for: (a) RIG, (b) optical flow, (c) diffeomorphic 
morphons, and (d) diffeomorphic demons.
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IV. dIScuSSIon

Various groups have used different models to validate image registration algorithms.(25,26,31,32) 
Janssens et al.(25) used metallic fiducial markers implanted inside a homogeneous phantom to 
evaluate deformable image registration with morphons and demons. There are several issues 
with using phantoms for evaluating DIR algorithms. Phantoms in general are not deformed 
in the same manner as a normal patient’s anatomy; they also deform reproducibly, thus pro-
ducing superior 4D CT image sets without the variability of actual patient breathing. The 
deformations of the phantom may also be more predictable and smoothly varying. Phantoms 
are a good method for testing DIR, but results may not be directly related to 4D CT imaging 
of patients. Additionally, if phantoms are deformed using mathematical models, then the CT 
artifacts, noise, and quantum effects may be exactly the same in the image pairs, which would 
not affect the registration quality. However, for registrations between different phases of 4D 
CT images, noise and image artifacts are not the same across images and, therefore, degrade 
the quality of registration.

In a different study, Janssens et al.(20) reported similar results to ours when validating DM 
and DD using the POPI model. They found that the mean target registration error for DM was 
0.9 ± 0.5 mm and a maximum of 2.8 mm, the mean target registration error for DD was 1.0 ± 
0.5 mm and a maximum of 2.8 mm. The reason for the differences between our results may be 
due to the differences in image resolution, as the voxel size for their study was 2 × 2 × 2 mm3, 
or due to the difference in image quality between the two studies.

Wang et al.(26) tested the demons algorithm on three different cases using a model based on 
real patient data. In the first case, they used CT images from a prostate patient, with voxel sizes 
0.94 × 0.94 × 3.0 mm3, and then mathematically deformed the images in a well-defined man-
ner. In the second case, they used CT images from a head-and-neck patient, with voxel sizes 
0.68 × 0.68 × 3.0 mm3, and then mathematically deformed the images; in the third case they 
used a deformable pelvis phantom. They found that the mean error for the first case was 0.5 ± 
1.5 mm, for the second case 0.2 ± 0.6 mm, and 0.8 ± 0.5 mm for the third case. Although this 
is a more advanced model than phantom measurements to test the accuracy of the deformation 
algorithm, this method also lacks patient variability and, consequently, may overestimate the 
accuracy of the technique. The accuracy is deemed to be good since CT artifacts, noise, and 
quantum effects were exactly the same in the image pairs, which would not affect the registra-
tion quality, while for registrations between phases of 4D CT images this is not the case. The 
presence of different CT artifacts and noise in the images is a factor that would degrade the 

Fig. 8. Histogram of the differences between the deformed and the target images. The histogram shows the differences 
in HU between the images as a percentage of the total number of voxels encompassed by the region of interest. The RIG 
shows the HU difference between the moving and the target images.
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quality of the registration. Another source of differences between our results and results from 
the Wang study may be because the anatomical regions are not the same. Similarly, Zhong et 
al.(32) validated demons algorithm using a synthesized prostate model and a CT image-based 
lung model. They found that the mean displacement error in the prostate was 2.0 mm, while 
the mean displacement error for the lung registration was 1.3 mm.

Castillo et al.(31) evaluated the OF algorithm using a large number of landmarks. They tested 
image registration with voxel size 5 × 5 × 5 mm3 and found that the mean 3D registration error 
for this algorithm was 6.9 ± 0.1 mm. This method is similar to the model we used for our vali-
dation because it is based on anatomical landmarks. The voxel size used for this study is quite 
large and may not reflect the clinical situation; the CT voxel size of the POPI model used in our 
validation was 0.97 × 0.97 × 2 mm3.  Additionally, Castillo and colleagues tested a landmark-
based DIR algorithm and found that it performed better than the OF algorithm (error of 2.05 ± 
0.02 mm). As one would expect, using landmarks to evaluate a landmark-based algorithm may 
yield too optimistic results. Additionally, Castillo et al. found the error in OF was greater with 
DIR than RIG-only registration for four out of the five cases they reported, while our study 
found the OF DIR was superior to RIG-only registration. 

In all these validation studies, the voxel size will directly determine a lower limit of accu-
racy that can be reached using DIR, as the anatomical landmarks are defined by a voxel. For 
example, the slice thickness is the limiting factor on the accuracy of the landmark points in the 
superior–inferior direction because a point may lie in between two slices, which would make 
it hard to identify by the radiologist on the two image sets. In addition, the image sets used 
are from a 4D CT, which may make the identification of landmarks less clear than identify-
ing landmarks on a breath-hold CT. Therefore, we consider the registration accuracy in this 
validation study for the three DIR algorithms to be acceptable, as the mean target registration 
errors are less than the slice thickness. This is comparable to the validation study for demon’s 
algorithm reported by Vandemeulebroucke et al.(24) Their results show a mean TRE of 1.2 mm 
with a standard deviation of 0.4 mm, while ours show a mean TRE of 1.4 mm with a standard 
deviation of 0.7 mm. 

The POPI model is published and used by many groups for validation studies.(20-22,24) 
The task of manually selecting landmarks is difficult, tedious, and time-consuming. In addi-

tion, selecting landmarks in the end-expiration phase is more difficult because of the change 
of density of the lung.(22) Given the difficulties of manual landmark selection, only one set of 
4D CT data is available in the model. Thus in this study, one set of data with 39 points was 
used in the validation. 

DIR algorithms are also evaluated by studying the image difference between the deformed 
image and the target image. The smaller the difference between the deformed and the target 
images the better the DIR algorithm. HU values in the lung for the CT sets used ranged from 
-922 to near 0. This large range in values can potentially lead to large differences when com-
paring two images if they are not perfectly aligned. In the case of the differences between 
the deformed image and the target image, large differences in HU are due to the variations at 
interfaces within the lung. The interfaces between the blood vessels and other parts of the lung 
may lead to large differences in HU between image sets.

While the validation results show that all three DIR algorithms perform well, we speculate 
that how DIR algorithms address the imperfection of the 4D CT images may contribute to some 
of the inaccuracies observed.(33)  Each algorithm has its own strengths and weaknesses. The 
DM algorithm is based on matching edges and lines in a voxel, and if an image has an artifact, 
then that artifact would propagate throughout the process of image deformation. On the other 
hand, the OF and DD algorithms are intensity-based registration algorithms, and they may deal 
differently with an image artifact. Additionally, the DM and DD algorithms have smoothing 
filters applied to their deformation fields, which may lead to additional differences in image 
deformation.
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V. concLuSIonS

We validated all three DIR algorithms for the thorax using the POPI model, which is a land-
mark-based model for the lung. We also used image differences to evaluate the accuracy of 
DIR algorithms. For normal end-expiration-to-end-inspiration registration, all three algorithms 
show a maximum target registration error of less than 4 mm, or two voxels, with insignificant 
differences between them (p = 0.37). The mean target registration error for each of the registra-
tion algorithms was less than the slice thickness of the 3D CT volumes, which suggests that 
the deformable registrations done by either of the algorithms are fairly accurate for the thorax 
region. Additionally, image differences between the target and the deformed images were 
comparable between the DIR algorithms. 
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