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Abstract 

Spatially heterogeneous landscape factors such as urbanisation can have substantial effects on the severity and spread of wildlife 
diseases. However, research linking patterns of pathogen transmission to landscape features remains rare. Using a combination of 
phylogeographic and machine learning approaches, we tested the influence of landscape and host factors on feline immunodeficiency 
virus (FIVLru) genetic variation and spread among bobcats (Lynx rufus) sampled from coastal southern California. We found evidence 
for increased rates of FIVLru lineage spread through areas of higher vegetation density. Furthermore, single-nucleotide polymorphism 
(SNP) variation among FIVLru sequences was associated with host genetic distances and geographic location, with FIVLru genetic dis-
continuities precisely correlating with known urban barriers to host dispersal. An effect of forest land cover on FIVLru SNP variation 
was likely attributable to host population structure and differences in forest land cover between different populations. Taken together, 
these results suggest that the spread of FIVLru is constrained by large-scale urban barriers to host movement. Although urbanisation 
at fine spatial scales did not appear to directly influence virus transmission or spread, we found evidence that viruses transmit and 
spread more quickly through areas containing higher proportions of natural habitat. These multiple lines of evidence demonstrate 
how urbanisation can change patterns of contact-dependent pathogen transmission and provide insights into how continued urban 
development may influence the incidence and management of wildlife disease.
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Introduction
Understanding how host and landscape factors influence
pathogen transmission is a primary focus of epidemiology and 
disease ecology (Gottdenker et al. 2014; Becker, Streicker, and 
Altizer 2015). Because natural and anthropogenic landscape fea-
tures are spatially heterogeneous, the distribution of pathogen 
transmission (i.e. pathogen transmission networks) and spread 
of disease outbreaks are similarly heterogeneous (Ostfeld, Glass, 
and Keesing 2005; Meentemeyer, Haas, and Václavík 2012). How-
ever, relating pathogen transmission to specific landscape factors 
has been challenging because observing transmission events in 
wild populations is difficult. Inference of contacts among hosts

(often by direct observations or measuring spatial overlap) has 

been a valuable proxy for transmission but often requires inten-

sive effort and may not accurately reflect transmission (Craft 2015; 

Gilbertson, Fountain-Jones, and Craft 2018). Advances in molecu-

lar data collection and analysis are enabling researchers to quan-

tify transmission more precisely (Archie et al. 2009; Biek and Real 

2010; Didelot et al. 2017; Kozakiewicz et al. 2018). These advances 

improve our ability to elucidate the impacts of landscape features 
on pathogen dynamics, which remain poorly understood.

Viruses are excellent candidates for the genetic inference 
of pathogen transmission. Their relatively small genomes and 
rapid evolutionary rates produce generally high degrees of genetic 
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variation across transmission networks over ecologically rele-
vant timescales, recording where and when pathogen outbreaks 
have occurred and enabling identification of transmission among 
extant populations or even individual hosts (Archie et al. 2009; 
Brunker et al. 2012; Biek et al. 2015; Fountain-Jones et al. 2022). 
Consequently, genetic approaches have increased our under-
standing of transmission in many important pathogens spreading 
through host populations, including Middle East respiratory syn-
drome coronavirus (MERS-CoV; e.g. Corman et al. 2014), Ebola 
(e.g. Carroll et al. 2015), influenza (e.g. Magee et al. 2015), human 
immunodeficiency virus (HIV; e.g. Faria et al. 2014), rabies (e.g. 
Streicker et al. 2016), and severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV2; e.g. Forster et al. 2020; Li et al. 2021). 
In addition to viruses causing overt disease, agents that spread 
within a host species as a chronic infection resulting in little 
pathogenicity enable the study of transmission networks at any 
time post-infection. Viruses infecting blood cells or shed via body 
fluids, enabling pre-mortem and repeated sampling, also favour 
analysis of transmission. When such agents are sufficiently preva-
lent within populations, it is feasible to obtain sample sizes 
that facilitate the analysis of factors influencing transmission. 
Accordingly, sophisticated molecular tools have been developed 
to quantify how specific heterogeneous landscape factors shape 
viral transmission at fine spatiotemporal scales. For example, ‘eco-
phylogenetic’ approaches integrating phylodynamics (the study of 
processes shaping viral phylogenies; Grenfell et al. 2004), land-
scape ecology, and community ecology can reveal how interac-
tions between host and pathogen communities, as well as envi-
ronmental factors, shape pathogen dynamics (Dellicour et al. 
2016; Fountain-Jones et al. 2017c). Similarly, emerging machine 
learning approaches provide a powerful means of disentangling 
the complex relationships between genetic variation and environ-
mental processes, bringing fresh insights into pathogen ecology 
and evolution (Fountain-Jones, Smith, and Austerlitz 2021).

Feline immunodeficiency virus (FIV) is a rapidly evolving and 

largely species-specific RNA retrovirus that infects many wild 
felids (VandeWoude and Apetrei 2006; Carver et al. 2016). FIV inte-

grates a DNA copy of its genome within the infected host that 

persists for the lifetime of the animal, and thus, phylogenetic anal-
ysis of this agent has provided insights into pathogen dynamics as 
well as host population dynamics in several species (Biek, Drum-

mond, and Poss 2006; Lee et al. 2012; Fountain-Jones et al. 2017a,b; 
Kozakiewicz et al. 2020). FIV is endemic in many bobcat (Lynx rufus) 
populations (species-specific strain; FIVLru) at a relatively high 
prevalence (up to 25 per cent; Carver et al. 2016; Kozakiewicz et al. 
2020) and is thus well suited to inferring the impacts of host and 
landscape factors on pathogen transmission. Furthermore, bob-
cats are useful indicators of functional landscape connectivity in 
fragmented urban systems (Crooks 2002; Kozakiewicz et al. 2019), 
particularly in coastal southern California, where major highways 
and dense tracts of urban development form significant barriers 
to connectivity among bobcat populations (Riley et al. 2006; Lee 
et al. 2012; Ruell et al. 2012; Serieys et al. 2015; Kozakiewicz et al. 
2019; Smith et al. 2020). FIVLru in these populations has therefore 
been extensively used as a model for investigating virus trans-
mission in wildlife, and our understanding of this system has 
evolved significantly over time as sampling continued and data 
analyses have become increasingly sophisticated. Previous stud-
ies of FIVLru transmission in these populations have either focused 
on a relatively small geographic area (Lee et al. 2012; Fountain-
Jones et al. 2017a; Fountain-Jones et al. 2021) or have encompassed 
the entire region but focused only on a broad-scale phylogeo-
graphic structure with respect to major barriers separating host 

populations (Kozakiewicz et al. 2020). Given that FIVLru is trans-
mitted via direct contact between hosts (VandeWoude and Apetrei 
2006), genetic co-structuring is expected between virus and host. 
Yet, evidence for this is mixed, suggesting that the extent to which 
co-structuring occurs may be dependent on the environmental 
context (Lee et al. 2012; Kozakiewicz et al. 2020). Thus, there is 
a need to quantify and compare environmental and host factors 
influencing FIVLru across multiple populations and spatial scales.

Here, we tested whether host and landscape factors influence 
virus transmission and spread, using FIVLru in coastal southern 
California as a model. Building on previous work in this region (see 
Lee et al. 2012; Fountain-Jones et al. 2017a; Fountain-Jones et al. 
2021), we aimed to elucidate how factors influencing pathogen 
transmission and spread can differ with spatial scales (local and 
regional) and among bobcat populations experiencing different 
urban impacts. We focused on two components of FIVLru transmis-
sion. First, we quantified the rates and routes of pathogen spread 
and identified influential landscape factors measured along these 
routes. Second, using FIVLru SNP variation as a proxy, we assessed 
how transmission frequency is influenced by host factors (sex and 
genetic variation) and variations in urban and natural landscape 
factors measured at sample locations. Given that bobcats are 
habitat generalists and that urbanisation is the predominant fac-
tor driving connectivity among host populations (e.g. Kozakiewicz 
et al. 2019), we expected that rates of virus spread would be 
reduced through urban areas, but that certain landscape features 
(e.g. streams) may enhance virus spread through these areas. 
Because FIVLru transmission relies on direct host contact, we also 
expected that FIVLru SNP variation would be associated with host 
genetic variation but that this association might also be influ-
enced by variation in local natural and urban landscape factors. 
Ultimately, these complementary approaches provided detailed 
insights into how landscape factors shape spatiotemporal pat-
terns of virus transmission in free-living wildlife in one of the 
world’s most urbanised regions.

Methods
FIVLru samples and sequence analysis
We used FIVLru sequences previously collected as part of a large 
screening effort that included samples from 292 bobcats from 
three adjoining areas in coastal southern California (Fig. 1). Orig-
inal blood and tissue samples were collected as part of earlier 
studies as follows: forty-five were collected from the north and 
east of San Diego between 2007 and 2012 (Jennings and Lewison 
2013), 113 from the southeast of Los Angeles (LA) between 2002 
and 2010 (Lyren et al. 2006, 2008a,b), and 134 from the north-
west of LA between 1996 and 2011 (Riley et al. 2006; Serieys et al. 
2015). Collectively, these samples represent five genetically dis-
tinct populations separated by major highways and urban areas 
(Kozakiewicz et al. 2019).

DNA was extracted and samples were screened and sequenced 
for FIVLru previously by Kozakiewicz et al. (2020). A subset of 
sequences was obtained from Lee et al. (2014); original pub-
lications and Genbank accession numbers for each sequence 
are indicated in Supplementary Material 2. We trimmed all 
sequences to include only the env open reading frame (ORF), 
excluding stop codons, for a final length of 1,257 bp. The final 
alignment included fifty-one FIVLru sequences. We examined 
aligned ORFs for recombination breakpoints using Recombina-
tion Detection Program (RDP) v4.96 (Martin et al. 2015) with sev-
eral recombination detection methods: RDP (Martin and Rybicki 
2000), GENECONV (Padidam, Sawyer, and Fauquet 1999), Chi-
maera (Posada and Crandall 2001), MaxChi (Maynard Smith 1992), 
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Figure 1. A continuous Bayesian phylogeographic analysis depicts the 
spatiotemporal dispersal of FIVLru in bobcats. Yellow lines indicate 
bifurcating branches showing phylogenetic relationships, originating 
from an ancestral node shown as a light blue triangle. Circles and 
diamonds indicate bobcat sample locations, with FIVLru-positive samples 
shown as green diamonds and FIVLru-negative samples shown as white 
circles. Areas northwest (A) and southeast (B) of LA are shown, with a 
single branch joining the two areas. The base map colours indicate land 
cover according to the default NLCD colour scheme, with urbanisation 
indicated as varying shades of red (darker red indicates higher density 
urban land cover, whereas pink/grey indicates lower density urban land 
cover), shrub/scrub indicated as tan, forests indicated as green, and 
agriculture indicated as yellow. Elevation variation is depicted as shaded 
relief. The black-and-white inset (reproduced from Kozakiewicz et al. 
2020) indicates the extent of the region-wide study area, with cities of LA 
and San Diego shown and shaded areas indicating urban land cover.

BootScan (Salminen et al. 1995), SiScan (Gibbs, Armstrong, 
and Gibbs 2000), and 3Seq (Boni, Posada, and Feldman 2007). 
Recombination breakpoints were accepted if they were detected 
using at least three of these methods at a significance level of 
P < 0.05. Any recombinant regions were removed from subsequent 
analyses.

Phylogenetic analysis
To ensure sequence data contained sufficient temporal signal 
for the estimation of divergence dates, we performed date ran-
domisation tests using the R package TipDatingBeast (Rieux and 
Khatchikian 2017). Sequences potentially biasing temporal infer-
ences were removed based on leave-one-out cross validation 
(Duchêne et al. 2015). To reconstruct the spread of FIVLru lineages 

across the coastal southern Californian landscape, a Bayesian 
phylogeographic analysis of viral diffusion in continuous space 
was conducted using Bayesian Evolutionary Analysis Sampling 
Trees (BEAST) version 1.10 (Drummond et al. 2012). Tree tip dates 
were specified according to the sample date, with sampling loca-
tion (latitude and longitude) specified as a continuous trait.

Prior to incorporating phylogeographic random walk models, 
which implement the spatial component of phylogenetic diffu-
sion, we performed a series of BEAST runs testing different sub-
stitution models and molecular clocks and selected the most 
appropriate using marginal likelihood estimation with path and 
stepping-stone sampling (Baele et al. 2012). The best-supported 
models included the Hasegawa-Kishino-Yano substitution model 
with gamma-distributed rate heterogeneity and a proportion of 
invariant sites, the two-partition codon partition model, the 
Gaussian Markov random field Bayesian Skyride tree prior, and 
a lognormal uncorrelated relaxed molecular clock (Kozakiewicz 
et al. 2020). Using these parameters, relaxed random walk (RRW) 
models were tested against a model assuming no dispersal rate 
variation among branches (Brownian random walk). The gamma 
RRW model was chosen, having significantly higher support than 
the lognormal RRW and Brownian models and marginally higher 
support than the Cauchy RRW (see Supplementary Material 1, 
Table S1, for all model selection results). We ran three sets of 108

Markov chain Monte Carlo iterations, sampling every 104 itera-
tions and excluding the initial 10 per cent of each set as burn-in. 
Model stationarity, convergence, and effective sample size (min-
imum 200) were checked, and parameters were evaluated using 
Tracer version 1.7 (Rambaut et al. 2018). A maximum clade credi-
bility tree was constructed from the sampled trees using TreeAn-
notator version 1.10 and visualised using FigTree version 1.4.3. To 
visualise the spatiotemporal distribution of viral lineages based 
on the maximum clade credibility tree, we used SPREAD3 (Bielejec 
et al. 2016) (Fig. 1).

Analysis of FIVLru spatial spread
We quantified rates of FIVLru spread using Seraphim (Dellicour 
et al. 2016) in R. One thousand trees were randomly sampled 
from our BEAST posterior distribution, and from each tree, we 
extracted dates and locations associated with the start and end 
of each branch. Using this spatiotemporal information, we esti-
mated dispersal statistics that describe the median velocity of 
FIVLru dispersal (in km/y) and the mean weighted diffusion coef-
ficient (defined as diffusivity or the rate of spread in km2/y; 
Trovão et al. 2015). In contrast to dispersal velocity, which 
measures the linear dispersal rates of individual phylogenetic 
branches, the weighted diffusion coefficient is a cumulative esti-
mate of branch dispersal velocities that measures the rate of 
expansion of the area into which viral lineages have spread or
‘diffused’.

We tested the effects of five heterogeneous landscape fac-
tors on dispersal velocities associated with phylogenetic branches 
using a landscape connectivity framework. Landscape variables 
were chosen based on predicted importance to bobcat movement 
ecology. Topographic roughness, vegetation density, and streams 
were predicted to have positive effects on bobcat (and thus FIVLru) 
connectivity, while urbanisation (measured as a percentage of 
impervious surface) and roads were predicted to have negative 
effects. An ecological rationale for the inclusion of landscape 
variables and data sources are provided by Kozakiewicz et al. 
(2019). Parameterisation of resistance surfaces (i.e. translation of 
environmental measurements to values of potential resistance 
to movement) was performed using an optimisation approach 
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implemented in ResistanceGA, which uses a genetic algorithm to 
explore various resistance surface parameterisations to maximise 
the correlation between genetic distances and resistance surface 
cost values (Peterman 2018). Optimisation approaches are con-
sidered preferable to alternatives such as expert opinion, which 
can be subject to experimenter bias, or habitat suitability mod-
els, which do not necessarily reflect ease of movement (Spear 
et al. 2010; Elliot et al. 2014). Pairwise genetic distances between 
individual bobcats were used for resistance surface optimisa-
tion, which was performed singly for each landscape variable 
based on random-walk commute time between locations (McRae 
2006; McRae et al. 2008). Bobcat genetic distance was measured 
as the inverse of the proportion of shared alleles across 13,520 
SNP loci generated using double-digest restriction-site-associated 
DNA sequencing (see Kozakiewicz et al. 2019 for details). Suc-
cessive generations of the genetic algorithm were tested using 
linear mixed effect models with maximum likelihood popula-
tion effects and evaluated using log-likelihood scores. Optimal 
parameterisation was determined following twenty-five consecu-
tive generations of the genetic algorithm with no improvement in 
log-likelihood. The effect of geographic distance was included in
all models.

Using Seraphim, we compared two connectivity approaches for 

estimating environmental distances among FIVLru phylogenetic 
branch start and end locations for each resistance surface: (1) 

least-cost path analysis (Adriaensen et al. 2003), which mod-

els a single, optimal path between locations; and (2) resistance 
analysis, implemented using Circuitscape (McRae et al. 2008; 

Hall et al. 2021), which models all possible paths between loca-
tions. Branch durations were linearly regressed against associated 
least-cost paths and resistance distances for each landscape fac-
tor while accounting for the effect of geographic distance alone
(a null model) to obtain a regression coefficient, R, and a modi-
fied coefficient of determination, Q. The effect of environmental 
distance on branch duration is positive when R > 0 and is greater 
than that of the null model when Q > 0. Values for R and Q were 
calculated for each of the 1,000 sampled trees to obtain distri-
butions of each. Landscape factors were considered potentially 
explanatory when the proportion (Q > 0) was greater than 0.9 and 
when 95 per cent confidence intervals for R were greater than 
zero. The significance of Q distributions for potentially explana-
tory landscape factors was estimated using Bayes factor support 
calculated by randomisation of branch locations for each sam-
pled tree and interpreted according to Kass and Rafferty (1995). 
Only branches with start dates after 1980 were included in tests 
of landscape effects to reduce the temporal mismatch between 
estimated dispersal velocities and present-day landscape fac-
tors. We selected a cut-off date of 1980 as it was an appropriate 
compromise between removing the most temporally mismatched 
branches without removing so many branches as to significantly 
reduce our statistical power to detect correlations with landscape 
factors.

Previous analysis estimated that FIVLru populations northwest 
of LA diverged from those southeast of LA c. 1875 (Kozakiewicz 
et al. 2020). Furthermore, significant differences in landscape 
composition, as well as bobcat population structure, have been 
observed between these two areas (Riley et al. 2010; Kozakiewicz 
et al. 2019). To evaluate potential differences among areas in rates 
and landscape drivers of FIVLru spatial spread, analyses of FIVLru

spread were performed separately for three distinct study areas: 
(1) northwest of LA, (2) southeast of LA, and (3) across the entire 
region comprising all sampled individuals (hereafter referred to as 
the ‘region-wide’ study area) (Fig. 1).

Landscape and host effects on FIVLru genetic 
variation
To test how FIVLru genetic variation is associated with the host 
(sex and genetic relatedness/distance) and landscape factors, we 
constructed multivariate machine learning models using Multi-
response Interpretable Machine Learning (MrIML; Fountain-Jones 
et al. 2021). MrIML is a flexible pipeline for producing, comparing, 
and interpreting machine learning models for predicting drivers 
of variation in multilocus datasets. First, we extracted single SNP 
genotypes from FIVLru multiple sequence alignments using SNP-
sites (Page et al. 2016). SNPs were filtered to only include biallelic 
loci using VCFtools (Danecek et al. 2011) so that they could be 
analysed using MrIML’s classification framework. A small number 
of SNP genotypes were missing for some isolates; these were set as 
the major allele for a given locus. SNPs with allele frequency <0.2 
were also removed because the models implemented in MrIML 
have limited power to predict rare response conditions.

Genetic differentiation among viruses present in different envi-
ronments may reflect variation in host dispersal preferences or 
local adaptation by either pathogens or hosts, leading to differ-
ences in environmentally mediated transmission frequency. Thus, 
we used our machine learning models to test how differences 
in landscape composition in the immediate vicinity of sample 
locations influence FIVLru genetic variation. Landscape factors 
comprised a series of land cover types derived from the National 
Land Cover Database (NLCD; Homer et al. 2015) and were quanti-
fied within buffers around sample locations. Buffers were based 
on estimates of sex and area-specific mean home range sizes 
(northwest LA: males = 7.1 km2, females = 3.5 km2; southeast LA: 
males = 6.8 km2, females = 4.4 km2; San Diego: males = 5.3 km2, 
females = 3.8 km2; Riley et al. 2010). The relative proportions of 
each urban (broken into separate categories comprising devel-
oped open space and low, medium, and high-density urban-
isation) and non-urban (separate categories comprising forest, 
scrub/shrub, and grassland) land cover type were quantified 
within each buffer using Geospatial Modelling Environment (www.
spatialecology.com). We also calculated the distance of each cap-
ture location to the nearest urban edge using the Near tool in 
ArcGIS 10.3 (ESRI). Urban edge was defined from the NLCD imper-
vious surface layer by calculating for each 30 × 30 m raster cell 
whether most cells within a 1 km radius of that cell had a value of 
impervious surface greater than zero.

Host genetic distances were measured as described earlier. 
Because MrIML requires each predictor to be a single vector, we 
performed principal coordinate analysis to reduce the dimension-
ality of the pairwise host genetic distance matrix. We used the 
top nine principal coordinates as predictor variables in our anal-
ysis (cumulatively explaining 38.4 per cent of variation in host 
genetic distances; each remaining principal coordinate explained 
<2 per cent). Each principal coordinate captures a different com-
ponent of host genetic variation, with the first principal coordinate 
capturing the broadest-scale patterns of variation and each suc-
cessive principal coordinate capturing increasingly fine patterns. 
All landscape and host variables were included as predictors of 
FIVLru SNP variation. To account for potential temporal autocor-
relation (i.e. increased similarity between sequences sampled at 
similar times), sample date was included as an additional predic-
tor. Latitude and longitude were included to account for spatial 
autocorrelation.

Using MrIML, we tested three types of classification models 
to predict FIVLru SNP responses to landscape and host factors (in 
order of increasing model complexity): generalised linear models 
(GLM), random forests (RF), and extreme gradient boosting (XGB). 

https://www.spatialecology.com
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RF and XGB models comprised 1,000 trees, and for all models, we 
used MrIML’s inbuilt parameter tuning function with a tuning grid 
size of 5 × 5 to automatically select optimal model parameter com-
binations. For each SNP in a given model, MrIML builds a separate 
binary classifier and calculates the area under the curve of the 
receiver operating characteristic (AUC-ROC), which measures the 
ability of the model to accurately distinguish between response 
classes (i.e. allele values) and is given as a proportion ranging 
between 0 (no predictive ability) and 1 (perfect predictive ability). 
Overall model performance was evaluated by averaging AUC-ROC 
across all SNPs. Model-agnostic variable importance (VI) was esti-
mated from the best-performing model for each FIVLru SNP indi-
vidually as well as cumulatively across all SNPs. To visualise aver-
age SNP responses to variation in the most important predictors, 
we produced accumulated local effects (ALE) plots using MrIML. 
ALE plots are capable of distinguishing effects among correlated 
variables, which makes them suitable for datasets containing 
proportional variables (such as land cover), which are inher-
ently intercorrelated (Supplementary Material 1, Tables S2–S4). 
Finally, to evaluate interactions among host and landscape fac-
tors in influencing FIVLru SNP variation, we used MrIML to produce 
plots showing relative importance for all pairwise combinations of 
explanatory variables, cumulatively across all SNPs. As with the 
investigation of landscape drivers of FIVLru spread, analyses were 
performed separately for the northwest of LA, the southeast of LA, 
and region-wide study areas.

Results
Sequence analysis
Among our alignment of fifty-one FIVLru sequences, we identified 
no regions exhibiting signatures of recombination. One sequence 
was found to bias our temporal estimates and was removed. Thus, 
fifty sequences remained for further analysis, comprising twenty-
six from the northwest of LA and twenty-four from the southeast 
of LA.

FIVLru spatial spread is weakly influenced by 
landscape
Dispersal velocities are the linear rate at which individual phyloge-
netic branches move across the landscape, whereas the weighted 
diffusion coefficient is the rate of expansion of the area occupied 
by the phylogeny. We found minimal differences in both met-
rics between each of our focal study areas, and neither study 
area exhibited differences in these metrics on a region-wide scale. 
However, weighted diffusion coefficients were more highly vari-
able southeast of LA (Fig. 2). These results suggest minimal differ-
ences in the rate of FIV lineage spread on the landscape between 
northwest and southeast LA.

For both least-cost paths and landscape resistance modelling, 
there was low support for landscape factors affecting FIVLru dis-
persal velocities. For least-cost path analysis, region-wide vegeta-
tion density had marginally greater explanatory power than the 
null model [proportion (Q > 0) = 0.70] but had substantial Bayes 
factor support (BF = 4.8). This relatively low proportion (Q > 0) sug-
gests a weak positive effect of vegetation density on dispersal 
velocity that is not present in all the sampled phylogeographic 
trees but is significantly based on Bayes factor estimation. Other-
wise, only streams in the southeast of LA had (marginally) greater 
explanatory power [proportion (Q > 0) = 0.83] than the null model, 
but this effect had little Bayes factor support (BF = 1.8). Using land-
scape resistance modelling, the best, albeit poorly, supported asso-
ciation was streamed southeast of LA [proportion (Q > 0) = 0.50, 

Figure 2. FIVLru phylogenetic branch dispersal velocities (A) and 
diffusion rates (B) do not differ significantly between the northwest and 
southeast of LA local study areas or between local study areas and the 
region-wide scale. The error bars indicate 95 per cent highest posterior 
density intervals.

BF = 4.2]; no association greater than [proportion (Q > 0) = 0.21] 
was observed for any other landscape factor within any of the 
study areas under the landscape resistance modelling frame-
work. See Supplementary Material 1, Table S5, for full Seraphim
results.

FIVLru SNP variation is driven by natural land 
cover and co-structures with hosts
Region-wide, the best-performing model of host and landscape 
factors explaining FIVLru SNP variation was the RF, with an AUC-
ROC of 0.852, suggesting that the model had a high capacity to 
predict SNP alleles. In contrast, GLM and XGB had AUC-ROC of 
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0.757 and 0.500. The improvement in the predictive performance 
of RF over GLM indicates the importance of non-linear relation-
ships in our dataset. Two principal coordinates representing host 
genetic distances (PCo 1 and 2, VI = 0.107 and 0.194, respectively), 
as well as latitude (VI = 0.147) and longitude (VI = 0.100), were the 
most important predictors of overall FIVLru SNP variation (Fig. 3A). 
Forest land cover was also of prominent importance (VI = 0.062). 
All other factors tested had lower and approximately equivalent 
VI (∼0.01 to 0.025) and were not considered further (Fig. 3A).

ALE plots revealed that the steepest gradient of FIVLru SNP vari-
ation region-wide coincided with the strong genetic barrier formed 
by LA itself, occurring between approximately 118.25–117.75∘ W 
and 33.90–34.25∘ N (Fig. 3D). Host genetic distance PCo1 primarily 
represented the genetic differentiation between bobcats sampled 
northwest and southeast of LA, explaining 6.4 per cent of total host 
genetic variation. PCo2, in contrast, primarily captured bobcat 
genetic variation northwest of LA, explaining 4.8 per cent of total 
host genetic variation (Supplementary Material 1, Fig. S1). Despite 
explaining a lower proportion of host genetic variation, PCo2 was 
the more important predictor of FIVLru SNP variation (Fig. 3A), with 
ALE plots revealing a sharp distinction between FIVLru isolates 
sampled from even slightly genetically divergent hosts (Fig. 3D). 
PCo1, in contrast, revealed differentiation between FIVLru isolates 
only when hosts were highly genetically divergent (Fig. 3D). FIVLru

sequences collected from locations with a high proportion (>0.8) of 
forest land cover were distinct from those collected from locations 
with low or no forest land cover (Fig. 3D).

A high degree of interaction was observed among many of 
our explanatory variables. However, only a proportion of interac-
tions were of prominent relative importance (interaction relative 
importance >0.25, cumulative across all SNPs). Of these, the most 
important interaction was between host genetic distance PCo2 
and grassland land cover, with a cumulative relative variable 
importance of 0.392.

When analysing FIVLru sequences collected from northwest 
of LA, the RF model again performed best, with an AUC-ROC of 
0.897. Host genetic distance PCo2 was by far the most important 
predictor of FIVLru SNP variation (VI = 0.518), followed by lati-
tude (VI = 0.135) and forest land cover (VI = 0.115) (Fig. 3B). ALE 
plots revealed similar patterns to the region-wide analysis, with 
relatively low genetic differentiation between hosts resulting in 
high differentiation between FIVLru isolates (Fig. 3E). There was 
a dramatic shift in FIVLru SNP variation between the latitudes of 
34.125–34.175∘ N (Fig. 3E), which is approximately the latitude at 
which Highway 101 crosses the study area east-to-west (Fig. 1).

When analysing FIVLru sequences collected from the southeast 
of LA, we observed overall lower model performance, with the RF 
model performing best (AUC-ROC = 0.703). Accordingly, no vari-
ables were of prominent importance, with the top nine variables 
ranging between VI = 0.05–0.08 (Fig. 3C). This suggests that none 
of the tested host and landscape variables were significant drivers 
of FIVLru SNP variation southeast of LA.

Discussion
Our wide sample distribution enabled us to quantify how host 
and landscape factors influencing FIVLru dynamics vary among 
local (i.e. either northwest or southeast of LA) and region-wide 
spatial scales. Patterns of FIVLru SNP variation region-wide, as 
well as more locally northwest of LA, were driven by geographic 
location, as evidenced by the significant effects of latitude and 
longitude in each of these analyses. At both scales, variation in 

land cover types among sample locations explained relatively lit-
tle FIVLru SNP variation, except for the northwest of LA. Significant 
genetic co-structuring was observed between host and virus at the 
region-wide scale as well as in the northwest of LA but not in the 
southeast of LA. Analysis of FIVLru dispersal velocities revealed 
a weak positive effect of vegetation density on FIVLru spread at 
the region-wide scale, although there was no effect of landscape 
factors on dispersal velocities in areas northwest or southeast 
of LA individually. Under a landscape resistance analysis frame-
work, we observed lower support for landscape drivers of dispersal 
velocities than under a least-cost paths framework.

Overall, rates of FIVLru dispersal were relatively
slow (0.56–1.6 km/y) and consistent with previous estimates in 
these populations (see Fountain-Jones et al. 2017a) as well as in 
other urban wildlife pathogen systems. For example, rabies dis-
persal in urban dogs was 0.65 km/y compared with up to 22 km/y 
in non-urban areas (Bourhy et al. 2016; Dellicour et al. 2017). 
Urban development is an important factor limiting bobcat con-
nectivity in coastal southern California (Riley et al. 2006; Ruell 
et al. 2012; Kozakiewicz et al. 2019), thereby reducing FIVLru gene 
flow to an extent that is observable at significantly smaller spa-
tial scales than our study (Fountain-Jones et al. 2017a). Contrary 
to expectations, we found no direct relationship between urban-
isation and either FIVLru dispersal or SNP variation. However, the 
observed positive effect of vegetation density on dispersal veloc-
ities, albeit weak, suggests that reductions in natural vegetation 
because of urban development may reduce rates of virus spread 
across the landscape. Although FIVLru diffusion and dispersal rates 
did not differ significantly between the northwest and southeast 
of LA, diffusion was significantly more variable in the southeast, 
potentially reflecting greater variation in urbanisation and habitat 
fragmentation across this area.

Our results indicate a strong association between FIVLru SNP 
variation and factors influencing bobcat population connectiv-
ity. Our ALE plots revealed specific genetic discontinuities among 
FIVLru isolates that coincide with major urban features. The most 
prominent of these discontinuities was evident in the region-wide 
analysis, located precisely between the latitudes and longitudes 
encompassing the LA basin. Previous work demonstrating asso-
ciations between urbanisation and FIVLru genetic variation was 
conducted on some of the same individuals (n = 11, but using 
shorter length FIVLru sequences) but encompassed only a small 
section of our study area (southeast of and directly adjacent to 
LA) (Fountain-Jones et al. 2017a; Fountain-Jones et al. 2021). This 
scale and location dependence suggest that associations between 
fine-scale patterns of urbanisation and FIVLru SNP variation may 
differ among areas that contain similar amounts of urban devel-
opment overall. For example, specific arrangements of suburban 
developments may influence the availability of movement corri-
dors and locations where urban-associated features such as roads 
may be easily crossed. Such locally specific landscape associations 
have been demonstrated in the host, whereby environmental fac-
tors explaining bobcat gene flow differ among populations and 
also vary among different spatial scales (Kozakiewicz et al. 2019; 
Smith et al. 2020). This context-dependence makes generalisation 
challenging and highlights the difficulty of predicting landscape 
effects on pathogen transmission at fine spatial scales without 
locally specific data.

Northwest of LA, variation in the amount of forest land cover 
near sample locations influenced SNP variation among FIVLru

isolates. This association was surprising, as forest comprises a 
very small proportion of overall land cover in this study area 
when compared to other vegetation types such as scrub/shrub.
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This positive correlation implies an isolation by environment 
effect (Wang and Bradburd 2014), which can occur through factors 
such as selection against immigrants and habitat-biased disper-
sal (Wang and Bradburd 2014). However, selection derived from 
forest habitat is unlikely in coastal southern California given for-
est scarcity, necessitating frequent use of other habitat types by 
bobcats, usually scrub/shrub. Forest land cover northwest of LA is 
largely limited to the Santa Monica Mountains, which contain a 
bobcat population that is isolated from others by highways. Thus, 
the observed effect of forest land cover can likely be attributed to 
the effect of population isolation due to these highway barriers 
rather than to forest land cover itself (see Riley et al. 2006; Serieys 
et al. 2015; Kozakiewicz et al. 2019, 2020).

Co-structuring among FIVLru and host populations was evi-
dent through associations between FIVLru SNP variation and host 
genetic distances. Although the greatest host genetic distances 
were between the northwest and southeast of LA (PCo1), those 
within the northwest of LA (PCo2) were the most important pre-
dictors of FIVLru variation, even at the region-wide scale. Genetic 
distances among hosts between the northwest and southeast of 
LA were likely less important because these individuals were also 
more distant geographically, meaning that latitude and longi-
tude explained a greater proportion of FIVLru SNP variation among 
these samples. In contrast, the northwest of LA contains genet-
ically distinct yet geographically proximate bobcat populations 
(that are separated only by highways), resulting in the greater 
importance of host genetic distances in predicting FIVLru SNP vari-
ation and the reduced importance of geographic location. Ideally, 
each FIVLru population would be analysed separately, as was con-
ducted for the host populations by Kozakiewicz et al. (2019), to 
account for the effect of population structure. However, sample 
size constraints given FIVLru’s relatively low prevalence did not 
permit such a design in this instance.

A relatively sparse sampling of highly divergent lineages south-

east of LA (Supplementary Material 1, Fig. S2; also see Kozakiewicz 
et al. 2020) may have limited our ability to detect environmental 

associations with FIVLru SNP variation and lineage dispersal veloc-
ities. In addition, because FIVLru is a chronic infection, potential 
lags between the time of initial infection and the time of sam-
pling may introduce additional noise to spatiotemporal dispersal 
estimates. Distantly related FIVLru lineages can circulate indepen-
dently within the same host population and may co-infect the 
same individuals. Thus, differentiation between spatially proxi-
mate but highly distinct samples may be due to historical evo-
lutionary processes rather than contemporary ecological factors. 
Furthermore, our analysis of FIVLru spread excluded phylogenetic 
branches that originated before 1980 to reduce the temporal mis-
match between branches and contemporary land cover. These 
excluded branches often crossed areas of urban development, 
including the highly urbanised LA basin that separates our north-
west and southeast study areas. Thus, our ability to detect the 
influence of these urban features on FIVLru dispersal velocities was 
likely reduced.

Compared to the least-cost path analysis, analysis under a 
landscape resistance framework suggested fewer landscape fac-
tors influencing FIVLru dispersal velocities. Landscape resistance 
analysis is commonly considered superior to least-cost path anal-
ysis because it can model all possible dispersal pathways available 
to an organism, as opposed to a single, optimal pathway that 
assumes organisms have complete knowledge of the landscape 
intervening sites. However, least-cost path analysis, in some cases, 
has been shown to perform well, potentially reflecting more linear 
structuring of landscape features (Schwartz et al. 2009; McClure, 

Hansen, and Inman 2016). The relatively constrained landscape 
in coastal southern California, with many impermeable barriers 
to bobcat movement such as coastlines, roads, and dense urban 
development, limits the number of potential pathways available 
to an individual bobcat infected with FIVLru. Thus, a model repre-
senting a single, specific pathway may be more representative of 
bobcat movement in this environment.

Our results are consistent with a growing body of research 
suggesting that broad constraints on host movements imposed 
by urban development constrain pathogen spread. Knowledge of 
these constraints may be leveraged to assist the management of 
infectious disease outbreaks, whereby known connectivity corri-
dors may be targeted for surveillance or direct interventions. Yet, 
exploitation of such constraints must be balanced against the 
need for host population connectivity, the loss of which is a pri-
mary factor threatening wildlife globally (McCallum and Dobson 
2002; Crooks et al. 2011). Importantly, our results suggest that 
urbanisation may play less of a role at fine spatial scales in con-
straining FIVLru transmission than it does to limit bobcat connec-
tivity. Host genetic structuring may accurately predict pathogen 
spread, but genetic co-structuring between host and pathogen 
may only be evident when not confounded by deeper phylogenetic 
relatedness among pathogen lineages. Inconsistency with previ-
ous studies suggests that urban effects on virus transmission in 
bobcats may be dependent on spatial scale or other locally specific 
factors, highlighting the difficulty of generalising these findings. 
However, due to the broad distribution of bobcats and FIVLru in 
North America across a variety of environments (Reding et al. 
2012; Lagana et al. 2013; Carver et al. 2016), this system represents 
an excellent opportunity to investigate factors driving pathogen 
transmission in a variety of landscape contexts. Ultimately, this 
work demonstrates the potential of emerging ecological phyloge-
netic and machine learning approaches in elucidating the factors 
shaping pathogen transmission in urban landscapes. With the 
continued expansion of urban landscapes globally, understanding 
how urbanisation impacts patterns of pathogen transmission will 
be increasingly valuable.
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