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Tumor necrosis factor (TNF) has been firmly established as a pathogenic factor in heart
failure, a significant socio-economic burden. In this review, we will explore the role of
other members of the TNF/TNF receptor superfamily (TNFSF/TNFRSF) in cardiovascular
diseases (CVDs) focusing on TWEAK and its receptor Fn14, new players in myocardial
remodeling and heart failure.TheTWEAK/Fn14 pathway controls a variety of cellular activi-
ties such as proliferation, differentiation, and apoptosis and has diverse biological functions
in pathological mechanisms like inflammation and fibrosis that are associated with CVDs.
Furthermore, it has recently been shown that the TWEAK/Fn14 axis is a positive regulator
of cardiac hypertrophy and that deletion of Fn14 receptor protects from right heart fibrosis
and dysfunction. We discuss the potential use of the TWEAK/Fn14 axis as biomarker for
CVDs as well as therapeutic target for future treatment of human heart failure based on
supporting data from animal models and in vitro studies. Collectively, existing data strongly
suggest the TWEAK/Fn14 axis as a potential new therapeutic target for achieving cardiac
protection in patients with CVDs.
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INTRODUCTION
Most cardiovascular diseases (CVDs) result in heart failure due to
the death of heart muscle cells, the cardiomyocytes. This leads to
pathological remodeling, which triggers additional cardiomyocyte
loss resulting finally in a diminished quality of life and inevitable
in heart failure (1, 2). Thus, the most efficient way to prevent
most CVDs appears to be preventing cardiomyocyte loss. One aim
in cardiovascular medicine is therefore monitoring and targeting
risk factors. These efforts resulted, for example, in the addition
of antiplatelet therapy (3–6), introduction of reperfusion therapy
with thrombolysis (7, 8), and acute percutaneous coronary inter-
vention (9). The current optimal treatment regimen after the dis-
covery that neurohormones contribute to the progression of heart
failure is the use of angiotensin-converting-enzyme-inhibitors or
angiotensin receptor blockers, beta-blockers, aldosterone antago-
nists as well as implantable automatic cardiac defibrillators. How-
ever, despite these advances, the prevalence of heart failure has
increased in the last decades, remaining one of the leading causes
of death worldwide (10, 11). This suggests that this treatment reg-
imen does not target all pathological mechanisms in heart failure.

Already two decades ago, the observation of increased tumor
necrosis factor (TNF) levels in patients with heart failure linked
inflammation to CVDs (12). Meanwhile, a large number of reports
have established the essential role of inflammatory cytokines in
the progression of heart failure contributing to the processes of
cardiac hypertrophy, fibrosis, and apoptosis (13–15). Recently,
other TNFSF/TNFRSF members than TNF have been implicated
in the pathophysiology of heart failure. Here, we review the role of
the members of the TNFSF/TNFRSF in heart failure focusing on

TWEAK and its receptor. In addition, we will explore their poten-
tial as biomarker for CVDs as well as therapeutic target for the
future treatment of human heart failure.

TWEAK AND ITS COGNATE RECEPTOR Fn14
The member TWEAK of the TNFSF was discovered in 1997
(16). Like the other ligands of the TNFSF, TWEAK is primarily
synthesized as a type II transmembrane receptor and then fur-
ther processed by a furin endoprotease into the soluble cytokine
sTWEAK (16–18). Cells can co-express both plasma membrane-
anchored and soluble TWEAK (19, 20). However, membrane-
anchored TWEAK is due to its efficient cleavage, which is rarely
detectable (e.g., in monocytes and macrophages) (21). TWEAK
expression was reported in a wide variety of different tissues and
cells, including tumor cell lines and specimens (16, 19, 22–30).

TWEAK is known to be the sole TNFSF that signals through
the cell surface receptor Fn14, an unusual small TNFRSF mem-
ber (31). Fn14 was discovered in 1999 as Fibroblast Growth
Factor 1 (FGF1)-inducible, immediate-early response gene in
murine NIH3T3 fibroblasts (32) and is induced by a large vari-
ety of other growth factors including FGF2, Platelet-Derived
Growth Factor (PDGF), Epidermal Growth Factor (EGF) and
Vascular Endothelial Growth Factor (VEGF) as well as cytokines
such as tumor necrosis factor alpha (TNFα), Interleukin-1beta
(IL-1β), Interferon gamma (IFNγ), and transforming growth
factor-beta (TGF-β) (32–35). Fn14 is a type I transmembrane pro-
tein expressed on a broad variety of different cell types (18, 32, 33).
It contains a single cysteine-rich domain (CRD) in its ectodomain
while most other TNF receptors have two to six copies of this
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characteristic motif (36). The cytoplasmic domain of Fn14 con-
tains only 28 amino acid residues lacking a death domain. Like
other TNFRSF members lacking a death domain, Fn14 trimer-
izes upon ligand binding recruiting subsequently E3 ligase/adapter
proteins of the tumor necrosis factor receptor-associated factor
(TRAF) family to its cytoplasmic domain (21, 36). Several mem-
bers of the TRAF family (TRAF1, TRAF2, TRAF3, and TRAF5)
have been shown to be able to bind to Fn14 (37, 38).

TWEAK/Fn14 AXIS IN CARDIOMYOCYTE PROLIFERATION
The heart grows during embryonic development mainly due to
cardiomyocyte proliferation. Shortly after birth, however, car-
diomyocytes stop to proliferate and the heart continues to grow
through the increase in cardiomyocyte cell size (i.e., hypertro-
phy) (39). Consistent with its role in proliferation in a number
of cell types, such as smooth muscle cells (40), myoblasts (28,
41), astrocytes (42), liver progenitor cells (29), epithelial (43),
and tubular cells (44), Fn14 expression correlates with the rate
of cardiomyocyte proliferation during heart development (45).
However, neither Fn14 nor TWEAK knockout mice exhibit a
heart phenotype suggesting that the TWEAK/Fn14 axis is not
essential for cardiomyocyte proliferation or heart development
(28–30). Yet, TWEAK stimulation of neonatal rat cardiomyocytes,
expressing Fn14 endogenously, induced cardiomyocyte prolifera-
tion (45). TWEAK activated extracellular signal-regulated kinase
(ERK) and phosphatidylinositol 3-kinase (PI3K) but not p38
mitogen-activated kinase (p38) signaling. In addition, TWEAK
inhibited glycogen synthase kinase-3beta (GSK-3beta) (Figure 1)
(45). The effect of TWEAK on several pathways has been described
also for other cell types. In tubular cells, TWEAK activated, for
example, ERK, p38, PI3K, and NF-κB signaling (44). TWEAK-
induced proliferation in tubular cells and cardiomyocytes was
prevented by inhibitors of ERK and PI3K (44,45). In contrast, inhi-
bition of p38 blocked only tubular cell proliferation. A general role
of TWEAK-induced NF-κB signaling in cell proliferation remains
unclear as it has not yet been determined in cardiomyocytes. In
tubular cells, inhibition of NF-κB signaling blocked proliferation.

In contrast to neonatal rat cardiomyocytes, TWEAK had a neg-
ligible effect on adult cardiomyocyte proliferation, possibly due
to the developmental downregulation of Fn14. However, ectopic
expression of Fn14 enabled TWEAK-induced DNA synthesis in
adult cardiomyocytes. To date, activation of TWEAK/Fn14 sig-
naling is by far the most potent inducer of adult cardiomyocyte
cell cycle re-entry but fails to promote progression into mitosis
(45). This is important, as induction of cardiomyocyte prolifera-
tion is considered to be a potential future therapy to CVDs. Adult
zebrafish and newt as well as newborn mice can all regenerate
their heart through cardiomyocyte proliferation (46–48). More-
over, several studies have demonstrated that adult mammalian
cardiomyocyte cell division can be induced, even though induc-
tion efficiency is relatively low (49, 50). Finally, recent reports
utilizing carbon-14 isotope labeling due to atomic bomb tests in
the 60s suggest that also human adult mammalian cardiomyocytes,
at least a sub-set, might maintain the competence to proliferate
(51). Thus, in the future it will be important to elucidate the
TWEAK-mediated signaling that induces rat neonatal cardiomy-
ocyte proliferation and to determine if reinstatement of these

signaling modalities allows also adult mammalian cardiomyocyte
proliferation.

THE TWEAK/Fn14 SIGNALING PROMOTES CARDIAC
HYPERTROPHY AND HEART FAILURE
Pathological cardiac hypertrophy is a key risk factor for heart fail-
ure. Cardiac hypertrophy describes the enlargement of the heart
due to the increase in cell size of cardiomyocytes. For example,
physical exercise and pregnancy can lead to cardiac hypertrophy
(52). This form of hypertrophy is considered physiological car-
diac hypertrophy as heart function is not affected or improved.
In contrast, hypertrophy induced by chronic pressure or volume
overload results under certain disease conditions such as hyperten-
sion, valvular heart disease, and coronary artery disease, in cardiac
dysfunction or heart failure (52). Thus, it is called pathological
cardiac hypertrophy.

Tumor necrosis factor alpha was the first member of the
TNFSF shown to induce cardiomyocyte hypertrophy (53).
Cardiomyocyte-specific overexpression as well as infusion of
TNFα causes dilated cardiomyopathy (DCM) suggesting that
both circulating and locally produced TNFα induces myocardial
dysfunction (54, 55). In recent years, animal experiments have
suggested that also other TNFSF ligands can mediate cardiac
hypertrophy and heart failure. For example, transgenic overex-
pression of FasL (TNFSF6) resulted in cardiac hypertrophy with
pro-inflammatory consequences (56). That also the TWEAK/Fn14
axis is involved in cardiac hypertrophy was supported by the
discovery that transgenic overexpression of full length-TWEAK
(fl-TWEAK) in mice resulted in DCM with markedly increased
heart to body weight ratio and severe cardiac dysfunction. More-
over, cardiomyocytes from fl-TWEAK-overexpressing mice dis-
played cellular hypertrophy characterized by pronounced cellular
elongation (57). It has also been demonstrated that endogenous
Fn14 is required for cardiac hypertrophy. Fn14 deletion attenuated
right ventricular (RV) hypertrophy caused by pulmonary artery
banding (PAB), a mouse model of pressure-overload-induced RV
hypertrophy while TWEAK/Fn14 signaling promoted cardiomy-
ocyte hypertrophy in vitro (58). However, the upstream and down-
stream signaling pathways regulating TWEAK/Fn14-mediated
hypertrophy in vivo remain unclear. It has been shown that hyper-
trophic agonists including Angiotensin II (Ang II), Phenylephrine
(PE), and Endothelin-1 (ET-1) induce Fn14 expression (59). Fur-
thermore, TRAF2 and TRAF5, possible downstream targets of
TWEAK/Fn14 signaling, have been implicated in cardiac hyper-
trophy (Figure 1). Cardiomyocyte-specific TRAF2 transgenic mice
developed a time-dependent increase in cardiac hypertrophy, left
ventricular (LV) dilation, and adverse LV remodeling, and a sig-
nificant decrease in heart function (60). Moreover, deficiency of
TRAF5 substantially aggravated cardiac hypertrophy and cardiac
dysfunction in response to pressure overload after transverse aortic
constriction (TAC) (61).

TWEAK IS AN EXTRACELLULAR MATRIX MODULATING
FACTOR IN THE HEART
Heart failure describes a condition when the heart fails to pump
sufficient blood to meet the metabolic demand of the body. It is
caused by the loss of cardiomyocytes through necrosis, apoptosis,
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FIGURE 1 | Scheme depicting the potential role ofTWEAK/Fn14 signaling
in cardiac development and myocardial remodeling and cardiac failure.
TWEAK might be presented to Fn14 as membrane-bound or secreted form.
TWEAK stimulation induces in vitro proliferation of neonatal cardiomyocytes.
Thus, TWEAK/Fn14 signaling might contribute to developmental heart growth.
In CVDs, it has been shown that TWEAK has the potential to affect

inflammatory cells, cardiomyocytes as well as fibroblasts. In inflammatory
cells, TWEAK can enhance secretion of inflammatory cytokines/chemokines
by enhancing their expression directly or by increasing the expression of TLR
ligands. In cardiomyocytes, TWEAK induces via TRAF hypertrophy. In
fibroblast, TWEAK induces the expression of collagens via RhoA and NF-κB
and stimulates via NF-κB proliferation leading to cardiac fibrosis.

and autophagy (62, 63), which results in hypertrophy, myocardial
fibrosis (fibrillar collagen deposition), and maladaptive extracel-
lular matrix (ECM) remodeling, all characteristics of end-stage
heart failure (64). ECM remodeling leads to cardiomyocyte slip-
page, ventricular dilatation, increased ventricular stiffness as well
as impaired diastolic and systolic function (65).

As described above, TNFSF members are involved in the early
stages of CVDs such as increased inflammation and hypertrophy
(56, 66). However, there is clear evidence that TNFSF members
such as TNFα or FasL are also directly involved in myocardial fibro-
sis (56, 66). First evidence that the TWEAK/Fn14 axis may play a
role in ECM remodeling came from the analysis of fl-TWEAK
overexpressing mice. These mice develop DCM exhibiting pro-
gressive myocardial and perivascular fibrosis (57). Recently, it has
been shown that PAB-induced fibrosis was significantly reduced
in Fn14 global knockout mice (30). Cell culture experiments
demonstrated that TWEAK/Fn14 signaling promotes cardiac
mouse fibroblast proliferation and collagen synthesis (30), major
sources of fibrillar collagen in the heart under pathophysiological
conditions (67,68). Collagen expression induced by TWEAK/Fn14
signaling was mediated via RhoA-dependent nuclear translocation

of the myocardin-related transcription factor-A (MRTF-A)/MAL.
Interestingly, upregulation of Fn14 expression in cardiomyocytes
due to stretch or stimulation with Ang II or norepinephrine was
mediated by RhoA/ROCK signaling, too (69). Furthermore, Chen
and colleagues independently demonstrated that TWEAK induces
proliferation and collagen synthesis of rat cardiac fibroblasts (70).
However, they showed that proliferation and enhancement of
collagen synthesis was mediated by the activation of NF-κB sig-
naling (Figure 1). Collectively, these data demonstrate that the
TWEAK/Fn14 axis is involved in cardiac ECM remodeling. Impor-
tantly, Fn14 knockout mice were protected from PAB-induced
RV dysfunction (30, 58) as well as TWEAK-induced cardiac
dysfunction and dilation (57).

An essential prerequisite for the formation of fibrotic scar tissue
and ECM remodeling is, besides the elevated production of ECM
proteins, the expression of matrix metalloproteinases (MMPs)
and tissue inhibitors of metalloproteinases (TIMPs) (71–73). Pre-
viously, it has been demonstrated that TNFα-induced cardiac
remodeling and dysfunction depends on MMP activation (74). In
addition, it has been shown that also FasL and other TNFSF mem-
bers such as LIGHT, RANKL, and CD40L can potentially regulate
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MMP activity (75–77). Finally, both TNFα and FasL overexpres-
sion is associated with increased levels of TGF-β1, an important
inducer of myocardial fibrosis (56, 66). Taken together, these data
suggest that besides TNFα several other members of the TNFSF
might play important roles in ECM remodeling in cardiac disease.

TWEAK AND OTHER TNFSF SIGNAL VIA NF-κB
NF-κB has been shown to be cardio-protective (78). However,
prolonged activation of NF-κB appears to promote heart fail-
ure. For example, cardiomyocyte-specific IκB kinase (IKK)/NF-
κB activation induces reversible inflammatory cardiomyopathy
and heart failure (79). In addition, it has been demonstrated
in animal models, such as TAC-induced pressure-overload (80,
81) and monocrotaline (MCT)-induced RV hypertrophy (82),
that inhibition of NF-kB signaling prevents heart failure (cardiac
hypertrophy and/or cardiac remodeling).

NF-κB transcription factors are activated through cytokines,
pathogens, injuries, and other stressful conditions. Mammalian
cells express five NF-κB family members (RelA, RelB, c-Rel, NF-
κB2/p100/p52, and NF-κB1/p105/p50) (83–85), that regulate the
expression of a large variety of genes which are involved in a num-
ber of processes like inflammatory and immune responses of the
cell, cell growth, and development. In unstimulated cells, NF-κB
is bound to an inhibitory protein, IκB. Binding to IκB masks the
nuclear localization signal of NF-κB, sequesters the NF-κB/IκB
complex in the cytoplasm, and prevents NF-κB from binding to
DNA. Canonical NF-κB signaling culminates in the activation of
IKK, which phosphorylates the inhibitory IκB subunit of the NF-
κB/IκB complex in the cytoplasm resulting in the proteasomal
degradation of IκB. This releases NF-κB resulting in the translo-
cation of NF-κB into the nucleus. In contrast, the non-canonical
NF-κB signaling pathway mediates activation of the p52/RelB NF-
κB complex. This NF-κB pathway relies on the inducible process-
ing of NF-κB2 precursor protein, as opposed to the degradation
of IκBα. A central signaling component of the non-canonical NF-
κB pathway is NF-κB-inducing kinase (NIK), which functions
together with the inhibitor of NF-κB kinase α (IKKα), to induce
phosphorylation-dependent ubiquitination and processing of NF-
κB2. Under normal conditions, NIK is continuously degraded. In
response to signals mediated by a sub-set of TNFSF members such
as Lymphotoxin-β (LT-β), B-cell activating factor (BAFF), and
CD40 ligand (CD40L) (86–89), NIK becomes stabilized leading
to the activation of non-canonical NF-κB (90, 91).

TWEAK/Fn14 axis has been shown to activate several different
signaling cascades, though activation of NF-κB signaling appears
to be the major and predominant cellular response through which
TWEAK/Fn14 signals. TWEAK/Fn14 has been demonstrated to
activate canonical NF-κB signaling in a large variety of cell types
(38, 41, 70, 92–96). Interestingly, TWEAK can also signal via
Fn14 through the non-canonical NF-κB pathway, which is depen-
dent on the TRAF-binding site of Fn14 as well as TRAF2 and
TRAF5 (97). Membrane-bound and oligomerized sTWEAK are
superior to soluble TWEAK trimers in regard to the activation of
the classical NF-κB pathway. In contrast, both TWEAK variants
are equally potent inducers of the non-canonical NF-κB path-
way (98). That TWEAK/Fn14 mediates its detrimental effect on
heart function at least in part through NF-κB signaling has been

supported by several studies. TWEAK-induced proliferation and
collagen synthesis of rat cardiac fibroblasts in vitro was medi-
ated by the activation of NF-κB signaling (70). Moreover, DCM
induced through elevated circulating TWEAK levels occurred
via an FN14-TRAF2-NF-κB-dependent signaling pathway (99).
In addition, cardiomyocyte-specific TRAF2 overexpressing mice
provoked adverse cardiac remodeling associated with elevated
NF-κB signaling (60). These data suggest that the members of
the TNFSF mediate their detrimental effects in the heart through
TNFRSF members via TRAF2, which is associated directly or indi-
rectly with the majority of TNFSFR members expressed in the
heart (TNFR1, TNFR2, RANK, and Fn14), through non-canonical
NF-κB signaling (77).

POTENTIAL INTERACTIONS OF TOLL-LIKE RECEPTORS AND
TWEAK/Fn14 SIGNALING IN CVD
Toll-like receptors (TLRs) are a family of single, membrane-
spanning, non-catalytic receptors, which are expressed on various
immune cells, such as macrophages, dendritic cells, and neu-
trophils, as well as on non-immune cells, such as fibroblast cells
and epithelial cells. Most commonly, they are known as key acti-
vators of the innate immune system as they are responsible for
the synthesis and secretion of various inflammatory cytokines
by the cells of this system (100). Upon detection of distinct
pathogen-associated molecular patterns (PAMPs) of protozoa,
virus, and bacteria origin, different members of the TLR family
activate signaling pathways that result in the activation of NF-
κB-dependent and interferon regulatory factor (IRF)-dependent
molecular mechanisms. In addition, TLRs may also be activated
by endogenous ligands named damage-associated molecular pat-
terns (DAMPs), which allow the immune system to sense tissue
injury in the absence of an infection.

TLR2 and TLR4 activation resulting in NF-κB-dependent
release of inflammatory cytokines plays an important role in CVD
(101–103). For example, it has been demonstrated that TLR2-
deficient mice exhibit higher fractional shortening and survival
after myocardial infarction in comparison to wild-type animals
(104). In addition, both knockout of TLR2 and inhibition of TLR2
by neutralizing antibodies significantly reduced Ang II-induced
cardiac fibrosis, which was associated with a reduction in the infil-
tration of macrophages, the production of inflammatory cytokines
and chemokines, and the activation of NF-κB (103). However,
TLR2 deletion in a hypertrophy model (TAC) revealed that TLR2 is
required for adaptive cardiac hypertrophy through IL-1β upregu-
lation via NF-κB activation (102). Similar to TLR2, TLR4-deficient
mice show after myocardial infarction enhanced LV function and
improved remodeling leading to significantly increased survival
of TLR4-deficient mice (105, 106). Finally, adenoviral overexpres-
sion of dominant-negative MyD88, a common adaptor of TLR2
and TLR4, significantly reduced cardiac hypertrophy and cardiac
fibrosis in an aortic constriction model improving cardiac function
(107). Taken together there is accumulating evidence for detri-
mental effects of TLR signaling on cardiac remodeling, cardiac
function, and fibrosis upon injury (Figure 1) (108).

Interestingly, it has recently been indicated that TWEAK has
the ability to potentiate the pro-inflammatory effects of TLR lig-
ands. For instance, TWEAK has been shown to cooperate with
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the TLR2 ligand Pam3CysSK4 on the stimulation of IL-8 syn-
thesis by epithelial cells (109). Furthermore, TWEAK is able to
stimulate the secretion of HMGB1 (110, 111), another postu-
lated TLR ligand, that contributes to the inflammation in various
injury models via signaling through TLR2, TLR4, and RAGE in
inflammatory cells (112, 113). Collectively, these data suggest that
the TWEAK/Fn14 signaling pathway may also interact with TLR
signaling in promoting acute inflammation in CVD.

PROGNOSTIC VALUE OF TWEAK/Fn14 EXPRESSION FOR
HEART FAILURE
During recent years, evidence has accumulated that other mem-
bers of the TNFRSF/TNFSF than TNFα/TNFR might play impor-
tant roles in the development and progression of heart failure as
they are regulated in both experimental and clinical heart failure.
Expression analyses of TNFSF ligands and co-stimulatory mol-
ecules have revealed that cardiomyocytes of patients with acute
myocarditis and DCM express high levels of CD27L, CD30L, and
4-1BBL and exhibit weak to moderate expression of OX40L (114).
In heart failure post-myocardial infarction, RANKL was upreg-
ulated in both fibroblasts and cardiomyocytes (77). In addition
to cardiac cells, elevated expression of TNFSF members were also
observed in T lymphocytes in DCM (CD40L) (115) and peripheral
blood mononuclear cells in chronic heart failure (4-1BBL, APRIL,
CD27L, CD40L, FasL, LIGHT, and TRAIL-receptor 4) (116).
Notably, receptors for several of these ligands (e.g., FasL, LIGHT,
TNFα, RANKL, and TRAIL) have been reported to be expressed
in the heart and enhanced levels of some of these TNF-related
molecules also have been found within the failing myocardium
(e.g., RANKL, OPG) (77, 117–124). That the members of the
TNFSF, can be utilized as prognostic markers, is exemplified by
OPG (125), whose plasma level correlated in apparently healthy
patients with greater LV mass and lower LV ejection fraction (126).
OPG also has been shown to be a reliable predictor of long-
term mortality and heart failure development in patients with
acute coronary syndrome (127), all-cause mortality in patients
with symptomatic severe aortic stenosis (128) or even mixed eti-
ology (129), and with hospitalization of patients with ischemic
heart failure due to worsening of heart failure. Another example is
BAFF, which is elevated in patients with acute myocardial infarc-
tion predicting increased risk of death or recurrent myocardial
infarction (130).

In contrast to the poor prognosis found in relation to elevated
TNFα levels in heart failure, increased levels of sTWEAK appear to
be a good predictor of an adverse short-term outcome after severe
type of myocardial infarction (ST-elevation myocardial infarction,
STEMI) correlating with hospital duration time of the patients
(131). In contrast, TWEAK protein levels were lowered in patients
with chronic stable heart failure (132) or advanced non-ischemic
heart failure (133). sTWEAK levels were inversely correlated with
the severity of the disease and allowed prediction of patient’s
mortality, respectively. Importantly, the predictive value was also
verified after adjustment for clinical and biochemical variables
including the state of the art biomarker, NT-proBNP.

However, sTWEAK alone appears not to be an optimal predic-
tor of heart disease in general as Fn14 gene expression, in contrast

to other members of the TNFRSF, is highly regulated in vivo. Under
physiological conditions, Fn14 is expressed at relatively low levels
but its expression is elevated in several experimental models of
injury and inflammation (18, 28, 29, 94, 134, 135). The predic-
tive value of sTWEAK levels is also complicated by the fact that
TWEAK and Fn14 can be expressed by a wide variety of cell types.
Both are expressed in cardiomyocytes (30, 45, 57, 131) and cardiac
fibroblasts (30, 70). In addition, their expression was observed
also for macrophages and smooth muscle cells of carotid ath-
erosclerotic plaques (134). Finally, TWEAK is also expressed in
endothelial cells of coronary arteries (59) and Fn14 expression
was upregulated in proliferating endothelial and smooth muscle
cells of injured rat arteries (18). Thus, changed levels of plasma
sTWEAK might be difficult to interpret. For example, plasma
sTWEAK levels are decreased in patients with pulmonary arterial
hypertension (PAH), which results in RV failure (136). This might
suggest that sTWEAK has positive adaptive functions. However,
animal experiments have demonstrated that Fn14 expression in
the heart is highly upregulated after PAB- or MCT-induced PAH
(30). In these animal models, TWEAK blood plasma levels were
unchanged (PAB) or significantly reduced (MCT) while TWEAK
mRNA expression in RVs was elevated. Thus, reduced TWEAK
blood levels might be due sequestration of circulating TWEAK
by the upregulated Fn14 receptor or might be a compensatory
mechanism to protect from the consequences of Fn14 activation.
Collectively, sTWEAK appears to be a promising biomarker if
combined with clinical parameters.

BLOCKING OF Fn14 SIGNALING AS POTENTIAL
THERAPEUTIC APPROACH
In addition to novel candidates for new biomarkers, several TNF-
related molecules also could be attractive targets for cardiac ther-
apy. Cell culture as well as in vivo experiments have indicated that
TWEAK/Fn14 signaling is involved in cardiac hypertrophy, car-
diac remodeling, and heart failure, identifying TWEAK and Fn14
as promising targets to treat CVDs (30, 45, 58, 59, 69, 70, 99, 137).
Targeting TWEAK and Fn14 has been also considered in vari-
ous other pathophysiological conditions. Blocking of TWEAK or
Fn14 has successfully been demonstrated to be beneficial in pre-
clinical models of Collagen-Induced Arthritis (138, 139), Experi-
mental Autoimmune Encephalitis (140), Middle Cerebral Artery
Occlusion (94, 135, 141), Ischemia Reperfusion Injury (142), and
atherosclerosis (143, 144). Furthermore, therapeutical efficacies
of TWEAK and Fn14 blocking antibodies were determined in
tumor growth inhibition assays, utilizing TWEAK and Fn14-
expressing human esophageal and pancreatic cell lines, as well as
in a murine gastrointestestinal cancer model (145). Anti-TWEAK
and anti-Fn14-specific antibodies are at the moment under clinical
investigations in phase I studies in patients suffering on Rheuma-
toid Arthritis, lupus or solid tumors (http://clinicaltrials.gov/;
NCT00771329, NCT001499355 and NCT00738764). Additionally
to the usage of antibodies, the employment of the fusion pro-
teins Fn14-Fc and Fc-TWEAK as well as soluble TWEAK provide
alternative approaches (137). Taken together, therapies targeting
TWEAK and/or Fn14 appear to be a realistic approach and thus
warrant future preclinical studies.
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CONCLUDING REMARKS
The members of the TNFSF and TNFRSF have been shown to be
involved in the progression of CVDs to heart failure and thus they
appear to be promising prognostic and therapeutic targets. How-
ever, the past has shown that correlations of cytokine blood levels
to heart disease can be misleading (146). For example, TNFα medi-
ates both adaptive and maladaptive effects on the myocardium. On
the one hand it activates via NF-κB expression of anti-apoptotic
and cytoprotective genes, but on the other hand it induces also
inflammation (147). This explains why clinical trials with anti-
TNF therapies were disappointing although overexpression of
TNF, which is positively correlated with heart failure in patients,
leads to experimental heart failure (146, 148). Thus, it will be
important to consider this issue when designing new treatment
strategies in heart failure that target members of the TNFSF or
TNFRSF.

Based on the disappointing results from anti-TNF trials, the
TWEAK/Fn14 axis may represent new targets for heart failure
therapies. Fn14 appears to be an excellent therapeutic target as
Fn14 knockout mice are viable and show no obvious phenotype
under physiological conditions. In addition, Fn14 is upregulated
in the myocardium of diseased hearts (30). However, at present
the precise role of the TWEAK/Fn14 axis is still poorly under-
stood, and it is unclear whether it has a positive, adaptive role in
cardiac disease. One important issue is that the TWEAK/Fn14 axis
regulates the behavior of several different cell types. Yet, genetic
models inhibiting the TWEAK/Fn14 axis were beneficial in exper-
imental models of heart disease (30, 58). Thus, it is important to
test next treatment strategies such as anti-TWEAK antibodies in
experimental heart failure models.

Cardiovascular diseases resulting in heart failure are highly
complex diseases. Thus, in an ideal case a biomarker should be
involved in several pathways of these multiple-pathway diseases
reflecting several important pathophysiologies such as hypertro-
phy, fibrosis, remodeling, and inflammation. As the members of
the TNFSF are involved in several of these processes, they appear
to be promising biomarkers. However, it might be impudent to
assume that a single member of the TNFSF is sufficient. For exam-
ple, although NT-proBNP is a strong biomarker in heart failure
it has recently been shown in patients with symptomatic aortic
stenosis that the combination of high levels of both OPG and
NT-proBNP was strongly associated with all-cause mortality, thus
providing more information together than when either of these
markers was used alone (128). Yet, a combination of TNFSF mem-
bers that provides a “signature of disease” appears likely to be a
suitable tool for risk prediction.
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