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Abstract: (1) Objective: hypercoagulability in patients with malignant neoplasm were evaluated to
examine the relationship with thrombosis. (2) Methods: clot waveform analysis (CWA)—activated
partial thromboplastin time (APTT) and CWA—small amount of tissue factor induced FIX activation
(sTF/FIXa) assays were performed in 92 patients with malignant neoplasm and the relationship
between hypercoagulability and thrombosis was retrospectively examined. (3) Results: The study
population included 92 patients with malignant neoplasms. Twenty-six (28.3%) had thrombotic
diseases and 9 (9.8%) patients died within 28 days after the CWA. The peak time of the CWA-APTT
could not show hypercoagulability in patients with malignant neoplasms. There were almost no
significant differences in the peak times of the sTF/FIXa among patients with malignant neoplasms
and healthy volunteers. In contrast, the peak heights of the CWA-sTF/FIXa in patients with various
malignant neoplasms were significantly higher than those in healthy volunteers. Furthermore, among
patients with malignant neoplasms, the peak heights of the sTF/FIXa in patients with thrombosis were
significantly higher than those in patients without thrombosis. (4) Conclusions: although the routine
APTT cannot evaluate the hypercoagulability, the peak heights of CWA-sTF/FIXa were significantly
high in patients with malignant neoplasms, especially in those with thrombosis, suggesting that an
elevated peak height of the CWA-sTF/FIXa may be a risk factor for thrombosis.

Keywords: CWA; APTT; sTF/FIXa; cancer; thrombosis

1. Introduction

Cancer associated thrombosis [1,2] has been recently attracted attention by many physi-
cians and researchers. The incidence of venous thromboembolism in patients with cancer is
0.5%, while that in the general population is 0.1% and active cancer accounts for 20% of the
overall incidence of venous thromboembolism [3]. Thrombosis is a leading cause of non-
cancer death in cancer patients and includes both arterial and venous thromboembolism [4].
Although venous thromboembolism is considered one of the most important thrombotic
diseases in cancer patients [1,5], Trousseau syndrome [6] is well-known thrombotic syn-
drome in cancer patients. This syndrome is first noted that unexpected or migratory
thrombophlebitis could be a forewarning of an occult visceral malignancy [7]. Thereafter,
this syndrome is extended as cancer-associated thrombosis, including acute cerebral infarc-
tion, venous thromboembolism and chronic disseminated intravascular coagulation (DIC)
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due to hypercoagulability [6,8–11]. Cancer-associated thrombosis is a heterogenous dis-
ease and various factors, including leukocytosis, thrombocytosis, several physical factors,
and increased coagulation factors have been proposed as risk factors for thrombosis [1].
Hypercoagulability, including increased tissue factor (TF), which activates the extrinsic
pathway of the coagulation system and TF-positive microparticles, was proposed as a risk
factor for cancer-associated thrombosis [1]. Activation of the coagulation cascade through
tumor growth and metastasis may cause thrombosis in cancer [12]. Platelet activation is
also proposed as the mechanism of cancer-associated thrombosis [13]. Therefore, an early
diagnosis and prophylaxis for thrombosis may be important in patients with cancer [6].

Although elevated D-dimer is useful for detecting thrombosis in patients with can-
cer [14,15], there are no routine test for hypercoagulability. Recently, a clot waveform
analysis (CWA) to activated partial thromboplastin time (APTT) has been developed to
analyze to evaluate hemostatic abnormalities in patients with bleeding tendency and to
monitor anticoagulant therapy [16,17]. Furthermore, the use of the small amount of TF
induced FIX activation assay (sTF/FIXa) assay can evaluate the hemostatic abnormalities
including platelet abnormalities [18].

In this study, hypercoagulability in patients with malignant neoplasms was inves-
tigated using the CWA-APTT and sTF/FIXa and the relationship between the results of
these tests and thrombosis was examined.

2. Materials and Methods

The study population included and 92 patients with the following conditions who
were managed at Mie Prefectural General Medical Center from 21 August 2020 to 20 August
2021; hepatocellular carcinoma (n = 23); colon cancer (n = 4); stomach cancer (n = 8); prostate
cancer (n = 5); biliary tract cancer (n = 7); lung cancer (n = 6); pancreatic cancer (n = 10);
esophageal cancer (n = 4); malignant lymphoma (n = 14); myelodysplastic syndrome
(n = 10); other cancer (n = 5; origin unknown, n = 2 melanoma, n = 1; uterus cancer, n = 1
and ovarian cancer, n = 1), including hepatocellular carcinoma and colon cancer (n = 1);
stomach and prostate cancer (n = 1); stomach and biliary tract cancer (n = 1), stomach and
lung cancer (n = 1). The study involved 18 healthy volunteers (8 males and 12 females; 21
to 56 years old).

DIC was diagnosed using the Japanese Ministry of Health Labor and Welfare criteria
for DIC [19]. Acute cerebral infarction was diagnosed using computed tomography or
magnetic resonance imaging, acute coronary syndrome was diagnosed using coronary
angiography, electrocardiography and was based on elevated troponin levels, venous
thromboembolism was diagnosed using computed tomography or venous Doppler ultra-
sound. In the CWA-APTT and sTF/FIXa, 20 healthy volunteers (12 females and 8 males;
median age, 35.5 years old; 25–75 percentile, 33.0–35.0 years old) were also examined
as control.

The study protocol (2019-K9) was approved by the Human Ethics Review Committee
of Mie Prefectural General Medical Center, and informed consent was obtained from each
participant. This study was carried out in accordance with the principles of the Declaration
of Helsinki.

The CWA-APTT was performed using APTT-SP®, which uses silica as an activator
of FXII and synthetic PLs (Instrumentation Laboratory; Bedford, MA, USA) and platelet
poor plasma, with an ACL-TOP® system (Instrumentation Laboratory) as previously re-
ported [16,20]. The CWA-sTF/FIXa assay was performed using platelet rich plasma and
2000-fold diluted HemosIL RecombiPlasTin 2G (TF concentration < 0.1 pg/mL; Instrumen-
tation Laboratory). Three curves are shown on the monitor of this system [11]. One curve
shows the changes in the absorbance observed while measuring the APTT, corresponding
to fibrin formation (FF, navy line). The second (first derivative peak, 1st DP; red line),
corresponds to the coagulation velocity, and the third (second derivative peak, 2nd DP;
light blue) corresponds to the coagulation acceleration. The height and time of the 1st
DP, 2nd DP and FF are called the 1st DP height (1st DPH) and 1st DP time (1st DPT),
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2nd DPH and 2nd DPT, and FFH and FFT, respectively (Figure 1). Platelet rich plasma
was prepared by centrifugation at 900 rpm for 15 min (platelet count, 40 × 1010/L), and
platelet-poor plasma was prepared by centrifugation at 3000 rpm for 15 min (platelet count,
<0.5 × 1010/L) [18].
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Figure 1. CWA-APTT (I) and CWA-sTF-FIXa (II) in a healthy volunteer (a), pancreatic cancer patient without thrombosis (b),
pancreatic cancer patient before ACI (c) and patient with ACI (d). APTT, activated partial thromboplastin time; sTF/FIXa,
small tissue factor induced FIX activation assay; ACI, acute cerebral thrombosis; navy line, fibrin formation curve; red line,
1st derivative curve (velocity); light-blue line, 2nd derivative curve (acceleration); 1T, 1st derivative peak time; 2T, 2nd
derivative peak time; FFT, fibrin formation time; 1 h, 1st derivative peak height; 2 h, 2nd derivative peak height; FFH, fibrin
formation height, TM (mm abs); transmittance (mm absorbance).

Statistical Analyses

The data are expressed as the median (range). The significance of differences between
groups was examined using the Mann–Whitney U-test. p values of <0.05 were considered
to indicate a statistical significance. All statistical analyses were performed using the
Stat-Flex software program (version 6; Artec Co Ltd., Osaka, Japan).

3. Results

Figure 1 shows that there were no significant differences in the peak time of the APTT
among a healthy volunteer, pancreatic cancer patient without and with acute cerebral
infarction and non-cancer patient with acute cerebral infarction. Although the peak heights
of the CWA-APTT were significantly higher in these three patients than healthy volunteer,
there was no significant difference in the peak heights of the APTT among the above three
patients. The CWA-sTF/FIXa assay shows that the peak heights were markedly higher in
pancreatic cancer patient with acute cerebral infarction than in that without, whose levels
were higher than those of healthy volunteer. Table 1 shows 92 patients with malignant
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neoplasms, 26 (28.3%) of whom had associated thrombotic diseases (12 peripheral artery
thrombosis and venous thromboembolism, n = 12; acute cerebral infarction, n = 7; acute
coronary syndrome, n = 4; DIC, n = 2; and thrombotic microangiopathy, n = 1). Peripheral
artery thrombosis and venous thromboembolism included deep vein thrombosis (n = 5),
portal vein thrombosis (n = 4) and pulmonary.

Table 1. Subjects.

Disease N Age Male PAVTE ACI ACS DIC TMA Mortality

Hepatocellular carcinoma * 23 73.4 ± 6.9 18 3 2 1 0 0 0 (0%)

Colon cancer * 4 74.8 ± 11.2 3 1 0 0 0 0 0 (0%)

Stomach cancer #,&,+ 8 76.6 ± 9.6 8 0 1 0 1 1 3 (37.5%)

Prostate cancer # 5 80.4 ± 5.9 5 1 1 0 0 0 1 # (20.0%)

Biliary tract cancer & 7 79.3 ± 6.4 3 1 0 0 0 0 1 (14.3%)

Lung cancer + 6 70.3 ± 11.0 6 0 0 0 0 0 1 + (16.7%)

Pancreatic cancer 10 67.6 ± 10.3 7 1 1 0 0 0 2 (20.0%)

Esophageal cancer 4 65.8 ± 10.7 4 0 1 0 0 0 0 (0%)

Malignant lymphoma 14 77.4 ± 6.0 8 2 1 2 0 0 1 (7.1%)

Myelodysplastic syndrome 10 78.2 ± 11.3 4 1 0 0 1 0 0 (0%)

Others 5 67.7 ± 9.4 2 2 0 1 0 0 0 (0%)

Total 96 73.9 ± 9.3 68 12 7 4 2 1 9 (9.4%)

*, a patient with hepatocellular carcinoma and colon cancer; #, a patient with stomach and prostate cancer; &, a patient with stomach and
biliary tract cancer; +, a patient with stomach and lung cancer; PAVTE, peripheral arterial and venous thromboembolism, ACI, acute cerebral
infarction; ACS, acute coronary syndrome; DIC, disseminated intravascular coagulation; TMA, thrombotic microangiopathic anemia.

Embolisms (n = 2) and peripheral artery thrombosis (n = 1). Nine patients (9.4%) died
within 28 days after the CWA examination.

Table 2 shows the peak time and height of the CWA-APTT in patients with various
malignant neoplasms. The three peak times of the CWA-APTT were significantly longer
in patients with stomach cancer, biliary tract cancer, pancreatic cancer, esophageal cancer,
times of the sTF/FIXa among patients with various malignant neoplasms and healthy vol-
unteers. In contrast, the peak heights of the CWA-sTF/FIXa in patients with hepatocellular
carcinoma, colon cancer, stomach cancer, prostate cancer, lung cancer, pancreatic cancer,
esophageal cancer, and malignant lymphoma were significantly higher in comparison to
those in healthy volunteers (Table 3).

Table 2. CWA-APTT in patients with malignant neoplasm.

2nd DPT 1st DPT FFT 2nd DPH 1st DPH FFH

Cancer Type Seconds mm Absorbance

Hepatocellular carcinoma 32.7
(26.8–42.0)

35.2
(28.9–46.1)

38.2
(31.1–53.4)

883 **
(264–1981)

283 *
(139–801)

250 ***
(164–759)

Colon cancer 33.5
(31.2–39.3)

36.7
(33.8–42.7)

40.4
(36.2–45.9)

1235 **
(1024–1452)

460 **
(330–509)

387 **
(286–447)

Stomach cancer 34.7
(28.7–38.5)

37.5
(31.5–42.4)

40.0
(34.0–49.5) *

773
(450–1278)

307 *
(147–457)

279 ***
(172–480)

Prostate cancer 34.8
(29.5–60.7)

37.7
(32.2–65.4)

39.9
(34.4–67.8)

810
(647–1220)

317 **
(254–427)

296 **
(214–330)

Biliary tract cancer 34.0 *
(25.7–48.3)

37.0 *
(28.0–58.8)

40.6 *
(30.5–62.7)

784
(151–1789)

315
(90.7–544)

257 ***
(221–621)
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Table 2. Cont.

2nd DPT 1st DPT FFT 2nd DPH 1st DPH FFH

Cancer Type Seconds mm Absorbance

Lung cancer 34.0
(29.9–40.3)

36.6
(32.3–45.1)

39.5
(34.2–49.5)

752
(443–1004)

259
(132–450)

224 *
(178–480)

Pancreatic cancer 35.2 ***
(32.6–39.3)

38.5 ***
(36.2–42.8)

41.4 ***
(38.1–48.2)

973 *
(302–1422)

353 **
(254–559)

336 ***
(172–489)

Esophageal cancer 37.9
(31.4–44.7)

42.6
(34.1–50.0)

44.8 *
(36.9–51.9)

1215 **
(972–1572)

491 **
(418–595)

448 **
(317–477)

malignant lymphoma 36.1 *
(28.0–56.2)

39.7 *
(30.5–60.5)

43.9 **
(32.5–68.7)

863
(274–1361)

311 **
(157–577)

323 ***
(195–634)

Myelodysplastic syndrome 37.5 ***
(31.5–78.5)

40.0 **
(34.1–88.5)

46.9 **
(35.8–90.3)

712
(128–1144)

337
(157–577)

256 ***
(182–653)

Others 38.1
(31.1–44.5)

43.3 *
(33.8–52.1)

44.9 *
(35.8–55.6)

845
(596–1246)

328
(187–552)

319
(163–738)

Healthy volunteers 31.7
(29.6–35.7)

34.3
(32.1–39.7)

36.0
(34.0–41.1)

734
(453–975)

235
(137–316)

187
(131–256)

Data are shown as the median (range). CWA-APTT, clot waveform analysis-activated partial thromboplastin time; DPT, derivative peak
time; DPH, derivative peak height; FFT, fibrin formation time; FFH, fibrin formation height; *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared
to healthy volunteers.

Table 3. CWA-sTF/FIXa in patients with malignant neoplasm.

2nd DPT 1st DPT FFT 2nd DPH 1st DPH FFH

Cancer Type Seconds mm Absorbance

Hepatocellular carcinoma 77.9
(52.2–105)

95.6
(76.4–130)

95.9
(78.2–127)

48.0
(21.0–108)

97.9 ***
(49.9–270)

352
(205–938)

Colon cancer 83.2
(76.6–97.6)

101.5
(92.8–133)

102
(87.2–134)

68.9
(28.6–111)

139 **
(110–193)

543 *
(334–639)

Stomach cancer 82.2
(63.9–148)

97.0
(81.9–207)

97.2
(82.4–196)

46.3
(11.4–102)

106 *
(28.3–178)

370
(156–564)

Prostate cancer 72.7
(38.6–93.9)

91.8
(62.3–105)

89.6
(65.6–93.9)

46.4
(36.9–95.0)

80.9 *
(64.8–178)

455
(257–934)

Biliary tract cancer 83.0
(46.3–148)

103
(79.3–207)

102
(83.1–196)

70.5
(13.8–109)

111
(28.3–250)

364
(184–702)

Lung cancer 72.6
(66.6–115)

82.6
(76.4–146)

84.9
(78.0–152)

49.1
(26.6–84.1)

92.0
(46.1–181) *

314
(183–645)

Pancreatic cancer 80.9
(70.6–102)

102
(91.2–133)

103
(88.7–132)

36.0
(19.0–72.6)

121
(46.2–165) **

411
(163–602) *

Esophageal cancer 74.8
(73.6–85.0)

98.7
(90.9–113)

98.9
(89.9–115)

69.8
(43.5–112) *

173
(123–213) **

600
(464–645) **

malignant lymphoma 76.1
(50.0–147)

93.1
(72.0–178)

92.0
(74.9–174)

45.6
(17.3–173)

101
(62.5–304) ***

437
(246–751) **

Myelodysplastic syndrome 90.5
(52.2–189)

113
(60.2–237)

111
(61.2–225)

58.6
(9.8–69.8)

91.4
(33.6–222)

329
(265–734)

Others 106
(73.6–132) *

129
(84.8–171)

126
(84.2–169)

38.9
(15.1–47.7)

69.6
(36.4–189)

406
(285–832)

Healthy volunteers 76.9
(62.5–106)

95.3
(76.7–140)

94.6
(80.3–139)

37.4
(21.2–60.9)

67.8
(37.2–88.3)

341
(221–495)

Data are shown as the median (range). CWA-sTF/FIXa, clot waveform analysis-small amount tissue factor induced FIX activation assay;
DPT, derivative peak time; DPH, derivative peak height; FFT, fibrin formation time; FFH, fibrin formation height; *, p < 0.05; **, p < 0.01; ***,
p < 0.001 compared to healthy volunteers.
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Regarding the relationship between the CWA and thrombosis, patients treated with
anticoagulants were excluded. There were no significant differences in the three peak
times of the CWA-APTT among healthy volunteers, and malignant neoplasm patients
with or without thrombosis (Figure 2a). The three peak heights of the CWA-APTT were
significantly higher in malignant neoplasm patients with or without thrombosis than in
healthy volunteers. FFH was the only parameter that was significantly higher in those with
thrombosis than in those without (Figure 2b). The three peak times of the CWA-sTF/FIXa
were significantly longer in malignant neoplasm patients with or without thrombosis in
comparison to healthy volunteers (Figure 3a). The three peak heights of the CWA-sTF/FIXa
were significantly higher in those patients with or without thrombosis than in healthy
volunteers. The 2nd DPH and 1st DPH of the CWA-sTF/FIXa were significantly higher in
those patients with thrombosis than in those without thrombosis (Figure 3b).
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4. Discussion

In this study, 28.3% of patients with malignant neoplasm had thrombotic diseases,
suggesting that these patients were in a hypercoagulable state. Patients with malignant
neoplasm are frequently associated with thrombotic disorder and are considered to be
in a hypercoagulable state [21]. Trousseaus syndrome has been shown in multiple pub-
lished articles [22–26] to have a relationship between malignant neoplasms and thrombotic
disease [6]. The existence of multiple definitions of Trousseau’s syndrome, or cancer- asso-
ciated thrombosis, is due in part to the existence of multiple pathophysiologic mechanisms
that apparently contribute to the hypercoagulability associated with cancer [6]. The mecha-
nism underlying cancer-associated thrombosis reportedly involves the over-expression of
TF [22], cysteine proteinase [23], tumor hypoxia [24], carcinomas mucins [25], and oncogene
activation [26]. These risk factors overlap to cause thrombosis in patients with cancer [6].
Although the specific relationship between the type of neoplasm and thrombotic diseases
is not clear due to the small size of this study, cases of stomach cancer and hematological
malignancy with DIC [27,28], hepatocellular carcinoma with portal vein thrombosis [29,30],
and pancreatic cancer and brain tumor with venous thromboembolism [31] have been
previously reported. As cancer-associated thrombosis causes a fatal hypercoagulable state,
anticoagulation therapy should be administered to these patients. Therefore, the early
detection of a hypercoagulable state may be important.

Routine assays as APTT and prothrombin time are generally used for monitoring
anticoagulant or diagnosing bleeding disorders, but they are not used to evaluate the
hypercoagulability. Elevated D-dimer levels are useful to suspect venous thromboem-
bolism [32] but cannot evaluate the hypercoagulability. Although thrombin generation test
or thromboelastography may detect the hypercoagulability, these tests are not routine assay.
The peak height of 1st and 2nd DP of APTT was reported to able to evaluate hemostatic
ability [16]. The present study showed that the peak times of APTT which correspond
routine APTT, could not evaluate the hypercoagulability in patients with malignant neo-
plasm. Although the peak height of APTT was significantly high in patients with malignant
neoplasm, there were no significant difference in the peak height of APTT between these
patients with and without thrombosis. Therefore, APTT included the activator for contact
factors and massive phospholipid, suggesting that APTT cannot show a physiological
coagulation ability [16,18].

The CWA-sTF/FIXa assay uses plalet-rich plasma as physiological phospholipid
which does not activate contact factor and reflects platelet activation [16,18]. The prolonga-
tion of peak times in patients with malignant neoplasm reflect with anticoagulants. The
prolongation of peak time in CWA-APTT and sTF/FIXa due to anticoagulant were previ-
ously reported in major orthopedic surgery [17]. The peak time CWA-APTT or -sTF/FIXa
may reflect with anticoagulant, and the peak height may reflect physiological clotting
activity. The peak heights of CWA-sTF/FIXa show not only hypercoagulability in pa-
tients with malignant neoplasm but also possibility of prediction of thrombosis. One case
(Figure 1(I-c,II-c)) showed markedly elevated peak height before onset of acute cerebral
infarction. This case should be treated with anticoagulant.

5. Conclusions

Patients with malignant neoplasm are in a hypercoagulable state and often associated
with thrombosis. The peak height of CWA-APTT and sTF/FIXa was extremely high in
patients with malignant neoplasm, especially those with thrombosis, suggesting that the
peak height of CWA-sTF/FIXa may be useful to detect the hypercoagulability.
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