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Abstract 

Background  This study aims to assess the performance of an established an AI algorithm trained on conventional 
polychromatic computed tomography (CT) images (CPIs) to detect pulmonary ground-glass nodules (GGNs) on vir‑
tual monochromatic images (VMIs), and to screen the optimal virtual monochromatic energy for the clinical evalua‑
tion of GGNs.

Methods  Non-enhanced chest SDCT images of patients with pulmonary GGNs in our clinic from January 2022 
to December 2022 were continuously collected: adenocarcinoma in situ (AIS, n = 40); minimally invasive adenocar‑
cinoma (MIA, n = 44) and invasive adenocarcinoma (IAC, n = 46). A commercial CAD system based on deep convo‑
lutional neural networks (DL-CAD) was used to process the CPIs, 40, 50, 60, 70, and 80 keV monochromatic images 
of 130 spectral CT images. AI-based histogram parameters by logistic regression analysis. The diagnostic performance 
was evaluated by the receiver operating characteristic (ROC) curves, and Delong’s test was used to compare the CPIs 
group with the VMIs group.

Results  When distinguishing IAC from MIA, the diagnostic efficiency of total mass was obtained at 80 keV, 
which was superior to those of other energy levels (P < 0.05). And Delong’s test indicated that the differences 
between the area-under-the-curve (AUC) values of the CPIs group and the VMIs group were not statistically significant 
(P > 0.05).

Conclusion  The AI algorithm trained on CPIs showed consistent diagnostic performance on VMIs. When pulmonary 
GGNs are encountered in clinical practice, 80 keV could be the optimal virtual monochromatic energy for the identifi‑
cation of preoperative IAC on a non-enhanced chest CT.
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Introduction
Lung cancer ranks second for cancer incidence and first 
for cancer mortality [1]. Early diagnosis and treatment of 
lung cancer can significantly reduce lung cancer-related 
mortality. Pulmonary ground-glass nodules (GGNs) are 
considered to be the most common manifestation of 
early lung adenocarcinoma [2, 3]. With the improvement 
of high-resolution computed tomography (HRCT) and 
health awareness, more and more ground glass lesions 
are found [4, 5]. Pathologically, lung adenocarcino-
mas can be divided into adenocarcinomas in  situ (AIS), 
minimally invasive adenocarcinomas (MIA), invasive 
adenocarcinomas (IAC) [6, 7]. Studies have shown that 
the 5-year survival rate of patients with AIS and MIA 
can reach or approach 100% [8], and accurate and rapid 
differential diagnosis is essential for both their treat-
ment and prognosis. However, it is difficult to differen-
tiate GGNs due to their small size, tenuous texture, less 
obvious enhancement characteristics, and unprominent 
morphological characteristics on imaging to differentiate 
benign from malignant GGNs [9].

Artificial intelligence (AI) is increasingly used in medi-
cal imaging to try to alleviate the growing workload of 
radiologists. An AI algorithm based on deep learning can 
not only identify, classify, reconstruct, and reduce the 
noise of pulmonary nodules, extract the main features 
of pulmonary nodules from imaging images, and predict 
the early detection of pulmonary nodules and the judg-
ment of benign and malignant lesions [10, 11], but also 
improve the work efficiency of cardiothoracic imaging 
doctors and reduce the missed diagnosis and misdiagno-
sis of doctors [12].

Dual-layer detector spectral computed tomography 
(SDCT) can through retrospective reconstruction virtual 
single energy images (VMIs), so as to improve the signal-
to-noise ratio (SNR) and contrast to noise ratio (CNR) 
[13–15]. Some studies demonstrated that VMIs at 60 keV 
or 70  keV provided the best combination of subjective 
and objective image quality in the evaluation of lung can-
cer [16, 17]. Nevertheless, due to different appearances 
on VMIs, the performance of AI trained on conventional 
CT images may worsen.

However, the altered image appearance caused by using 
different imaging techniques can influence the perfor-
mance of AI algorithms. A recently published systematic 
review by Wu Z et al aimed to compare the quality and 
accuracy of lung cancer risk prediction models based on 
pulmonary nodules [18]. They found that the existing 

models showed good discrimination for identifying high-
risk pulmonary nodules but lacked external validation. 
More researches are required to improve the quality of 
deep learning models. Currently, no research has been 
conducted on the use of AI to detect pulmonary GGNs 
on VMIs. Therefore, this study aims to assess the per-
formance of an established an AI algorithm trained on 
conventional polychromatic computed tomography (CT) 
images (CPIs) to detect pulmonary GGNs on VMIs and 
to screen the optimal virtual monochromatic energy for 
the clinical evaluation of GGNs.

Materials and methods
Study participants
This study conformed to the Declaration of Helsinki on 
Human Research Ethics standards and was approved by 
the institutional review board of the First Affiliated Hos-
pital of Kunming Medical University (No.2022-L179). 
The need for written informed consent was waived 
because of the retrospective study. A total of 130 patient 
cases were identified, consisting of 47 males and 83 
females with a mean age of 51.13 ± 12.547  years (range, 
19–86  years). Non-enhanced chest SDCT images of 
patients with pulmonary GGNs in our clinic from Janu-
ary 2022 to December 2022 were continuously collected. 
The inclusion criteria were: GGNs detected by SDCT 
and with pathological results obtained by clinical sur-
gery (include 40 cases of adenocarcinoma in  situ, AIS; 
44 cases of minimally invasive adenocarcinoma, MIA; 
and 46 cases of invasive adenocarcinoma, IAC); available 
thin-section chest computed tomography (CT) images 
(slice thickness, ≤ 1 mm). The exclusion criteria were: 1) 
CT images with motion artifacts; 2) other lung diseases 
such as pneumoconiosis, tuberculosis, or pneumonia; 3) 
a previous history of cancer; and 4) no definite diagnosis 
could be made by pathology.

CT Screening and SDCT image reconstruction
Chest scan examinations were performed on a dual-layer 
spectral detector CT (IQon Spectral CT, Philips Health-
care). All unenhanced CT acquisitions were scanned in 
the supine position, head first. To ensure that all lung 
tissues were covered, scans were performed from the 
thoracic inlet to the costophrenic. Scanning parameters: 
tube voltage 120  kV, automatic tube current modula-
tion, rotation speed 0.33 s/rot; helical pitch 0.938, image 
reconstruction matrix 512 × 512, layer thickness 1  mm, 
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layer spacing 0.7  mm. Lung window (width, 1500HU; 
level, − 400 HU) was used for group conventional 
CT image analysis. VMIs (Spectral B, level 3, range: 
40–80  keV, increment of 10  keV) were reconstructed. 
These series were then sent to the deep learning-based 
computer-aided diagnosis (DL-CAD) system.

Evaluation by a deep learning‑based computeraided 
diagnosis (DL‑CAD) system
A commercial CAD system (Deepwise 20201130fix1a, 
Hangzhou Deepwise, and PHD Technology Co., Ltd.) 
based on deep convolutional neural networks (DL-CAD) 
was used to process the 40, 50, 60, 70, and 80 keV mono-
chromatic images of 130 spectral CT images. The AI-
based histogram parameters included: total volume, total 
mass, and mean CT value. Moreover, kurtosis, skewness, 
entropy, three-dimensional (3D) CT long diameter (the 
largest diameter of the whole 3D lesion), superficial area 
(the surface area of the largest contour of the lesion), 
maximum section area (the number of the sections 
showing the largest lesion contour), and sphericity (score 
range, 0–1 [the greater the similarity between the lesion 
and a sphere in 3D mode, the higher the score]).

Reference standard
The reference standard was established in a previous 
study, which included a reading by the attending radiolo-
gist and a consensus between three cardiothoracic radi-
ologists (H.D., L.S.K. and W.Z.) with more than 10 years 
of work experience aided by the DL-CAD application. 
Subsequently, after the AI analysis, the discrepant cases 
were re-evaluated by two radiologists (Y.Z.M., L.H.Z.) 
with more than 20 years of work experience with access 
to the CPIs and VMIs AI outputs and the previously 

determined consensus outcome. Final decisions on the 
reference standard were taken in consensus.

Statistical analysis
SPSS Version 26.0 statistical analysis software (IBM, 
Armonk, New York, USA) and R software (version 3.5.1, 
www.r-​proje​ct.​org) were used to analyze the results and 
plot curves. The counting data was expressed as the num-
ber of cases, which was tested by the chi-square test. 
The Shapiro–Wilk test was used to test the quantitative 
data, which was in accordance with normal distribution 
and expressed as mean ± standard deviation (mean ± SD). 
The quantitative data with a skewed distribution was 
expressed as the median and quartile M (Q25, Q75). The 
two-sample t-test or Mann–Whitney U test was per-
formed to assess the differences in quantitative data. The 
univariate and multivariate logistic regression analyses 
were used to determine the independent predictors of 
invasiveness for the variables with statistical significance. 
The area-under the curve (AUC), sensitivity, specificity, 
and diagnostic threshold or optimal cutoff value of all the 
independent predictors were analyzed and calculated by 
a receiver operating characteristic (ROC) curve. Delong’s 
test was used to compare the CPIs group with the VMIs 
group.

Results
Patient inclusion
All spectral detector CT examinations were performed 
without any complications or relevant motion artifacts. A 
total of 130 GGNs were detected in 130 patients in this 
study (Fig. 1). Among the 130 GGNs, 46 cases of IAC, 44 
cases of MIA, and 40 cases of AIS. The final study group 
consisted of 130 patients (51.13 ± 12.547  years; range, 
19–86 years), comprised of 47 male (52.11 ± 13.639 years; 
range, 19–86 years) and 83 female (50.58 ± 11.936 years; 
range, 23–75 years) patients. Table 1 shows their clinical 

Fig. 1  Flowchart of patient selection

http://www.r-project.org
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characteristics and AI histogram parameters in the CPIs 
group. The variables other than sex, kurtosis, and skew-
ness showed significant differences between MIA and 
IAC (P < 0.05). The variables include total volume, total 
mass, maximum section area, and 3D long diameter 
showed significant differences between MIA and IAC 
(P < 0.05).

Models building
The results of the univariate and multivariate logistic 
regression analyses for risk predictors for IAC or MIA 
in the CPIs group are shown in Table  2 and Table  2S. 
In the univariate analysis, maximum CT value and 

3D long diameter were the risk predictors for MIA 
(P < 0.05). In addition, the variables other than the 
kurtosis and skewness showed significant differences 
between MIA and IAC (P < 0.05). Then these variables 
were analyzed by multivariate logistic regression analy-
sis with the enter method. As a result, total mass [odds 
ratio (OR) 1.02, 95% confidence interval (CI) 1.002—
1.038, P = 0.029] was the independent predictor for 
IAC. And 3D long diameter (OR 1.61, 95% CI 1.021—
2.523, P = 0.04) was the independent predictor for MIA. 
Hence, 3D long diameter, total mass, total volume, and 
entropy were analyzed and calculated by a ROC curve 
as follows.

Table 1  Comparison of clinical characteristics and AI quantitative parameters of GGNs in the convention group

AIS Adenocarcinomas in situ, MIA Minimally invasive adenocarcinoma, IAC Invasive adenocarcinoma, GGNs Pulmonary ground-glass nodules, AI Artificial intelligence, 
CT Computed tomography, 3D Three-dimensional
a P-values were calculated by chi-square test
b P-values were calculated by Mann–Whitney U test
c P-value was calculated by two-sample t-test

Characteristics MIA(n = 44) IAC(n = 46) P value MIA(n = 44) AIS (n = 40) P value

Sex(male) 15(34.1%) 17(37.0%) 0.776a 15(34.1%) 15(37.5%) 0.810a

Age (years) 47.75 ± 12.10 58.02 ± 10.42 0.000c 47.75 ± 12.10 46.93 ± 12.12 0.756c

Total volume (mm3) 220.80(140.07, 333.98) 575.25(296.83, 1563.23) 0.000b 220.80(140.07, 333.98) 158.65(105.73, 241.59) 0.029b

Total mass(mg) 67.20(45.53, 126.45) 237.65(128.43, 595.65) 0.000b 67.20(45.53, 126.45) 49.85(28.48, 77.25) 0.024b

Mean CT value (HU) -690.95(717.55, -597.40) -595.20(-687.80, -526.13) 0.001b -690.95(717.55, -597.40) -701.70(-742, -644) 0.134b

Maximum section area (mm2) 33.26(25.93, 49.76) 71.48(42.14, 135.93) 0.000b 33.26(25.93, 49.76) 25.59(18.71, 34.46) 0.021b

Superficial area (mm2) 168.45(109.038, 221.26) 311.07(207.09, 709.66) 0.000b 168.45(109.04, 221.26) 136.42(94.41, 182.67) 0.065b

3D long diameter (mm) 8.35(7.32, 10.68) 13.26(9.91, 17.75) 0.000b 8.35(7.32, 10.68) 7.19(6.26, 8.69) 0.009b

Sphericity 1(1, 1) 1(0.91, 1) 0.001b 1(1, 1) 1(1, 1) 0.825b

Kurtosis 7.33(4.67, 12.61) 7.23(4.82, 8.52) 0.990b 7.33(4.67, 12.61) 7.27(3.41, 11.79) 0.778b

Skewness -2.01(-2.88, -0.89) -1.95(-2.39, -1.57) 0.631b -2.01(-2.88, -0.89) -2.01 ± 1.48 0.993b

Entropy 7.96 ± 0.76 9.29 ± 1.162 0.000c 7.96 ± 0.76 7.62 ± 0.95 0.073c

Table 2  Risk predictors for IAC in the univariate and multivariate logistic regression analysis

IAC Invasive adenocarcinoma, CT Computed tomography, 3D Three-dimensional, OR Odds ratio, CI Confidence interval

Variable Univariate 
analysis

Multivariate 
analysis

OR (95% CI) P value OR (95% CI) P value

Total volume (mm3) 1.005(1.002—1.008) 0.001 — —

Total mass(mg) 1.017(1.009—1.026) 0.000 1.02(1.002—1.038) 0.029

Maximum CT value (HU) 1.004(1.002—1.006) 0.000 — —

Mean CT value (HU) 1.008(1.003—1.012) 0.002 — —

Maximum section area (mm2) 1.052(1.026—1.079) 0.000 1.014(0.957—1.074) 0.635

Superficial area (mm2) 1.01(1.005—1.016) 0.000 — —

3D long diameter (mm) 1.53(1.261—1.857) 0.000 1.004(0.617—1.633) 0.988

Kurtosis 1.005(0.965—1.046) 0.826 — —

Skewness 0.897(0.661—1.216) 0.483 — —

Entropy 5.058(2.375—10.772) 0.000 0.527(0.097—2.845) 0.456
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Diagnostic performance of AI quantitative parameters 
on VMIs
Among the multiple quantitative parameters, the 
four parameters with the highest diagnostic effi-
ciency to distinguish between MIA and IAC were total 
mass80kev, total volume80kev, 3D long diameter80kev 
and entropy80kev (AUC = 0.871, 95% CI 0.798–0.932, 
P < 0.001; AUC = 0.846, 95% CI 0.766–0.917, P < 0.001; 
AUC = 0.858, 95% CI 0.781–0.924, P = 0.010, and 
AUC = 0.840, 95% CI 0.758–0.912, P < 0.001; respectively) 
(Table  3 and Table  3S, Fig.  2). The diagnostic efficiency 
of the total mass80kev, total mass70kev, total mass60kev, 
total mass50kev, total massconvention and total mass40kev 
were 0.871, 0.869, 0.867, 0.866, 0.862, and 0.851, respec-
tively (P < 0.05), decreasing in turn. When the cut-off 
value of total mass80kev was 114.90, the sensitivity was 
82.60%, the specificity was 77.30%, and the maximum 
Youden index was 0.599. The diagnostic efficiency of the 
total volme80kev, total volme70kev, total volme60kev, total 
volme50kev, total volumeconvention and total volme40kev 
were 0.846, 0.842, 0.843, 0.837, 0.823, and 0.807, respec-
tively (for all, P < 0.05), decreasing in turn. When the cut-
off value of total volume80kev was 276.45, the sensitivity, 
specificity, and maximum Youden index were 82.60%, 
72.70%, 0.553, respectively (Table  3). And Delong’s test 
indicated that the differences between the AUC values 
of the CPIs group and the VMIs group were not statis-
tically significant (P > 0.05) (Table 3, Fig. 3). In addition, 
3D long diameter80kev had the highest diagnostic effi-
ciency in differentiating MIA from AIS (AUC = 0.665, 
95% CI 0.790–0.909, P < 0.001) (Table  4, Fig.  4). When 
the cut-off value of 3D long diameter80kev was 7.37, the 

sensitivity, specificity, and the maximum Youden index 
were 70.50%, 65.00%, and 0.355, respectively (Table  4). 
And Delong’s test indicated that the differences between 
the AUC values of the CPIs group and the VMIs group 
were not statistically significant (for all, P > 0.05) (Table 4, 
Fig.  5). In general, when distinguishing IAC from MIA, 
the diagnostic efficiencies of total mass and total volume 
were obtained at 80 keV, which were superior to those of 
other energy levels (for all, P < 0.05).

Discussion
The aim of this study was to assess whether an AI algo-
rithm developed to detect pulmonary GGNs could be 
used on VMIs reconstructed from SDCT data, despite 
the fact that the algorithm was trained on CPIs. We found 
that the diagnostic performance of the AI algorithm that 
was trained on CPIs did not drop significantly on VMIs, 
reassuring its use in clinical practice. Logistic multivari-
able analysis indicated that total mass and total volume 
were risk predictors for IAC, and 3D long diameter was 
a risk predictor for MIA. In addition, when pulmonary 
GGNs are encountered in clinical practice, 80 keV could 
be the optimal virtual monochromatic energy for the 
identification of preoperatively IAC on a non-enhanced 
chest CT.

Artificial intelligence with stable performance on VMIs
Our findings that the diagnostic accuracy of an AI algo-
rithm trained on CPIs was similar to that of VMIs have 
not before been shown in the literature, and it could be 
comforting for its usage in clinical practice as technology 
innovation in CT advances. Several studies have assessed 

Table 3  ROC curve analysis for identifying IAC from MIA in convention group and VMIs group

MIA Minimally invasive adenocarcinoma, IAC Invasive adenocarcinoma, VMIs Virtual monochromatic images, ROC Receiver operating characteristic, AUC​ Area under 
curve, CI Confidence interval

AUC​ 95% CI P value Sensitivity Specificity Youden index Cutoff value DeLong 
test (vs. 
Convention)

Total mass Convention 0.862 0.790–0.926 0.000 82.60% 75.00% 0.576 120.65 —

80 0.871 0.798–0.932 0.000 82.60% 77.30% 0.599 114.90 0.11

70 0.869 0.798–0.932 0.000 82.60% 79.50% 0.621 117.35 0.24

60 0.867 0.796–0.930 0.000 76.10% 84.10% 0.602 128.35 0.32

50 0.866 0.794–0.928 0.000 76.10% 81.80% 0.579 125.85 0.48

40 0.851 0.776–0.919 0.000 78.30% 77.30% 0.556 117.40 0.24

Total volume

Convention 0.823 0.736–0.899 0.000 69.60% 81.80% 0.514 359.12 —

80 0.846 0.766–0.917 0.000 82.60% 72.70% 0.553 276.45 0.01

70 0.842 0.759–0.914 0.000 82.60% 70.50% 0.531 263.84 0.03

60 0.843 0.760–0.914 0.000 71.70% 81.80% 0.535 322.91 0.02

50 0.837 0.752–0.910 0.000 71.70% 81.80% 0.535 325.48 0.13

40 0.807 0.719–0.888 0.000 71.70% 77.30% 0.49 312.16 0.23
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the reproducibility of AI algorithms’ diagnostic accuracy. 
The majority of the AI algorithms used in this research 
indicated a decrease in performance on external data 
[19]. Delong’s test suggested that the performance of the 
AI detection algorithm did not show a significant decline 
when used on advanced CT scan data, on which it was 
not specifically trained. Because larger datasets are more 
likely to include a wider feature distribution than smaller 
datasets, DL methods generated from larger datasets are 
expected to have more generalizability. Indeed, previous 
studies of DL algorithms for nonclassified tasks in medi-
cal imaging have found that larger multi-institutional 
development datasets improve their generalizability [20, 
21]. Similar results on CPIs and VMIs could have been 
attributed to the commercial AI algorithm’s extensive 
training on a huge dataset that included images from var-
ious CT systems.

In a recent study by Jungblut L et  al., the AI-CAD sys-
tem had comparable results for lung nodule detection and 
volume measurement between the photon-counting detec-
tor CT and the conventional energy-integrating detector 
CT (P = 0.08–1.00), with an average sensitivity of 95% for 
the former and 86% for the latter [22]. X Zhu et al. reported 
that compared with single-energy CT, dual-energy CT may 
significantly improve the sensitivity of AI for the diagnosis 
of pulmonary nodules and is practical for the screening of 
pulmonary nodules in a large population [23]. Interestingly, 
Delong’s test suggested that the diagnostic efficiencies 
of GGNs size (total volume and 3D long diameter) were 
slightly statistically different. These discrepancies may be 
due to the fact that VMIs improves soft tissue tumor image 
quality by simulated extrapolating photon energies to a 
desired kiloelectron volt (keV) level [24], within a certain 
range, the higher the keV level, the better the image quality 

Fig. 2  Evaluation and verification of the IAC. a ROC curves for total mass in the CPIs group and VMIs group. b ROC curves for total volume 
in the CPIs group and VMIs group. c ROC curves for entropy in the CPIs group and VMIs group. d ROC curves for 3D long diameter in the CPIs 
group and VMIs group. IAC, invasive adenocarcinomas; ROC, receiver operating charcteristic; CPIs, computed tomography images; VMIs, virtual 
monochromatic images; 3D, three-dimensional
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of soft tissue lesions such as pulmonary nodules [16], head 
and neck cancer [25], gastric cancer [26], liver metastases 
[27], etc. In general, the observed high diagnostic accuracy 
of the AI algorithm for detecting pulmonary GGNs on 
VMIs is in line with previous studies on CPIs.

AI quantitative parameters for the diagnosis of pulmonary 
GGNs
With the application of deep learning, through AI, 
microscopic image information invisible to the naked eye 

can be extracted, and the features of GGNs can be quan-
titatively analyzed. Entropy can distinguish pre-invasive 
and invasive lung adenocarcinoma [28], and can predict 
the invasiveness of GGNs [29]. Increased tissue hetero-
geneity, image gray level inhomogeneity, and entropy can 
contribute to tumor growth. Entropy was an independent 
predictor for the diagnosis of AIS, MIC, or IAC, and the 
AUC can reach 0.90 [28]. The results of our study were 
also highly consistent with them. In our study, the AUC 
of entropy could reach 0.823 for the diagnosis of IAC 

Fig. 3  Results of the Delong’s test for ROC curves in total mass

Table 4  ROC curve analysis for identifying MIA from AIS in convention group and VMIs group

3D Three-dimensional, AIS Adenocarcinomas in situ, MIA Minimally invasive adenocarcinoma, VMIs Virtual monochromatic images, ROC Receiver operating 
characteristic, AUC​ Area under curve, CI Confidence interval

AUC​ 95% CI P value Sensitivity Specificity Youden index Cutoff value DeLong 
test (vs. 
Convention)

3D long diameter

  Convention 0.665 0.546–0.785 0.009 70.50% 65.00% 0.355 7.37 —

  80 0.665 0.544–0.786 0.010 70.50% 65.00% 0.355 7.37 0.95

  70 0.659 0.539–0.779 0.012 72.70% 62.50% 0.352 7.17 0.63

  60 0.660 0.540–0.781 0.012 72.70% 62.50% 0.352 7.37 0.73

  50 0.654 0.532–0.778 0.015 70.50% 60.00% 0.305 7.25 0.49

  40 0.663 0.542–0.785 0.010 68.20% 62.50% 0.307 7.35 0.89
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Fig. 4  Evaluation and verification of the MIA. ROC curves for 3D long diameter in the CPIs group and VMIs group. MIA, minimally invasive 
adenocarcinomas; ROC, receiver operating charcteristic; CPIs, computed tomography images; VMIs, virtual monochromatic images; 3D, 
three-dimensional

Fig. 5  Results of the Delong’s test for ROC curves in 3D long diameter. 3D, three-dimensional
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on CPIs. Logistic multivariable analysis indicated that 
total mass was a better quantitative index for differenti-
ating IAC from MIA. Hyungjin Kim et al. [30] reported 
a similar finding that measuring the nodule total mass 
of pulmonary GGNs had an advantage over volumetric 
parameters. ROC analysis for differentiating invasive pul-
monary adenocarcinomas among GGNs demonstrated 
that the AUC was highest for mass (0.792, 95% CI 0.691–
0.872, P < 0.001) (31). Hence, AI-based CT quantitative 
parameters are recommended for identifying micro-
scopic image information between invasive (MIA, IAC) 
and pre-invasive lesions (AIS), improving diagnosis, and 
providing a reference for clinical precision treatment.

Identification of pulmonary GGNs on VMIs
We noticed that the diagnostic efficiencies of AI histo-
gram parameters based on VMIs for invasive pulmo-
nary nodules were slightly higher than those of CPIs, 
especially total mass and total volume. These differ-
ences were statistically significant, probably due to the 
fact that SDCT has outperformed traditional techniques 
and has various key advantages that include noise reduc-
tion, powerful post-processing functionality, etc. Stud-
ies on preclinical SDCT systems have shown promising 
results for the diagnosis of pulmonary nodules [31], with 
an improvement of image noise and CNR [32], as well as 
an improvement of texture information and shape owing 
to higher spatial resolution compared with conventional 
energy-integrating detector CT.

When pulmonary GGNs are encountered in clini-
cal practice, 80 keV could be the optimal virtual mono-
chromatic energy for the identification of preoperatively 
IAC on a non-enhanced chest CT. High keV VMIs from 
SDCT reduces beam hardening and metal artifacts that 
limit conventional CT interpretation. These artifacts, typ-
ically from x-ray beam interactions with metallic medi-
cal hardware, can obscure critical anatomy or pathology, 
limiting diagnostic certainty. Combining SDCT data with 
conventional CT algorithms can improve study quality 
and potentially save patients from additional radiation 
doses from repeat CT scans [33]. Whereas, our results 
were not consistent with the previous study of image 
quality with SDCT in lung cancer by Weishu H et al. [17]. 
According to their research results, the combination of 
60 and 70 keV virtual monochromatic spectral images in 
SDCT results in a significantly superior CNR, inhomoge-
neity evaluation, and subjective image quality evaluation 
for lung cancer detection [17]. This discrepancy may be 
due to their study used contrast-enhanced chest scans on 
pulmonary GGNs, while ours used non-enhanced CT. 
Theoretically, the attenuation of iodine is greater at lower 
energies than at higher energies, due to the increasing 

photoelectric absorption that occurs with decreasing 
photon energies [34]. Nevertheless, we have shown that 
higher keV could be the optimal virtual monochromatic 
energy for the identification of IAC on a non-enhanced 
CT chest scan, which is worthy of clinical application. 
Experience with the application of AI based on VMIs 
technique training in the identification of pulmonary 
GNNs is still scarce, future studies are required. SDCT 
can be a good choice for patients with poor respiratory 
training who need a chest CT scan.

Limitations
There were some limitations to this study. First, our 
study did not specifically focus on the analysis of objec-
tive and subjective image qualities, the effect of such 
improved lesion SNR and CNR on diagnostic accuracy 
remains unknown. Second, we did not analyze the solid 
component and morphological characteristics of pulmo-
nary GGNs. In clinical diagnosis,an accurate grasp of the 
imaging manifestations of pulmonary ground-glass nod-
ules is helpful to clinical diagnosis and effectively avoids 
missed diagnosis and misdiagnosis [35, 36]. Finally, due 
to the small sample size included in this study and the 
single-center nature of this study, further studies with 
more patients are needed to verify our results.

Conclusion
In summary, the AI algorithm trained on CPIs showed 
consistent diagnostic performance on VMIs, indicating 
its usefulness in clinical practice for differential diagno-
sis of pulmonary GGNs. When pulmonary GGNs are 
encountered in clinical practice, 80  keV could be the 
optimal virtual monochromatic energy for the identifica-
tion of preoperatively IAC on a non-enhanced chest CT.
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