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1  | INTRODUC TION

Environmental DNA sampling is increasingly becoming a standard 
practice, not least due to continuously decreasing sequencing costs. 
One, by now, established way to analyse such data is Phylogenetic 
Placement (Barbera et al., 2018b; Berger et al., 2011; Matsen 
et al., 2010). In phylogenetic placement, sequences from environmen-
tal samples (query sequences, QS) are placed on a phylogenetic tree 

comprising the biome under study (reference tree, RT), resulting in a 
set of QS placements on this reference tree. Commonly, this infor-
mation is used to identify the taxonomic identity of individual QS in 
relation to the reference data, and through that the overall taxonomic 
composition of a given sample. Prominent examples of such composi-
tional analyses include the study of protists in neotropical rainforest 
soils (Mahé et al., 2017) or the study of relationships between bacte-
rial community composition and disease (Srinivasan et al., 2012).
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Abstract
Microbial ecology research is currently driven by the continuously decreasing cost 
of DNA sequencing and the improving accuracy of data analysis methods. One such 
analysis method is phylogenetic placement, which establishes the phylogenetic iden-
tity of the anonymous environmental sequences in a sample by means of a given 
phylogenetic reference tree. However, assessing the diversity of a sample remains 
challenging, as traditional methods do not scale well with the increasing data volumes 
and/or do not leverage the phylogenetic placement information. Here, we present 
scrapp, a highly parallel and scalable tool that uses a molecular species delimitation 
algorithm to quantify the diversity distribution over the reference phylogeny for a 
given phylogenetic placement of the sample. scrapp employs a novel approach to 
cluster phylogenetic placements, called placement space clustering, to efficiently 
perform dimensionality reduction, so as to scale on large data volumes. Furthermore, 
it uses the phylogeny-aware molecular species delimitation method mPTP to quan-
tify diversity. We evaluated scrapp using both, simulated and empirical data sets. We 
use simulated data to verify our approach. Tests on an empirical data set show that 
scrapp-derived metrics can classify samples by their diversity-correlated features 
equally well or better than existing, commonly used approaches. scrapp is available at 
https://github.com/pbdas/ scrapp.
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However, a drawback of phylogenetic placement is its inability 
to resolve relationships between individual QS, even when they are 
placed in close proximity to each other on the RT. This is sensible 
as it substantially reduces the computational effort while still pro-
ducing highly accurate results, especially for short read sequences 
with weak phylogenetic signal. Nonetheless, resolving relationships 
between QS constitutes a desired feature by many users. We expect 
this feature to become more important with the increasing adop-
tion of fourth-generation sequencing technologies, which yield sub-
stantially longer reads. We have previously demonstrated the value 
of resolving between-QS relationships with longer read data (Jamy 
et al., 2020) and hope that the methods presented here constitute a 
step into this direction.

Another key goal of molecular studies is to assess microbial di-
versity. A plethora of distinct metrics already exist to quantify the 
diversity within a sample (alpha diversity) and between samples 
(beta diversity) (Tucker et al., 2017). For a subset of these metrics, 
phylogenetic information can be used to calculate both alpha (e.g. 
Phylogenetic Diversity [PD]; Faith, 1992), and Phylogenetic Species 
Variability (Helmus et al., 2007) and beta (e.g. the UniFrac distance 
[Lozupone & Knight, 2005]) diversities. A relatively recent approach 
to quantifying alpha diversity using sequence data is phylogeny-aware 
molecular species delimitation (Fujisawa & Barraclough, 2013; Kapli 
et al., 2017; Yang, 2015; Zhang et al., 2013). These methods rely on 
a given phylogenetic tree to identify species boundaries, essentially 
resulting in a clustering of the tips into distinct species.

Here, we combine previous work on phylogenetic placement 
(Barbera et al., 2018b) and species delimitation (Kapli et al., 2017; 
Zhang et al., 2013) to devise a measure of phylogeny-aware relative 
alpha diversity. Our scrapp (Species Counting on Reference trees viA 
Phylogenetic Placement) tool quantifies diversity by initially group-
ing QS by the branch on the reference tree (reference branch) to 
which they most likely belong with respect to their phylogenetic 
likelihood score. Subsequently, for each such group of QS placed 
onto the same reference branch, we infer a separate phylogenetic 
tree comprising the QS of that group, optionally including an out-
group sequence from the reference tree. We call such a tree a branch 
query phylogeny (BQP). Generating such BQP constitutes a major 
part of the analysis (in terms of run time) and is a feature that has, 
thus far, been missing for post analysing phylogenetic placements. 
Therefore, we include the set of inferred BQP in the scrapp output.

Finally, we apply mPTP (Kapli et al., 2017) to the BQP to obtain a 
species count for the corresponding reference branch. The output of 
scrapp is a branch-annotated reference tree that depicts how species 
diversity is distributed over the reference tree for a given sample.

scrapp is implemented in python and relies on mpi4py (Dalcin 
et al., 2011; Dalcín et al., 2005, 2008) for the respective parallel 
implementation targeting both, shared and distributed memory 
systems.

Some concepts are based on our admittedly difficult to use EPA-
PTP tool, an early attempt to integrate phylogenetic placement with 
species delimitation (Zhang et al., 2013). The goal of scrapp is thus to 
quantify diversity for each branch of the reference tree individually 

and to improve usability. In contrast to scrapp, EPA-PTP used phylo-
genetic placement to calculate a single, overall species delimitation 
over the entire reference tree extended by all BQPs simultaneously.

We wish to emphasize that, while our focus here is to demon-
strate the utility of scrapp for microbial data, applying it to plant or 
animal data is also possible.

2  | DESCRIPTION

In the following, we initially provide a detailed description of the 
scrapp tool. An overview is provided in Figure 1. scrapp takes as input 
a jplace (Matsen et al., 2012) file containing the placements and the 
associated reference tree, as well as the corresponding multiple 
sequence alignment (MSA) of the QS. From this, we generate per-
branch QS MSAs. These include all QS whose most likely placement 
was on the given branch. However, we remove those placements 
from this set, whose best likelihood weight ratio (LWR, von Mering 
et al., 2007) is below a given threshold (--min-weight, default 0.5).

If desired, an outgroup from a user-specified reference MSA is 
included in each branch QS MSA such that the corresponding BQP 
that is produced in the subsequent step can be rooted at this out-
group. We automatically choose the outgroup sequence for a given 
BQP as the leaf sequence in the reference tree that is most distant 
from the given branch. Note that, mPTP species delimitation oper-
ates on rooted phylogenies. Thus, specifying an outgroup can be 
beneficial if a more reliable root for the BQP is desired. If a root is 
not provided, mPTP will automatically root the BQP on its longest 
branch.

If the number of QS in a given branch QS MSA exceeds a us-
er-specified maximum (500 by default), we reduce the number of QS 
to that maximum using the two-stage clustering method described 
in Section 2.1. This option is necessary to maintain BQP tree infer-
ence times within reasonable limits. On empirical data sets, specific 
reference branches can contain more than 100,000 QS; hence, 
yielding the inference of a BQP computationally challenging. We 
strongly recommend that the QS are dereplicated or even OTU-
clustered prior to executing scrapp, or, for that matter, prior to per-
forming placement.

Once the query MSAs have been generated for all branches of 
the reference tree, we infer a phylogeny for each of them separately 
using RAxML-NG (Kozlov et al., 2019). As there may be a large num-
ber of trees (potentially as many as there are branches in the refer-
ence tree) with highly variable sizes to infer, we use ParGenes (Morel 
et al., 2018) to orchestrate this tree inference process in a parallel, 
scalable and efficient way. The inferred BQPs are then processed 
using mPTP to obtain a species delimitation, and corresponding spe-
cies count. The information produced by each mPTP run is tracked 
for each branch that contains QS in the reference tree.

We note that the species delimitation itself constitutes a cluster-
ing of the QS, which may represent a desirable output to the user. 
Particularly, if the original placement input data have not already 
been OTU clustered, the combination of placement with species 
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delimitation can be regarded as phylogeny-aware OTU clustering. 
However, in this work we focus on the diversity metric aspects of 
scrapp and consider further potential applications as future work.

The set of inferred BQP can optionally be expanded to calculate 
species count variance. Two options are available to calculate this 
variance: rootings, generates a tree set on each BQP by enumerating 
all possible rootings for the unrooted BQP or bootstraps, generates a 
given number (20 by default) of bootstrapped branch QS MSAs and 
then re-optimizes the branch lengths on the original BQP for each 
of the bootstrapped branch QS MSAs. When using these expanded 
BQP sets, we calculate the final species count as median over all 
per-branch species delimitation results (i.e. over all rootings or all 
bootstrap replicates).

The rootings and bootstraps options constitute two of the three 
principal operating modes of scrapp. The third operating mode, the 
outgroup mode, offers the rooting of the BQP via inclusion of a ref-
erence outgroup (as described above).

Finally, scrapp generates two types of output files. Firstly, it out-
puts an annotated version of the reference tree in the extended 
NEWICK format, that can easily be visualized by a number of tree 
viewers (e.g. iTOL [Letunic & Bork, 2006] or Dendroscope [Huson 
et al., 2007]). This is useful for obtaining a high level overview of the 
diversity, as diversity is represented by just one species count value 
per reference tree branch.

To allow users to explore the results more thoroughly, for exam-
ple, by inspecting the variance of the median species count, we also 

F I G U R E  1   Overview of the major 
components of the scrapp pipeline. In 
green, we highlight optional components 
(inclusion of reference sequences for 
BQP outgroup rooting, placement space 
clustering for limiting computational 
effort, bootstrapping or re-rooting for 
delimitation variance assessment) [Colour 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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produce a comprehensive output file in a json-based file format that 
is analogous to the jplace format (Matsen et al., 2012). This format, 
called Tree Edge Annotations (TEA), contains the reference tree with 
enumerated branches, as specified in jplace, followed by annotation 
information. The annotation comprises a list of per-branch values. In 
scrapp, this annotation includes the median species count, and the 
species count variance, among others. We provide a full specifica-
tion and an example of the TEA format in the supplement, as well as 
online at https://github.com/pbdas/ scrap p/wiki/TEA-format.

2.1 | Placement space clustering

In general, phylogenetic diversity metrics face a fundamental scal-
ability issue, as they rely on a phylogeny inferred on the QS. With 
increasing sequencing volumes, inferring such phylogenies under 
maximum likelihood becomes prohibitively expensive. Moreover, as 
metabarcoding/metagenomic samples typically comprise short se-
quences, the available signal for reliable tree inference on thousands 
or tens of thousands of taxa is mostly insufficient (Bininda-Emonds 
et al., 2000). This was the key motivation for the development of 
phylogenetic placement methods as a scalable and more reliable 
alternative.

Nonetheless, scrapp faces this same computational issue again 
at a different level as a reference branch may contain tens of thou-
sands of QS. To alleviate this, we have implemented a two-stage 
clustering method called placement space clustering (PSC) in scrapp. 
PSC leverages the fact that the insertion location of a maximum like-
lihood placement of QS along the reference branch (the so-called 
proximal length), and distance from that reference branch (the so-
called pendant length) can be interpreted as an embedding into a 
two-dimensional euclidean space (hereafter called placement space). 
When using PSC, we map the set of placements on a branch into 
placement space and then perform a standard k-means clustering on 
the respective datapoints. Subsequently, we select a small number 
x of placements from each cluster as representatives of that cluster, 
such that k*x equals the maximum desired number (as specified by 
the user) of sequences per branch QS MSA. More specifically, we 
select the top x: = 10 sequences by number of informative (non-gap 
or non-undetermined) sites, thereby maximizing the potential phylo-
genetic signal for the subsequent tree inference.

3  | E VALUATION

We assessed the accuracy of scrapp using both, simulated and em-
pirical data.

3.1 | Simulated data

We generated true species trees using the msprime (Kelleher et al., 
2016, version 0.7.3) coalescent simulator. We then used seq-gen 

(Rambaut & Grass, 1997, version 1.3.4) to generate MSAs on those 
trees. We generated the trees and MSAs such as to evaluate scrapp 
under a broad range and combination of simulation parameters. 
The parameters include the following: the number of starting pop-
ulations (which we call species) ([200,600]), the sequence length 
([1,000,4,000]), the number of individuals per population (called 
sample size by msprime) ([20,80]), the overall msprime population size 
([105,107]) and the mutation rate ([10−7,10−8]). In particular, we in-
vestigated the influence on each parameter individually while keep-
ing the remaining parameters fixed to a set of default values (see 
Supplement for details).

From each simulated true tree and MSA, we first pruned a set of 
QS by removing all but one individual from each starting population. 
To account for incomplete reference data with lower taxon sampling 
density, we subsequently further pruned a given fraction (denoted 
as prune_fract, [0.1,0.4]) of leaves uniformly at random from the 
trees. We then labelled the branches of the remaining reference tree 
by the number of query species (here assumed to be equal to the 
number of populations) whose true location is on that given branch.

We then used epa-ng to place the query data back onto the tree. 
Next, we evaluated these phylogenetic placement results using 
scrapp, yielding an annotated NEWICK tree. Finally, we compare the 
reference tree with the inferred species count annotations (here-
after scrapp-tree) to the reference tree with the true species count 
annotations.

All scripts used for generating the simulated data can be found in 
the scrapp repository: https://github.com/Pbdas/ scrap p/tree/maste 
r/simtest

3.2 | Empirical data

In addition to the tests on simulated data, we replicated part of the 
evaluation of (McCoy and Matsen, 2013). McCoy and Matsen IV 
evaluated different diversity metrics by the quality of their fit with 
clinical metadata, which are known from literature to correlate with 
alpha diversity.

We chose to replicate and extend the evaluation of the Bacterial 
Vaginosis data set (Srinivasan et al., 2012; hereafter called BV), as 
we already had access to the data and the specific data set has been 
particularly well studied (Czech & Stamatakis, 2019). The clinical 
metadata included in the BV data set are based on two methodolo-
gies indicating the presence or absence of bacterial vaginosis for a 
patient: Amsel's criteria (Amsel et al., 1983), and the Nugent score 
(Nugent et al., 1991). Amsel's criteria comprise four distinct criteria, 
three of which need to be fulfilled to positively diagnose a patient 
with bacterial vaginosis. In the BV data set, ‘Amsel’ is provided as 
a binary value indicating whether a patient was diagnosed as pos-
itive or negative. The Nugent score is a composite score based on 
gram-stained vaginal swabs. The score ranges from negative (0–3), 
through intermediate (4–6) to positive (7–10).

Unfortunately, due to patient data protection issues, we cannot 
make the BV data set publicly available. Please refer to (Srinivasan 

https://github.com/pbdas/scrapp/wiki/TEA-format
https://github.com/Pbdas/scrapp/tree/master/simtest
https://github.com/Pbdas/scrapp/tree/master/simtest
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et al., 2012) and (Czech & Stamatakis, 2019) for an exhaustive explo-
ration of the BV data set, and a detailed description of the phyloge-
netic placement of the per-sample data, respectively.

Firstly, to obtain the OTU-derived diversity measures used in 
the evaluation of (McCoy and Matsen, 2013), we performed OTU 
clustering using swarm (Mahé et al., 2014, 2015, version 3.0, -d 1 -f) 
and utilizing vsearch (Rognes et al., 2016, version 2.6.2) for dereplica-
tion and filtering. We further analysed the resulting OTU table using 
the r package phyloseq (McMurdie & Holmes, 2013, version 1.22.3, 
function estimate_richness) to obtain the Shannon (Shannon, 1948), 
Simpson (Simpson, 1949), ACE (Chao & Lee, 1992) and Chao1 
(Colwell & Coddington, 1994) indices.

Secondly, to assess the placement based methods, we computed 
a phylogenetic placement of the sample data. Note that, we did not 
use the reference tree given in the original publication (Srinivasan 
et al., 2012), as we found that the inclusion of multiple strains of the 
same bacterial species can produce a very flat likelihood distribution 
for potential placements of a single QS across individual branches of 
the tree (Czech & Stamatakis, 2019). Therefore, we used an appro-
priately modified version of the reference tree, as shown in Figure 
S1 in Czech and Stamatakis (2019). This modified reference tree only 
retains consensus sequences of all reference strains, such that only 
one taxon per species remains. The modified reference tree com-
prises 198 taxa.

Based on this placement data, we obtained the measures out-
lined in McCoy and Matsen (2013), on a per-sample basis, using the 
guppy command fpd (Matsen et al., 2010; McCoy & Matsen, 2013). 
Note that, we chose to omit the guppy fpd—include-pendant op-
tion to avoid overestimating diversity. The placement process does 
not resolve relationships between individual QS. Thus, the distance 
of each individual QS to the RT is denoted by a so-called pendant 
length. Consequently, if two or more QS are phylogenetically close 
to each other, but relatively distant to the RT, the common distance 
to the RT may be counted once per QS in the PD calculation. This can 
lead to potential overestimation.

Lastly, we applied scrapp to the placement data, running the 
analysis in the bootstrap operating mode and limiting the maximum 
number of taxa per BQP to 1,000. This again yields a scrapp-tree (see 
Section 3.1).

In the interest of comparability, we chose to re-implement the 
Balance Weighted Phylogenetic Diversity (BWPD) function using 
the genesis library (Czech et al., 2020), in a way such that it can be 
applied to scrapp-trees. The BWPD relies on a one-parameter func-
tion family interpolating between classical PD and an abundance 
weighted version of the PD. McCoy and Matsen IV chose to imple-
ment and evaluate the BWPD on placement results, which consist 
of precise locations and branch lengths of queries on the reference 
tree. In contrast to this, scrapp-trees comprise assignments of abso-
lute numbers (species counts) to branches of the tree, without any 
more specific branch length information. To remedy this discrep-
ancy, when calculating the BWPD on a scrapp-tree, we treat the spe-
cies count of a branch as if it were a single placement, located at the 
middle of said branch, without a pendant length.

All data handling and analysis scripts used in the empirical data 
evaluation can be accessed online at https://github.com/Pbdas/ 
diver sity-compare.

3.3 | Clustering and showcase

Finally, we include a showcase test and analysis for two additional 
empirical data sets.

In one set of experiments, we use data from an study of eukary-
otic community composition in neotropical soils (Mahé et al., 2017) 
to evaluate our PSC methodology (Section 2.1). These data are par-
ticularly challenging for phylogenetic placement, as the available 
reference data are too sparse to cover the diversity that was sam-
pled. We will refer to this data set as the neotrop data set. For our 
purposes, we randomly selected small subsets of 1,000 QS from this 
data set and placed them on the reference tree described in Mahé 
et al. (2017; 512 reference taxa). We then executed scrapp for distinct 
settings of—cluster-above, thereby limiting the maximum number of 
sequences per branch used in the subsequent BQP tree searches. 
As the randomly selected 1,000 QS subsets produced a maximum 
of 298 QS placements per branch, a threshold value of 300 was se-
lected as the benchmark against which all other runs are compared 
to, as this constitutes the ‘no clustering’ case. For each clustering 
threshold setting and each operating mode, we performed 5 inde-
pendent runs of the same data in order to quantify variability intro-
duced by the randomization component in the clustering algorithm. 
Scripts and data used in this experiment can be found in the reposi-
tory at https://github.com/Pbdas/ scrap p/tree/maste r/test.

In a second set of experiments, we used a large data set from 
the UniEuk project (Berney et al., 2017) as a showcase for deploying 
scrapp on a standard parallel compute cluster. For this test, we used a 
phylogenetic placement of 585,050 QS on a reference tree compris-
ing 800 taxa, which resulted from an OTU clustering of roughly 300 
million sequences (respective article in press). Unfortunately, the 
data set has not yet been published, so we are yet unable to make 
it available. From this, scrapp identified 254,103 QS as being placed 
with a LWR above the default 0.5 threshold (see Section 2). We lim-
ited the maximum number of sequences per branch to 800 and used 
the bootstrap operating mode, generating 100 bootstrap trees per 
BQP. This resulted in the inference of 1,070 trees, the largest tree 
containing 797 taxa. scrapp further evaluated each of them via 100 
distinct bootstrap MSAs.

3.4 | Error metrics

For the simulated data, we calculate two distinct accuracy values. 
The first is the absolute difference between the inferred and the 
true species count on a branch in the reference tree. This absolute 
difference is then averaged over all branches of the reference tree 
that have non-zero values in either tree. We denote this accuracy 
metric as Mean Absolute per-branch Error (hereafter MAE).

https://github.com/Pbdas/diversity-compare
https://github.com/Pbdas/diversity-compare
https://github.com/Pbdas/scrapp/tree/master/test
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More formally, let S and T be two trees with identical topologies 
and branch-associated values si and ti for a given branch index i, re-
spectively. T denotes the true tree, while S denotes the scrapp-tree 
(Section 3.1). Let B be the set of branch indices for which either S or 
T have non-zero values. We can now write the MAE as

Our second accuracy metric is based on normalized per-branch 
species counts. For a given branch with index k, we calculate this 
normalized count based on a absolute species count xk as

where k denotes the index of a given branch, and B is as defined above.
Further, instead of calculating the absolute difference, we calcu-

late the relative difference:

Again, sk and tk are the values for a given branch with index k, of 
two given trees S and T as defined above. Note that here we compute 
the relative difference by normalizing via the arithmetic mean of sk 
and tk. This ensures that the metric produces well-defined values in 
cases where tk = 0. The term rel(tk, sk) is also known as the Relative 
Percent Difference. Note that rel(tk, sk) is bounded between 0 and 2.

Finally, we again calculate the average over all relative normal-
ized species count differences across all branches that have non-
zero value, resulting in the Normalized Mean Relative per-branch 
Error (NMRE).

The MAE captures the deviation of the scrapp-based species 
count from the true species count. The NMRE quantifies the differ-
ence between the true and the inferred diversity distribution over 
the tree.

The accuracy of the methods used in the empirical evaluation 
is calculated as in McCoy and Matsen (2013). Here, the primary ap-
proach is to assess the correlation of the diversity measures with the 
clinical metadata (see Section 3.2). To quantify the correlation with 
the diagnosis based on Amsel's criteria, we first use the glm function 
in r (R Core Team, 2017) to fit a generalized linear model to the data. 
We then calculate the Amsel accuracy as the proportion of correctly 
identified datapoints via a leave-one-out cross-validation. As McCoy 
and Matsen IV we perform independent 2-group t tests between the 
Amsel diagnosis and the investigated metrics, using the t test R func-
tion. The resulting p-value is presented here as the Amsel p-value. For 
comparing against the Nugent score, we fit the diversity measures 

using a linear regression model, via the lm function in R. The function 
also returns the R2 of the fit, which is the proportion of the variation 
that is explained by the model.

4  | RESULTS

4.1 | Simulated data

We performed a total of 270 independent simulation runs, covering 
all simulation space dimensions, all of their combinations with the 
scrapp operating modes and repeating runs for each individual con-
figuration five times. We show high level results across all runs and 
stratified by operating mode, in Table 1. We observe a mean NMRE 
of 0.508 over all experiments. When stratified by the different oper-
ating modes, we observe the lowest overall NMRE for the rootings 
mode (0.471 mean NMRE).

To summarize our exploration of the impact of different simula-
tion parameters, we find that result accuracy in terms of mean NMRE 
increases with increasing overall population size, sample size (num-
ber of individuals per population) and sequence length, as well as 
decreasing prune_fract (Section 3.1). While less pronounced, there 
is a trend for the NMRE to improve with increasing total tree size 
which may be attributed to improved taxon sampling density. This 
can be observed in Figure 2, which shows data for those simulation 
runs where we only varied the total number of starting populations 
(here called species).

Further, we observe a general trend for overestimating the spe-
cies count across all simulation parameters, as indicated by the high 
MAE values (Table 1). Specifically, the rootings mode appears to 
overestimate the species count the most, while the bootstrap mode 
performs best in this regard. We therefore recommend that users 
deploy the bootstrap mode when the goal is to obtain as accurate as 
possible estimates of the absolute species counts. However if, one 
desires to obtain the most accurate relative distribution of species 
counts over the tree, we recommend the rootings mode, as it consis-
tently showed the lowest NMRE.

Further, we observe a divergent relationship between the 
MAE and NMRE scores for the population size, sample size, 

(1)MAE=

∑
i∈B

��ti−si
��

�B�

(2)x
norm
k

=
xk∑
i∈Bxi

(3)rel(tk, sk)=
||tk−sk

||(||tk||+ ||sk||
)
∕2

(4)NMRE=

∑
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�
t
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i
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i

�
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TA B L E  1   We report the mean NMRE and mean MAE, across all 
runs (last row) and across all runs of the specific operating modes 
(middle rows)

NMRE σ2 CV MAE σ2 CV

bootstrap 0.518 0.013 0.221 5.69 2.99 0.304

outgroup 0.535 0.017 0.241 7.71 5.48 0.304

rootings 0.471 0.019 0.289 8.15 5.76 0.294

across-all 0.508 0.016 0.254 7.18 5.86 0.337

Note: σ2 denotes the variance of the given means, and CV denotes 
the coefficient of variation. As a reference, the mean variance among 
simulation replicates (identical parameter configurations but different 
random number seeds) was 1 × 10−3 and 3 × 10−2 for the NMRE and the 
MAE, respectively.
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sequence length and species parameters. For the first three 
parameters, this is due to a decrease in the fraction of mPTP 
delimitation results that yield the null model. Note that, when 
mPTP yields the null model, it cannot distinguish between a de-
limitation into one or n species, where n is the number of leaves 
in the tree (the BQP in our case). As the fraction of null model 
results decreases, the relative mPTP accuracy increases, yield-
ing more accurate results with respect to the NMRE metric. At 
the same time, this also increases the average absolute species 
count and thereby generates higher MAE values.

For the species parameter (the number of populations in the co-
alescent simulation), the negative relationship between MAE and 
NMRE is less pronounced. It can be explained by the fact that an in-
crease in the species parameter yields a larger simulated tree, but, at 
the same time, unlike the other three parameters does not increase the 
phylogenetic signal for reconstructing the BQPs. As a consequence, 
the fraction of mPTP null model results remains constant over the 
species parameter. Further, as phylogenetic placement is not exact, a 
larger reference tree with an increased number of branches also im-
plies a larger potential for misplacing QS. This increases the chance 
of reference tree branches for which the true number of placed QS 
should be 0, to contain misplaced QS, and thereby yield a minimum 
species count of 1. As the delimited species to which a misplaced QS 
belongs may already be accounted for on another branch, the total 
species count increases. As a result, the MAE will increase as well.

For detailed figures exploring the effect of varying individual 
simulation parameters on the MAE and NMRE metrics, as well as the 
fraction of null model results, please refer to the supplement.

4.2 | Empirical data

The most important results of our evaluation based on the BV data 
set are shown in Table 2. We were able to closely replicate the 

results of (McCoy and Matsen, 2013; their Table 2), although we ob-
serve generally higher values for the Amsel accuracy and Nugent 
R2. The exception to this is the R2 values obtained from the ACE and 
Chao1 measures, that substantially underperform compared with 
the results of (McCoy and Matsen, 2013). As ACE and Chao1 are 
the only tested OTU-based metrics that specifically assign a higher 
weight to rare observations (i.e. OTUs observed only once or twice), 
we speculate that our data handling approach has reduced the num-
ber of rare OTUs. However, our results confirm the general trend 
that phylogenetic methods outperform OTU methods with respect 
to the aforementioned metrics.

Further, we observe a high level of agreement between metrics 
directly calculated from phylogenetic placement results, and metrics 
derived from scrapp results.

F I G U R E  2   NMRE (Equation 4) for several runs on simulated 
data sets where we only varied the total species count of the ‘true’ 
tree (the number of individual populations). Error bars denote the 
first standard deviation from the mean. Data were stratified by the 
three different operating modes of scrapp (see Section 2) [Colour 
figure can be viewed at wileyonlinelibrary.com]
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TA B L E  2   Correlation and predictive power of scrapp in 
comparison with analogous approaches on the Bacterial Vaginosis 
data

Measure
Amsel 
accuracy

Nugent 
R2

Amsel 
p-value

Mean 
rank

bwpd_0.25.guppy 0.877 0.777 2.01e−35 2.33

bwpd_0.25.scrapp 0.874 0.785 4.02e−34 2.33

phylo_entropy.
scrapp

0.873 0.782 4.70e−34 4.00

bwpd_0.5.guppy 0.873 0.757 1.03e−34 4.33

bwpd_0.5.scrapp 0.872 0.786 1.37e−33 4.67

bwpd_0.scrapp 0.873 0.767 1.49e−33 5.67

quadratic.scrapp 0.869 0.779 1.60e−32 8.33

bwpd_0.75.guppy 0.870 0.725 2.46e−33 9.00

bwpd_0.75.scrapp 0.868 0.772 5.10e−32 10.33

quadratic.guppy 0.869 0.718 7.97e−33 10.33

bwpd_0.guppy 0.872 0.713 2.00e−31 11.17

unrooted_pd.guppy 0.872 0.713 2.00e−31 11.17

phylo_entropy.
guppy

0.869 0.716 1.43e−32 11.33

rooted_pd.guppy 0.871 0.701 5.73e−31 13.00

bwpd_1.scrapp 0.861 0.741 1.30e−29 13.67

bwpd_1.guppy 0.867 0.691 8.36e−32 14.33

Shannon 0.826 0.387 5.03e−18 17.00

ACE 0.822 0.242 1.41e−10 18.00

Chao1 0.810 0.213 6.35e−09 19.00

Simpson 0.788 0.168 3.61e−08 20.00

Note: Amsel accuracy, Nugent R2, Amsel p-value and mean rank are 
calculated exactly as in McCoy and Matsen (2013). Rows are sorted by 
mean rank. Measures suffixed by ".guppy" are calculated using guppy 
fpd (Matsen et al., 2010), whereas measures suffixed by ".scrapp" were 
calculated based on results produced by scrapp. Shannon, ACE, Chao1 
and Simpson values were calculated based on an OTU clustering of the 
same data (see Section 3.2).

www.wileyonlinelibrary.com
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4.3 | Clustering and Showcase

The results of evaluating PSC with varying clustering thresholds are 
shown in Figure 3. Both, the bootstrap and rootings operating modes 
produced stable results, which are qualitatively similar to the tests 
on simulated data. However, the outgroup operating mode proved to 
be highly sensitive to the PSC, yielding high species count deviations 
starting at a clustering threshold of 200 (a data reduction of approx. 
33%). Due to the known issues with the eukaryotic soil reference 
data set at hand, we hypothesize that the cause for this behaviour 
is the sparse taxon sampling in the reference MSA. This incomplete 
taxon sampling induces a high branch length distance between the 
ingroup QS and the outgroup, as scrapp selects the phylogenetically 
most distant taxon in the reference tree as outgroup.

As a final showcase for the scalability of scrapp on distributed 
computing clusters, we performed an analysis of a large data set of 
585,050 QS placed on a 800 taxon reference tree, utilizing 50 com-
pute nodes comprising a total of 800 cores. Running this analysis 
involved handling about 1 million files, of which approximately 8,500 
had to be retained as intermediate results for further downstream 
analysis. The total runtime under this setting was 26.5 hr. We regard 
this as being fast, since the overall computational task includes hun-
dreds of tree inferences with up to 797 taxa and handling approxi-
mately 1 million intermediate files.

5  | CONCLUSION

We presented scrapp, a highly scalable and fully automated pipeline 
for diversity quantification of phylogenetic placement data. The 
primary goal of scrapp is to quantify the diversity distribution of a 
given sample over the reference tree. We show that, on simulated 
data sets, scrapp yields phylogenetic diversity distributions with 

a comparatively low per-branch error rate. On empirical data, we 
show that alpha diversity metrics calculated on the results obtained 
from scrapp rank among the top of those tested in terms of predictive 
power, and correlation with clinical metadata.

By using MPI (Message Passing Interface), scrapp achieves a high 
level of parallelism, enabling the user to use an arbitrary number of 
cores in a cluster computing environment. In a selected showcase, 
we were able to run scrapp on a data set with 585,050 QS on 50 
cluster nodes, using a total of 800 cores, in 26.5 hr. This run involved 
hundreds of tree inferences with up to 797 taxa, and the handling of 
approximately 1 million intermediate files.

Using placement space clustering, a novel clustering method 
for placements, scrapp is able to to efficiently perform dimension-
ality reduction of the branch QS MSA input data. This enables 
scrapp to tackle the scalability challenge induced by the metag-
enomic and metabarcoding data flood. Finally, it should be noted 
that issues with the underlying reference data regarding taxon 
sampling density may negatively affect the results when cluster-
ing is used.
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F I G U R E  3   MAE (Equation 1) of multiple runs of scrapp, using 
different thresholds down to which placement space clustering 
(PSC) reduces the maximum per-branch data volume. The MAE is 
calculated with reference to the case of the threshold being 300, as 
300 was the maximum number of QS that were placed per-branch. 
The underlying query and reference data are from the neotrop data 
set (Section 3.3, (Mahé et al., 2017)) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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