
Novel Immune-Related Gene-Based
Signature Characterizing an Inflamed
Microenvironment Predicts Prognosis
and Radiotherapy Efficacy in
Glioblastoma
Hang Ji1,2,3†, Hongtao Zhao1,2†, Jiaqi Jin2,4, Zhihui Liu2, Xin Gao1,2, Fang Wang1,2,
Jiawei Dong1,2, Xiuwei Yan1,2, Jiheng Zhang1,2, Nan Wang1,2, Jianyang Du5* and
Shaoshan Hu1,2*

1Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China, 2Department of Neurosurgery, The
Second Affiliated Hospital of Harbin Medical University, Harbin, China, 3Translational Medicine Research and Cooperation Center
of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China, 4The Key Laboratory of Myocardial Ischemia,
Ministry of Education, Harbin, China, 5Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First
Medical University, Jinan, China

Effective treatment of glioblastoma (GBM) remains an open challenge. Given the critical
role of the immune microenvironment in the progression of cancers, we aimed to develop
an immune-related gene (IRG) signature for predicting prognosis and improving the current
treatment paradigm of GBM. Multi-omics data were collected, and various bioinformatics
methods, as well as machine learning algorithms, were employed to construct and validate
the IRG-based signature and to explore the characteristics of the immune
microenvironment of GBM. A five-gene signature (ARPC1B, FCGR2B, NCF2, PLAUR,
and S100A11) was identified based on the expression of IRGs, and an effective prognostic
risk model was developed. The IRG-based risk model had superior time-dependent
prognostic performance compared to well-studied molecular pathology markers. Besides,
we found prominent inflamed features in the microenvironment of the high-risk group,
including neutrophil infiltration, immune checkpoint expression, and activation of the
adaptive immune response, which may be associated with increased hypoxia,
epidermal growth factor receptor (EGFR) wild type, and necrosis. Notably, the IRG-
based risk model had the potential to predict the effectiveness of radiotherapy. Together,
our study offers insights into the immune microenvironment of GBM and provides useful
information for clinical management of this desperate disease.
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INTRODUCTION

GBM is the most common and devastating primary brain malignancy in adults, with a median
overall survival (OS) of 14.6 months, and only 5.8% of patients survive beyond 5 years despite
standardized treatment (Jiang et al., 2016; Siegelin et al., 2021). Therapeutic regimens for progressive
or recurrent GBM are even limited, which virtually occur in most patients (Geraldo et al., 2019; Tan

Edited by:
Aniruddh Sarkar,

Georgia Institute of Technology,
United States

Reviewed by:
Mario Teo,

University of Bristol, United Kingdom
Mikio Hayashi,

Kansai Medical University, Japan
Luqing Tong,

Zhejiang University, China

*Correspondence:
Shaoshan Hu

Shaoshanhu421@163.com
Jianyang Du

jianyangdu@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Human and Medical Genomics,
a section of the journal
Frontiers in Genetics

Received: 04 July 2021
Accepted: 22 November 2021
Published: 17 January 2022

Citation:
Ji H, Zhao H, Jin J, Liu Z, Gao X,
Wang F, Dong J, Yan X, Zhang J,

Wang N, Du J and Hu S (2022) Novel
Immune-Related Gene-Based

Signature Characterizing an Inflamed
Microenvironment Predicts Prognosis

and Radiotherapy Efficacy
in Glioblastoma.

Front. Genet. 12:736187.
doi: 10.3389/fgene.2021.736187

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7361871

ORIGINAL RESEARCH
published: 17 January 2022

doi: 10.3389/fgene.2021.736187

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.736187&domain=pdf&date_stamp=2022-01-17
https://www.frontiersin.org/articles/10.3389/fgene.2021.736187/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.736187/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.736187/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.736187/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.736187/full
http://dict.youdao.com/w/therapeutic%20regimen/#keyfrom=E2Ctranslation
http://creativecommons.org/licenses/by/4.0/
mailto:Shaoshanhu421@163.com
mailto:jianyangdu@126.com
https://doi.org/10.3389/fgene.2021.736187
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.736187


et al., 2020). Currently, there are well-studied biomarkers
effectively predicting prognosis and sensitivity to treatment,
including isocitrate dehydrogenase (IDH) mutation, co-
deletion of chromosome arms 1p and 19q, mutations of
alpha thalassemia/mental retardation syndrome X-linked
(ATRX), telomerase reverse transcriptase gene mutation,
and methylation of O6-methylguanine-DNA
methyltransferase promoter (Jiang et al., 2016). As effective
treatment of GBM remains formidable, the development of
novel tumor biomarkers may help improve the efficacy of
current treatment modalities.

The role of the immune system in tumorigenesis and evolution
is receiving increasing attention (Chen and Mellman, 2013).
Unlike the previous dogma that the central nervous system is
an immune-privileged region, the role of the immune system in
the progression of GBM has also been appreciated (Engelhardt
et al., 2017; Quail and Joyce, 2017). Recent studies have
systematically revealed immune “afferent” and “efferent” arms
in the central nervous system (CNS) as the basis for the
emergence of the anti-tumor immune response (Engelhardt
et al., 2017; Qi et al., 2020). Besides, a clinical trial has
revealed the association of CD8 T-cell infiltration with
improved prognosis in GBM patients, further confirming the
survival benefit of an effective anti-tumor immune response
(Yang et al., 2010). In response, multiple immune suppressive
mechanisms are hijacked by GBM cells for immune evasion (Ahn
et al., 2013). However, the failure of interferon-gamma, a potent
immune activator, to benefit GBM patients and the association of
a fraction of genemarkers that efficiently characterize the immune-
mediated tumor elimination with poor prognosis in GBM patients
are highly suggestive of the uniqueness of the immunological
property of GBM (Wolff et al., 2006; Qian et al., 2018; Wang
et al., 2019). Nowadays, several immunotherapies, including
immune checkpoint blockade (ICB) therapy, have dramatically
extended the survival of a fraction of cancer sufferers (Pardoll,
2012; Borghaei et al., 2015; Larkin et al., 2015), while GBM
possesses an incredibly low response rate to ICB (Filley et al.,
2017; Zhao et al., 2019). Therefore, a comprehensive exploration of
the impact of immune genes on the survival of GBM patients
would be crucial for an in-depth understanding of the
characteristics of the immune microenvironment of GBM and
the development of clinically valuable tumor biomarkers.

In this perspective, we have identified five immune-related
genes (IRGs) and developed a risk model of valid prognostic
value. Our IRG-based risk model performed superiorly in time-
dependent survival prediction compared to traditional molecular
pathology parameters. In addition, we found that the tumor
microenvironment in the high-risk group was characterized by
neutrophil infiltration, increased expression of immune
checkpoints, and activation of the adaptive immune response
and that these inflamed phenotypes may be implicated in intra-
tumor hypoxia, vasculature disruption, and necrosis. Moreover,
the IRG-based risk model had the potential to determine the
effectiveness of radiotherapy. In a word, this work offers insights
into the immune microenvironment of GBM and provides
potentially valuable information for the treatment of this
desperate disease.

MATERIALS AND METHODS

Data Collection and Preprocessing
The bulk mRNA sequencing data of GBM with corresponding
demographics were included. Of these, 166 cases retrieved from
The Cancer Genome Atlas (TCGA) database (https://www.
cancer.gov/) were used as the training dataset, and the
remaining cases retrieved from the Chinese Glioma Genome
Atlas (CGGA) database (mRNA-seq 325, mRNA-seq 693, and
microarray 301, http://www.cgga.org.cn/) were used as the
validation dataset. The mRNA-seq data were TPM normalized,
and the microarray dataset was log-transformed. A total of 2,498
IRGs were retrieved from the ImmPort Portal (https://www.
immport.org/). The somatic mutation profiles and copy
number variation (CNV) files were retrieved from the TCGA
database.

Construction and Validation of the
IRG-Based Risk Model
An unsupervised class discovery technique was employed to find
stable clusters based on the top 300 IRGs ranked by their mean
absolute deviation (MAD) values using the R package
“ConsensusClusterPlus” (Supplementary Material S1)
(Wilkerson and Hayes, 2010). The clustering method was set
as “km” (k-means), and the maximum evaluated K was 6. The
optimal number of clusters was determined using the “proportion
of ambiguous clustering (PAC)” method.

The weighted gene coexpression network analysis (WGCNA)
was performed to identify genes characterizing an active immune
response of GBM based on the R package “WGCNA” (Langfelder
and Horvath, 2008). Module Eigenges (ME) was defined as the
first principal component of each gene module and served as the
representative for all genes in each module. Gene significance
(GS) represents the degree of linear correlation between module
gene expression and sample features. Genes with weighted
correlation coefficients over 0.8 were extracted for further
analysis.

The univariate and multivariate Cox regression analyses were
performed sequentially to identify genes with prognostic
significance as well as to determine their regression
coefficients. Genes with p-values <0.05 in the univariate
regression analysis were selected for multivariate regression
analysis. The coefficients obtained from the regression analysis
were used to yield the following risk score equation:

risk score � ∑
n

k�1
regression coefficient × gene expression value

Samples were split into the high- and low-risk groups by
the median value of the risk score. The Kaplan–Meier (K-M)
plots were generated based on the R package “survival”, and
the independent prognostic value of the risk score was
evaluated by univariate Cox regression analysis. The time-
dependent predictive power of the risk model was evaluated
using the receiver operative curve (ROC) and the
corresponding area under the curve (AUC). The
independent prognostic value of the risk group, as well as
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clinicopathological parameters, was evaluated using the
univariate Cox regression analysis.

Exploration of the Characteristics in the
Tumor Immune Microenvironment
The differential gene expression profile was conducted
between subgroups using the R packages “limma” and
“edgeR” (Robinson et al., 2010; Ritchie et al., 2015). The
absolute value of logFC >1.0 and adjust p-value <0.05 were
set as the cutoff. Functional enrichment analysis was
performed based on the R package “clusterProfiler” and the
online tool The Database for Annotation, Visualization and
Integrated Discovery (DAVID, version 6.8, https://david.
ncifcrf.gov/) (Huang et al., 2009a; Huang et al., 2009b). The
Gene Ontology (GO) terms including biological process (BP),
cell component (CC), molecular function (MF), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Biocarta
pathways were involved. The false discovery rate (FDR) < 0.05
was set as the cutoff. Gene Set Enrichment Analysis (GSEA)
was employed to identify differentially activated signaling
pathways (Subramanian et al., 2005). Gene sets were
permuted 1,000 times. Normalized enrichment scores (NES)
were calculated, and FDR < 0.05 was set as the cutoff. To
explore immunological characteristics, 103 gene sets
involved in the inflammation/innate immune response,
antigen presentation, CD8 T cell function, and cytotoxicity
were retrieved from the Molecular Signatures Database
(MSigDB, v7.4, http://software. broadinstitute.org/gsea/
msigdb/index.jsp) (Supplementary Material S1), and the
ssGSEA score of the samples was calculated to assess the
activation of specific signaling pathways (Liberzon et al.,
2011; Hänzelmann et al., 2013). The fraction of immune
cells was estimated using the CIBERSORT algorithm
(Newman et al., 2015). Samples with p-values over 0.05
were filtered. Tracking tumor immunophenotype (TIP) is a
system to quantify the activity of each step of the anti-tumor
immune response (Xu et al., 2018). The anti-tumor immune
response was conceptualized as seven stepwise events
including 1) release of cancer cell antigens, 2) cancer
antigen presentation, 3) priming and activation, 4)
trafficking of immune cells to tumor, 5) infiltration of
immune cells into tumor, 6) recognition of cancer cell by
T cells, and 7) killing of cancer cells. The TIP score of each
stepwise event was evaluated using the R script of TIP.

The Tumor Genomic Alterations
Somatic mutation data were analyzed using the R package
“maftools” (Mayakonda et al., 2018). The differentially
mutated genes were calculated using the functions
“mafComapre.” The tumor mutational burden (TMB) was
defined as the total number of somatic mutations including
common substitutions, insertions, and deletions per megabase,
and its calculation has been described before (Chalmers et al.,
2017). Significant amplifications and deletions of somatic copy
numbers were detected using GISTIC 2.0 (Mermel et al., 2011).
FDR-q value ≤ 0.05 was set as the cutoff.

Prediction of ICB Responsiveness
The tumor responsiveness to the ICB therapy was assessed using
the machine learning algorithm TIDE, which is a computational
method to model the induction of T cell dysfunction and the
prevention of T cell infiltration into tumor through analyzing the
expression of specific gene signatures in the tumor expression
profile (Jiang et al., 2018). Further, the predicted tumor response
to ICB was evaluated by an unsupervised subclass mapping
method that is designed to determine correspondence or
commonality of subtypes found in multiple independent
datasets generated on different platforms (Hoshida et al., 2007).

Statistics
All statistical analysis was conducted using R software (version
4.0.2). The differences in gene expression, ssGSEA score, TIP
score, and the fraction of immune infiltration were assessed using
a two-tailed Wilcoxon’s test. Univariate and multivariate Cox
regression analyses were conducted to establish Cox proportional
hazard models. Differences in clinicopathological parameters
between the high- and low-risk groups were measured using
the Wilcoxon test and Fisher’s exact test. The K-M analysis and
log-rank analyses were employed to evaluate differences in OS.
The independent prognostic value of the risk score was assessed
using univariate Cox analysis. Pearson correlation analyses were
conducted to estimate the correlation between the risk score and
the fraction of immune infiltration. The association between
epidermal growth factor receptor (EGFR) mutations and
immune infiltration was assessed using logistic regression
analysis. p < 0.05 was considered statistically significant. We
marked p < 0.05 as *, p < 0.01 as **, and p < 0.005 as ***.

RESULTS

The IRG-Based GBM Stratification
To obtain GBM subgroups with potential distinct immunological
properties, samples were stratified according to the expression of
IRGs. TheMAD value of 1,288 IRGs with an intersection with the
TCGA profile was calculated; thereafter, 166 samples with
survival information were stratified based on the expression of
top 300 IRGs in terms of MAD value, and two subgroups [termed
group 1 (n � 87) and group 2 (n � 79)] were identified
(Figure 1A). Then, we calculated the differentially expressed
genes (DEGs, group 2 vs. group 1), performed functional
enrichment analysis, and identified inflammatory response,
immune response, innate immune response, and neutrophil
chemotaxis as the primarily enriched BP, and receptor activity,
cytokine activity, and chemokine activity as the main MF
(Supplementary Figure S1) implying a difference in immune
response between the two groups. Consistently, GSEA analysis
revealed that KEGG signaling pathways involved in immune
response such as viral protein interaction with cytokine
receptor, IL-17 signaling pathway, cytokine–cytokine receptor
interaction, chemokine signaling pathway, and tumor necrosis
factor (TNF) signaling pathway were significantly enriched in
group 2 (Figure 1B), indicating a potentially inflamed
microenvironment. Besides, the fraction of immune infiltration
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was calculated; group 2 was characterized by increased infiltration
of B cell memory, T cell CD4 memory activated, Treg, monocyte,
and neutrophil, while group 1 had increased infiltration of T cell
CD4 memory resting and natural killer (NK) cell (Figure 1C). In
particular, quantitative analysis of the activity of the anti-tumor
immune response using TIP found that group 2 had increased
tumor antigen releasing (step1) and immune cell recruitment
activity (step 4) (Figure 1D) but not the infiltration of the
immune cell into the tumor (step 5), tumor cell recognition
(step 6), and elimination (step 7). In this way, the IRG-based
classification yielded two subgroups of GBM, one of which (group
2) contained more inflammatory features in the
microenvironment including the activation of immune-related
signaling pathways and increased infiltration of neutrophils.

Construction of the IRG-Based Risk Model
To identify signature genes characterizing such immune-
inflamed microenvironment with prognostic significance, the
gene expression profile of GBM was divided into 11 modules
with functional relevance by WGCNA. Module “magenta” was
significantly differentiated by subgroups and highly correlated
with group 2 (cor � 0.65) (Supplementary Figures S2A, B).
Functional enrichment analysis of the 608 genes included in
“magenta” showed that they were mainly involved in leukocyte
activation and immune activation (BP) as well as signaling
pathways associated with immune cell activation and
differentiation (biocarta) (Supplementary Figure S2D). Next,
409 DEGs upregulated in group 2 and the 161 genes that had a
weighted correlation coefficient over 0.8 with group 2 were

intersected, and 126 genes were obtained as candidate genes
for the construction of the risk model (Supplementary Figure
S2C). The univariate and multivariate Cox regression analysis
identified S100A11, PLAUR, NCF2, FCGR2B, and ARPC1B to be
prognostically significant (Table 1).

Increased Risk Score Predicts Poor
Outcome
We first examined the relationship between the risk score and the
well-studied clinicopathological and molecular parameters of
GBM. We found that the mesenchymal subtype had a
significantly increased risk score (p < 0.001) (Figure 2A),
which has the poorest prognosis among the four
transcriptional subtypes (Ceccarelli et al., 2016). Besides, the
risk score was significantly increased in both IDH wild-type
and ATRX wild-type tumors (p < 0.01), corroborating the
association between the risk score and poor prognosis.
Moreover, the risk score was moderately and significantly
correlated with age and necrosis percent of the tissue slide
(Figures 2B, C), two other factors associated with poor
prognosis in GBM patients (Tan et al., 2020).

Thereafter, samples were split into the high- and low-risk
groups based on the median of the risk score (Table 2). The
distribution and status of OS showed that GBM patients with
increased risk scores had unfavorable prognoses
(Supplementary Figure S3A). Likewise, the K-M plots
showed that high-risk scores predicted a significantly
reduced OS in both cohorts (p < 0.05 in the TCGA cohort,

FIGURE 1 | (A)Consensus clustering of the GBM samples based on the expression of IRGs, and empirical cumulative distribution function (CDF) corresponding to
the entries of consensusmatrices. (B)GSEA analysis of top pathways enriched in group 1 and group 2, respectively. (C) Immune infiltration is estimated by CIBERSORT.
Cell with an estimated fraction of 0 in more than half of the samples was filtered. (D) The anti-tumor immune response was divided into seven stepwise events, and the
activity of each was assessed using the TIP system. *** in Step 6 suggests that group 1 has a significantly higher TIP score than group 2, and the rest indicate higher
in group 2.
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p < 0.01 in the CGGA325 cohort) (Figure 3A), as well as in
two other independent cohorts (Supplementary Figure S3B).
The time-dependent predictive power of the risk model was
also assessed. The 1-, 2-, 3-, and 4-year AUC values of the risk
stratification were 71.24, 63.16, 73.59, and 73.07 in the TCGA
cohort, and 59.15, 68.45, 66.45, and 73.20 in the CGGA
cohort, performing better than other biomarkers including
molecular subtype, IDH mutation status, gender, and age
(Figure 3B). Further, the independent prognostic value of
the risk score for different populations was determined.
Univariate Cox regression analysis found that a high risk

score was indicative of an unfavorable prognosis for the total
population (HR � 1.55 and 1.74 in the TCGA and CGGA325
cohort) (Figure 3C). In the TCGA cohort, a high risk score
was an independent risk factor for female patients and those
aged less than 60 years. In the CGGA325 cohort, a high risk
score was an independent prognostic factor for primary and
recurrent GBM, male, patients aged less than 60, MGMT
promoter methylated patients. Nomogram clearly showed
that the high-risk group suggests reduced total score and
survival (Figure 3D). In sum, these results suggested that
the IRG-based risk model had a reliable prognostic value, with

TABLE 1 | Identification of signature genes and their regression coefficients.

Gene symbol Hazard.Ratio.x CI95.x P.value.x Hazard.Ratio.y CI95.y P.value.y Regression coefficient

ARPC1B 1.37 1.1–1.72 0.006 3.05 1.31–7.11 0.01 0.0184
FCGR2B 1.2 1.05–1.37 0.008 1.56 1.02–2.37 0.04 0.0491
NCF2 1.28 1.04–1.57 0.018 3.02 1.3–7.01 0.01 −0.0030
PLAUR 1.44 1.19–1.73 0 2.96 1.44–6.09 0.003 0.4339
S100A11 1.23 1.01–1.51 0.041 0.41 0.22–0.76 0.005 −0.1814

FIGURE 2 | (A) Association of the risk score with transcriptome subtype, IDH mutation, and ATRX mutation status. Correlation between the risk score and (B) age
and (C) necrosis. ME, mesenchymal; PN, proneural; CL, classical; NE, neural.
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high-risk scores reliably indicating a poor prognosis of GBM
patients.

Immunological Characteristics Associated
With the IRG-Based Risk Model
To investigate the immunological differences between the high-
and low-risk groups, the activation of immune-related signaling
pathways was assessed. One hundred three gene sets involved in
the inflammation and innate immune response, antigen
presentation, CD 8 T cell activation, and cytotoxicity were
retrieved from the MSigDB database. The ssGSEA score of
these signaling pathways increased with the risk score,
indicating the immune-activated status of the high-risk group
(Figure 4A). Given that immune cells are key players in the
immune response (Newman et al., 2015), the immune infiltration
fraction was assessed. Consequently, neutrophil was positively
correlated with the risk score in both cohorts (cor > 0.3) and
significantly enriched in the high-risk group (p < 0.001) (Figures
4B, C), suggesting an inflamed microenvironment of the high-
risk group. Besides, GSEA analysis found the enrichment of
pathways including inflammatory responses, antigen
presentation, CD8 T cell activation, and NK cell-mediated
cytotoxicity in the high-risk group (Figure 4D), indicating the
activation of the adaptive immune response. Further, there are
well-established mRNA metrics reflecting the T-cell inflamed
immune microenvironment and the cytolytic activity of CD8
T cell and NK cell (Rooney et al., 2015; Danaher et al., 2018).
Correlation analysis found a moderate and significant correlation
between the risk score and the two metrics (Supplementary

Figure S4), corroborating the emergence of the adaptive
immune response. Therefore, a high risk score was suggestive
of an inflamed tumor microenvironment and the activation of the
adaptive immune response.

Genomic Alterations Associated With the
IRG-Based Risk Stratification
Given the profound impact of tumor genomic variation on the
tumor-immune interaction, we explored the genomic
alterations associated with the IRG-based risk stratification.
PTEN, TP53, TTN, EGFR, and MUC16 were the top five
mutated genes, with a predominance of a missense mutation
(Supplementary Figure S5A). We noted some mutations that
have been reported to affect immune–tumor interactions; for
instance, the mutation frequency of EGFR ranged from 15% in
the high-risk group to 39% in the low-risk group, while the
frequency of mutations in TP53 and PTEN ranged from 36%
to 33% in the high-risk group to 29% and 25% in the low-risk
group (Figure 5A). Fisher’s exact test found a significantly
increased mutation of GRM3, NF1, and RB1 in the high-risk
group, and EGFR, TRPM2, and AHNAK2 in the low-risk
group (Figure 5C). Among these, EGFR mutation was
associated with increased plasma cell infiltration (two-tail
Wilcoxon test, p � 0.05) (Supplementary Figure S5B).
Besides, investigating co-occurrence and mutually exclusive
mutations found EGFR and COL6A3 as a co-occurrence gene
pair in the low-risk group (Figure 5B), the latter is involved in
the production of type IV collagen and is associated with the
strength of the vessel wall (Wu et al., 1996). Given the

TABLE 2 | Association between the risk group and prevalent clinicopathological parameters.

Term High-risk group (n = 83) Low-risk group (n = 83) p-value

Age 60.54 (±13.23) 58.07 (±13.87) 0.264
Gender
Male 51 (61.45%) 56 (67.47%)
Female 32 (38.55%) 27 (32.53%) 0.516

IDH status
Wild type 77 (92.77%) 71 (85.54%)
Mutant 2 (2.41%) 9 (10.84%) 0.056

1p19q co-deletion
co-del 0 0
Non-codel 81 (97.59%) 79 (95.18%) NA

MGMTp methylation
Methylated 22 (26.51%) 33 (39.76%)
Unmethylated 37 (44.58%) 37 (44.58%) 0.287

TERTp status
Wild type 1 (1.20%) 4 (4.82%)
Mutant 16 (19.28%) 16 (19.28%) 0.348

ATRX status
Wild type 72 (86.75%) 73 (87.95%)
Mutant 2 (2.41%) 7 (8.43%) 0.17
Tumor purity 0.668 (±0.201) 0.806 (±0.126) 2.14E-06

Subtype
CL 11 (13.25%) 40 (48.19%)
ME 59 (71.08%) 14 (16.87%)
NE 3 (3.61%) 4 (4.82%)
PN 6 (7.23%) 13 (15.66%) 2.81E-11
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association of EGFR wild type with disrupted vasculature and
inflamed microenvironment (Segura-Collar et al., 2021), and
the relatively hypoxic microenvironment and hyper-
angiogenesis activity of the high-risk group
(Supplementary Figure S5D), the inflamed phenotype of
the microenvironment in the high-risk group may be
associated with EGFR wild-type-mediated aberrant
angiogenesis and hypoxia, which partially explained the
correlation between the risk score and necrosis.

In terms of CNV, the high- and low-risk groups shared recurring
CNVs including 7p11.2 amplification and 9p21.3 deletion, whereas
the low-risk group contained an additional significant focal
amplification at 12q14.1, leading to the increased expression of
CDK4, TSPAN31, MARCH9, and AGAP2 that located at this
region (Figure 5D and Supplementary Figure S5C). Despite the
individual genemutations and chromosome alterations, the statistical
indicators that related to immune response were also explored. The

high-risk group had significantly increased somatic copy number
amplification and deletion burden, while the TMB was comparable
between the two groups (Figures 5E, F), consistent with our
speculation that necrosis may be the source of the activated
immune response in the high-risk group.

Correlation of IRG-Based Risk Stratification
With the Efficacy of ICB, Radiotherapy, and
Chemotherapy
The immune phenotype of tumors is related to their
responsiveness to ICB therapy (Chen and Mellman, 2017); we,
therefore, assessed the ICB responsiveness of the high- and low-
risk groups. The high-risk group had significantly increased
expression of PD1 and CTLA4 as well as their ligands (PD-
L1/2, CD80/CD86) (Figures 6A, C). Besides, the primary
immunodeficiency pathway (KEGG), CTLA4 pathway

FIGURE 3 | (A) The distinct overall survival between the high- and low-risk groups. (B) The time-dependent predictive power of the risk model and other prevalent
clinicopathological parameters. PRS type: primary, recurrent, secondary type of the tumor. (C) The independent prognostic value of the risk score. (D) Nomogram
demonstrating time-dependent survival rate for patients with different pathological parameters in clinical practice.
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(Biocarta), and cancer immunotherapy by PD1 blockade (WP)
were highly enriched in the high-risk group (Supplementary
Figure S6), indicating that immune checkpoints play a role in
GBM immune evasion. Tumor response to anti-PD1 and anti-
CTLA4 therapies was predicted using TIDE and further validated
using SubMap. Consequently, a high risk score failed to predict
response to anti-PD1 (Bonferroni corrected p � 0.160 and 0.128
in the TCGA and CGGA cohort) or anti-CTLA4 treatment
(Bonferroni corrected p � 0.208 and 0.120, respectively)
(Figures 6B, D).

In addition, we assessed the relationship between the risk
stratification and the effectiveness of radiotherapy and
chemotherapy. Samples were firstly split into two groups
according to their radiotherapy status. For patients receiving
radiotherapy, an increased risk score suggested a significantly
poor prognosis (p � 0.013 and 0.0022 in the TCGA and CGGA
cohort, respectively), while the prognostic significance of the risk
stratification for patients without radiotherapy was not significant
(Figure 7A), indicating that the IRG-based risk model had the
potential to predict the efficacy of radiotherapy. Similarly, we

grouped samples according to the chemotherapy they received. In
the TCGA cohort, lower risk scores for patients treated with
temozolomide (TMZ) or adjuvant TMZ predicted increased OS
(p � 0.038 and 0.048 for patients receiving TMZ and adjuvant
TMZ in the TCGA cohort) (Figure 7B). However, the conclusion
was not validated in the validation dataset (Figure 7B),
suggesting the need to include more samples and to further
differentiate chemotherapy modalities to confirm the
prediction of chemotherapy efficacy by the risk stratification.

DISCUSSION

Effective treatment of GBM remains challenging in the modern
era. Recently, high-throughput sequencing technology and
bioinformatics have helped to identify various biomarkers of
clinical significance. Inspired by previous achievements, we
have identified a five-gene signature based on the expression
of IRGs which showed a solid prognostic value. Besides, we have
revealed a relevance between the IRG-based risk stratification and

FIGURE 4 | (A) The ssGSEA scores of 103 signaling pathways involved in the inflammation/innate immune response, antigen presentation, CD8 T cell activation,
and cytotoxicity. (B) Correlation analysis of the 22 immune cells estimated by CIBEROST with the risk score. (C) The fraction of neutrophils in the high- and low-risk
groups. (D) GSEA analysis of pathways involved in the anti-tumor immune response.
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the inflamed tumor microenvironment and that hypoxia,
abnormal angiogenesis, and necrosis may be implicated in the
activation of the anti-tumor immune response. Despite the fact
that our risk model failed to predict the ICB responsiveness and
the effectiveness of radiotherapy, it was a potential identifier for
the efficacy of radiotherapy. Taken together, our study offers
insights into the immune microenvironment of GBM and
provides valuable information for improving the current
treatment paradigm for this desperate disease.

In this study, we have developed an IRG-based five-gene
signature for GBM including ARPC1B, FCGR2B, NCF2,
PLAUR, and S100A11 that are involved in the immune

response. ARPC1B encodes a subunit of the human Arp2/3
complex involved in the dynamic of the cytoskeleton and the
deficiency or loss of which is associated with immunodeficiency
(Randzavola et al., 2019; Papadatou et al., 2021). Besides, the
mutation of ARPC1B is involved in a novel syndrome
characterized by immunodeficiency and spontaneous
inflammation that may be attributed to Treg and NK cell
dysfunction (Volpi et al., 2019). FCGR2B encodes a receptor
for the immunoglobulin gamma complex and regulates the
phagocytosis and antibody production of B cells (Xiu et al.,
2002). Alterations in the FCGR2B gene are associated with
diseases such as systemic lupus erythematosus and rheumatoid

FIGURE 5 | (A) The top mutated gene in the high- and low-risk group, respectively. (B) Co-occurring and mutually exclusive gene pairs. (C) Significantly
differentially mutated genes. (D) Significant amplifications and deletions in tumor chromosome. (E, F) The tumor mutation burden and somatic number alteration load
between the high- and low-risk groups.
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arthritis, and its upregulation reduces the sensitivity of lymphoma
to rituximab (Lee et al., 2015; Meister et al., 2015; Kim et al.,
2016). NCF2 encodes a subunit of NADPH oxidase in
neutrophils, inhibition of which may suppress glioma

progression. The production of reactive oxygen species (ROS)
by neutrophils is primarily dependent on NADPH, meaning that
abnormalities in NADPHmay lead to severe dysregulation of the
inflammatory response (Xu et al., 2019a; Zeng et al., 2019).

FIGURE 6 | The expression of PD1 and CTLA4, as well as their ligands (PD-L1, PD-L2, CD80, and CD86) in the (A) TCGA and (C) CGGA325 cohort, respectively.
The predicted responsiveness to ICB therapy in the (B) TCGA and (D) CGGA325 cohort, respectively.
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PLAUR is associated with the malignancy and M2 macrophage
infiltration of glioma and acts as an unfavorable prognostic
predictor, and the association of PLAUR expression with
macrophage infiltration is not limited to tumors (Cancello
et al., 2011; Zeng et al., 2021). Besides, the dysregulation of
PLAUR is involved in the progression of colon cancer and
gefitinib resistance of non-small cell lung cancer (Li et al.,
2013; Zhou et al., 2018). S100A11 is an oncogene and encodes
a protein that participants in the cell cycle and differentiation.
The upregulation of S100A11 promotes the progression of GBM
in an NF-kappa B-dependent manner (Tu et al., 2019). Also,

S100A11 is involved in the development of hepatocellular
carcinoma through inciting inflammation (Sobolewski et al.,
2020), substantiating its pro-tumoral role.

In addition to predicting prognosis, immune-related
biomarkers are also effective indicators of improved
responsiveness to immunotherapy through association with
immune-related features (Xu et al., 2019b; Huang et al., 2020;
She et al., 2020). ICB is devoted to normalizing the anti-tumor
immune response by relieving the “redundant” suppression of
CD8 T cells by the tumor microenvironment (Pardoll, 2012).
Although it can greatly extend the OS of patients, only a small

FIGURE 7 | The relationship between risk stratification and the efficacy of (A) radiotherapy and (B) chemotherapy. RT, radiotherapy; TMZ, temozolomide; CT,
chemotherapy.
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proportion of patients respond to treatment, especially in GBM.
Tumors already possessing a T-cell inflamed phenotype may
underlie the efficacy of the treatment, and PD-L1 expression,
TMB/TNB, microsatellite instability, and interferon-gamma are
also associated with the response to ICB. The ideal conditions
would perhaps be for activated CD8 T cells to be suppressed
primarily by immune checkpoints, while this is almost
inconceivable in GBM. The CNS is compatible with a plethora
of immunosuppressive mechanisms to avoid damage caused by
excessive immune responses, among which IL10, TGF-beta,
VEGF, and COX are often hijacked by tumor cells to evade
immune attack, leading to the extremely low response rate of
GBM to ICB (Ahn et al., 2013).

There are several well-studied biomarkers related to the
immune status and immune microenvironment for the
prediction of tumor prognosis and responsiveness to
immunotherapy. Cytolytic activity (CYT) is an mRNA metric
including granzyme A (GZMA) and perforin (PRF1), which are
vital in the cytolytic activity of CD8 T cells and NK cells (Rooney
et al., 2015). Impressively, CYT was positively correlated with a
variety of factors that enhance tumor immunogenicities, such as
oncogenic viruses and neoantigens, and its expression suggested
an improved prognosis for a variety of tumors but was reversely
correlated with OS in glioma patients, possibly due to the
immune response-mediated peri-tumoral edema (Rooney
et al., 2015; Wang et al., 2019). Likewise, interferon-gamma
(IFNG) response genes are another well-studied mRNA metric
for evaluating the potential anti-tumor activity (Ayers et al.,
2017). It has been shown that the expression of IFNG gene
signature (including IDO1, CXCL10, CXCL9, HLA-DRA,
STAT1, and IFNG), as well as expanded IFNG gene signature
(including 18 genes involved in the IFNG response and major
downstream pathways), characterizes the T-cell inflamed
phenotype well, acts as an effective indicator for screen
potential responders to ICB therapy, and is a marker of
improved prognosis for most tumors, except for gliomas
(Danaher et al., 2018; Qian et al., 2018). Besides, another four-
gene signature associated with immune pathways and the
expression of immune checkpoints also predicts a poor
prognosis for patients with lower-grade glioma (Xiao et al.,
2020). These results may suggest that excessive immune
responses do not benefit glioma patients, even if more tumor
cells can be eliminated, in line with our IRG-based gene signature
to characterize immune activation while being associated with
poor prognosis.

GBM is known as a “cold tumor” with less mutational and
neoantigen burden and T lymphocyte infiltration. TMB reflects
the production of tumor-associated antigens; while we did not
observe a significant difference in TMB between the high- and
low-risk groups, an increased tumor antigen releasing has been
found in the high-risk group by the TIP system. In addition to the
inadequate vascular system and blood–brain barrier in GBM,
about 15% of the interstitial fluid wrapped in soluble antigens
leaks from brain parenchyma into the cerebrospinal fluid, which
in turn is drained into the cervical lymph nodes (Engelhardt et al.,
2017). Such an immune “afferent” and “efferent” system,

although inefficient, also provides the prerequisite for the
activation of the antitumor immune response, and thus the
infiltration of CD8 T cells is associated with improved
prognosis in patients with newly diagnosed GBM (Yang et al.,
2010). Alternatively, necrosis may have induced a violent
inflammatory response accompanied by a massive release of
cellular contents, and mutations in EGFR may lead to defects
in pericyte coverage, which in turn exacerbates hypoxia and
necrosis and partially explains the benefit of the adaptive
immune response; a spring-up of a massive inflammatory
response hardly offsets the damage caused by inflammation
(Segura-Collar et al., 2021).

In conclusion, we have constructed an immune-related five-
gene signature with solid prognostic value, and there was
significant immunological heterogeneity between the high- and
low-risk groups. To correct for bias, biological experiments, as
well as clinical trials, are needed to validate these results.
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