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Abstract: Yb3+ and Y3+ double doped ZrO2 (8YSZ+4Yb2O3) samples were synthesized by a
solid state reaction method. Moreover, 8YSZ+4Yb2O3-NaCl/KCl composites were also successfully
produced at different temperatures. The 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C),
and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) samples were characterized by x–ray diffraction (XRD) and
scanning electron microscopy (SEM). The results showed that a dense composite electrolyte was
formed at a low temperature of 800 ◦C. The maximum conductivities of 4.7 × 10−2 S·cm−1, 6.1 ×
10−1 S·cm−1, and 3.8 × 10−1 S·cm−1 were achieved for the 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl
(800 ◦C), and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) samples at 700 ◦C, respectively. The logσ~log (pO2) plot
result showed that the 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) composite electrolyte is a virtually pure ionic
conductor. An excellent performance of the 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) composite was obtained
with a maximum power density of 364 mW·cm−2 at 700 ◦C.
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1. Introduction

Solid electrolytes for high temperature fuel cells have many advantages over liquid electrolytes
such as high power density, good sealing, a broad test temperature range, etc. [1–13]. Electrolytes based
on an oxide ion conducting divalent or trivalent cations stabilized zirconia have been widely
studied [14–17]. In order to avoid deleterious phase transition, a stable tetragonal (cubic) structure
of doped ZrO2 electrolytes can also be obtained. For instance, N.M. Rendtorff et al. synthesized the
tetragonal structure of 3 mol % Y2O3 stabilized ZrO2 (3YSZ) through the mechanochemical activation
technique [14]. However, solid oxide fuel cells (SOFCs) using cation stabilized ZrO2 as electrolytes
have usually operated at high test temperature (800–1000 ◦C) as the conductivity of doped ZrO2 is
significantly reduced for temperatures lower than 800 ◦C.

Composite electrolyte materials, which have high conductivities, are pivotal to the development
of intermediate temperature fuel cells. In recent years, two-phase composite electrolytes consisting of
doped BaCeO3, SrCeO3, CeO2, chloride, and carbonate have exhibited enhanced ionic conductivities
and intermediate temperature fuel cell performance [18–24]. For example, Park et al. combined a
perovskite-type BaCeO3 based electrolyte with a binary eutectic carbonate to obtain a high ionic
conductivity of 0.176 S·cm−1 at 550 ◦C [18]. Fu et al. studied a gadolinium-doped ceria chloride
composite electrolyte with a good power output density of 240 mW·cm−2 at 500 ◦C [24].

Many studies have shown that double cation doped ZrO2 could reduce the test temperature and
improve its conductivity when compared to the single cation stabilized zirconia [25–30]. For instance,
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Liu et al. found that 1 wt % Al2O3 doped 8 mol % Y2O3 stabilized ZrO2 (8YSZ) reduced the
sintering temperature of YSZ and improved the output of the fuel cell [26]. Wang et al. stabilized the
structure phase when the substitution of Yb2O3 was over 2 mol % in the Yb2O3-Sc2O3-ZrO2 system.
Furthermore, the radius of Yb3+ and Y3+ were both close to that of Zr4+ [27]. Therefore, we tried to
fabricate a new composite electrolyte by using Yb3+ and Y3+ double doped ZrO2 together with a binary
eutectic chloride.

In this paper, new Yb2O3 doped Zr0.92Y0.08O2-α(8YSZ)-NaCl/KCl composite electrolytes were
prepared at different temperatures. The morphology and structure were characterized and the ionic
conductivity and fuel cell were systematically evaluated.

2. Experimental

Yb3+ and Y3+ double doped ZrO2 was produced via a solid state reaction method. A total of 4 mol
% Yb2O3 (99.9%) and 8YSZ (Xuancheng Jingrui New Material Co., Ltd., Xuancheng, China, sol-gel
method, 50 nm) powders were fully mixed in ethanol under continuous stirring with an agate mortar
and dried by an infrared lamp three times. Subsequently, the obtained powder was calcined at 1200 ◦C
for 6 h to obtain the 8YSZ and 8YSZ+4Yb2O3 samples.

The binary eutectic chloride of KCl (0.202 g)–NaCl (0.158 g) (mole ratio = 1:1) was heated at 700 ◦C
twice [31]. All of the used reagents were analytical grade (Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China). Then, 80 wt % of the 8YSZ+4Yb2O3 and 20 wt % of the KCl/NaCl powders were
mixed and ground. The mixtures were sieved through 200 mesh and pressed into round disks under
200 MPa. Finally, the obtained disks were heated at 800 ◦C and 1000 ◦C for 2 h, respectively, to obtain
8YSZ+4Yb2O3-NaCl/KCl composite electrolytes.

The crystalline phases of the 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C),
and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) samples were determined by X-ray diffraction (XRD,
X’pert Pro MPD, Holland’s company, Amsterdam, The Netherlands). The morphology of the sintered
pellets was observed by using a scanning electron microscope (SEM, S-4700, Hitachi, Tokyo, Japan).

All samples were ground and pressed into thin slices (thickness = 1.0–1.2 mm) and 80%
silver-20% palladium paste (areas = 0.5 cm2) was used with silver wires as the electrodes.
Electrochemical impedance spectroscopy (EIS) techniques were used to obtain the conductivity of the
8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C), and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C). The ac
amplitude was 20 mV in a three-electrode system over the frequency range from 1 Hz to 1 MHz.
The conductivity can be calculated from: σ = L

R·S , where σ is conductivity, L is thickness, R is resistance,
and S is the surface area of the electrolyte pellet [32,33]. The effects of different synthetic temperature,
operating temperature, and oxygen partial pressure on the electrical conductivities were determined
with an electrochemical analyzer (CHI660E, Chen Hua company, Shanghai, China) at 400–700 ◦C [34,35].
Oxygen concentration discharge cell: air, Pd-Ag|8YSZ+4Yb2O3-NaCl/KCl (800 ◦C)|Pd-Ag, O2 at
700 ◦C and H2/O2 fuel cells using 8YSZ+4Yb2O3 and 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) as electrolytes
(thickness = 1.1 mm) were constructed. The fuel cell was tested by using the linear scanning of current
and voltage method within the CHI660E electrochemical analyzer [33].

3. Results and Discussion

Figure 1 presents the X-ray diffraction (XRD) patterns of the 8YSZ, 8YSZ (1200 ◦C), 8YSZ+4Yb2O3

(1200 ◦C), 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C), and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) samples together
with the standard diffraction patterns of Yb2O3 (JCPDS 88-2161) and t-Zr0.9Y0.1O1.95 (JCPDS 82-1241).
The 8YSZ (Xuancheng Jingrui New Material Co., Ltd., sol-gel method, 50 nm) powder possessed
coexisting tetragonal and monoclinic phases, where the tetragonal was the major phase, as shown
in Figure 1a. When the synthesis temperature reached 1200 ◦C, it was observed that the 8YSZ
and 8YSZ+4Yb2O3 showed an entire t-ZrO2 phase. Yb3+ really formed a solid solution with YSZ
and there was no trace of Yb2O3. Additionally, NaCl and KCl diffraction peaks also existed in the
8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) samples, that is to say that
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the binary eutectic chloride did not react with 8YSZ+4Yb2O3. This was in good agreement with the
studies of ceria-carbonates or doped SrCeO3-NaCl-KCl composite electrolytes [36,37].
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Figure 1. (a) XRD patterns of the 8YSZ and 8YSZ (1200 °C) samples. (b) XRD patterns of the 
8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 °C), and 8YSZ+4Yb2O3-NaCl/KCl (1000 °C) samples. 

The surface (a,c,e) and cross-sectional (b,d,f) morphologies of the 8YSZ+4Yb2O3, 
8YSZ+4Yb2O3-NaCl/KCl (800 °C) ,and 8YSZ+4Yb2O3-NaCl/KCl (1000 °C) pellets, as seen using SEM, 
are exhibited in Figure 2. No pores or cracks on the surface (e) and cross-sectional (f) photos of the 
8YSZ+4Yb2O3-NaCl/KCl (800 °C) were seen along the entire experiment, which meant that the Yb3+ 
and Y3+ double doped ZrO2 and the binary eutectic chloride sintered uniformly. The 8YSZ+4Yb2O3 
and NaCl/KCl are indicated by arrows in Figure 2f. However, as can be observed from Figures 2c,d, 
a few scattered small pores were found in the 8YSZ+4Yb2O3-NaCl/KCl (1000 °C) pellet, which may 
influence the electrical properties of the sample. The sintering performance of the 
8YSZ+4Yb2O3-NaCl/KCl pellet increased with the increase in temperature, nevertheless, the vapor 
pressure of the molten inorganic salts rapidly increased at the same time. This was consistent with 
the ceria-carbonates or doped SrCeO3-chloride composite electrolytes prepared under similar heat 
treatments [36–39]. Therefore, the most suitable synthetic temperature was 800 °C. 

The plots of log (σT) versus 1000 T−1 of the 8YSZ, 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 
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Figure 1. (a) XRD patterns of the 8YSZ and 8YSZ (1200 ◦C) samples. (b) XRD patterns of the
8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C), and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) samples.

The surface (a,c,e) and cross-sectional (b,d,f) morphologies of the 8YSZ+4Yb2O3,
8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) ,and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) pellets, as seen
using SEM, are exhibited in Figure 2. No pores or cracks on the surface (e) and cross-sectional
(f) photos of the 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) were seen along the entire experiment, which
meant that the Yb3+ and Y3+ double doped ZrO2 and the binary eutectic chloride sintered uniformly.
The 8YSZ+4Yb2O3 and NaCl/KCl are indicated by arrows in Figure 2f. However, as can be observed
from Figure 2c,d, a few scattered small pores were found in the 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C)
pellet, which may influence the electrical properties of the sample. The sintering performance of the
8YSZ+4Yb2O3-NaCl/KCl pellet increased with the increase in temperature, nevertheless, the vapor
pressure of the molten inorganic salts rapidly increased at the same time. This was consistent with
the ceria-carbonates or doped SrCeO3-chloride composite electrolytes prepared under similar heat
treatments [36–39]. Therefore, the most suitable synthetic temperature was 800 ◦C.

The plots of log (σT) versus 1000 T−1 of the 8YSZ, 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl
(800 ◦C), and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) pellets in air at 400–700 ◦C are given in Figure 3.
The maximum conductivities achieved for 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C),
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and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) were 4.7 × 10−2 S·cm−1, 6.1 × 10−1 S·cm−1, and 3.8 ×
10−1 S·cm−1 at 700 ◦C, respectively. Wang et al. [27] demonstrated that the conductivities of Yb3+

and Sc3+ double doped ZrO2 could maintain 1.0 × 10−2 S·cm−1 at 700 ◦C, which is the threshold
value for application as an electrolyte. The experimental result of Bohnke et al. [28] showed that
the conductivity of the (Sc2O3)0.07-(Fe2O3)0.03-(ZrO2)0.90 was lower than 1.0 × 10−2 S·cm−1 at 700 ◦C.
Our result was equivalent to the former. The conductivities of electrolytes have been generally found to
be higher in a wet atmosphere in comparison with a dry atmosphere [33]. Furthermore, 8YSZ+4Yb2O3

exhibited a highest electrical conductivity of 4.7 × 10−2 S·cm−1 when compared to the 8YSZ of 2.3
× 10−2 S·cm−1 at 700 ◦C. The measured conductivities of the composite electrolytes were much
higher than those of 8YSZ+4Yb2O3 and in our previous study of SrCe0.9Sm0.1O3-α-NaCl-KCl (1.43
× 10−1 S·cm−1). This revealed that the introduction of the binary eutectic chloride allows for ionic
charge carriers to move quickly and freely through it, which is beneficial for the long-range transfer
ability of ions [36,40]. In Figure 3, with the increase in sintering temperature, the conductivities of the
8YSZ+4Yb2O3-NaCl/KCl samples decreased. The conductivity of 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C)
was lower than that of the sample sintered at 800 ◦C, especially at a low temperature range. This might
be associated with the breaking of the long-range transfer of ionic charge carriers to a certain extent
after heating at 1000 ◦C, according to the result of Figure 2.

Materials 2018, 11, x FOR PEER REVIEW  4 of 9 

 

maximum conductivities achieved for 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 °C), and 
8YSZ+4Yb2O3-NaCl/KCl (1000 °C) were 4.7 × 10−2 S·cm−1, 6.1 × 10−1 S·cm−1, and 3.8 × 10−1 S·cm−1 at 700 
°C, respectively. Wang et al. [27] demonstrated that the conductivities of Yb3+ and Sc3+ double 
doped ZrO2 could maintain 1.0 × 10−2 S·cm−1 at 700 °C, which is the threshold value for application 
as an electrolyte. The experimental result of Bohnke et al. [28] showed that the conductivity of the 
(Sc2O3)0.07-(Fe2O3)0.03-(ZrO2)0.90 was lower than 1.0 × 10−2 S·cm−1 at 700 °C. Our result was equivalent to 
the former. The conductivities of electrolytes have been generally found to be higher in a wet 
atmosphere in comparison with a dry atmosphere [33]. Furthermore, 8YSZ+4Yb2O3 exhibited a 
highest electrical conductivity of 4.7 × 10−2 S·cm−1 when compared to the 8YSZ of 2.3 × 10−2 S·cm−1 at 
700 °C. The measured conductivities of the composite electrolytes were much higher than those of 
8YSZ+4Yb2O3 and in our previous study of SrCe0.9Sm0.1O3-α-NaCl-KCl (1.43 × 10−1 S.cm−1). This 
revealed that the introduction of the binary eutectic chloride allows for ionic charge carriers to 
move quickly and freely through it, which is beneficial for the long-range transfer ability of ions 
[36,40]. In Figure 3, with the increase in sintering temperature, the conductivities of the 
8YSZ+4Yb2O3-NaCl/KCl samples decreased. The conductivity of 8YSZ+4Yb2O3-NaCl/KCl (1000 °C) 
was lower than that of the sample sintered at 800 °C, especially at a low temperature range. This 
might be associated with the breaking of the long-range transfer of ionic charge carriers to a certain 
extent after heating at 1000 °C, according to the result of Figure 2. 

  

  

  

Figure 2. Surface (a,c,e) and cross-sectional (b,d,f) SEM images of the 8YSZ+4Yb2O3 (a,b), 
8YSZ+4Yb2O3-NaCl/KCl (1000 °C) (c,d), and 8YSZ+4Yb2O3-NaCl/KCl (800 °C) (e,f) pellets. 
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Figure 4. The conductivities of the 8YSZ+4Yb2O3 and 8YSZ+4Yb2O3-NaCl/KCl (800 °C) as a function 
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To explore the oxide ionic conduction of the 8YSZ+4Yb2O3-NaCl/KCl (800 °C) composite under 
an oxygen-containing atmosphere, an oxygen concentration discharge cell was fabricated and 
tested at 700 °C, as illustrated in Figure 5. The calculated electromotive forces (EMFcal) of the oxygen 
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F
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was obvious that the measured open circuit voltage exhibited a value of 33 mV, which was 
consistent with the calculated EMF (32.7 mV). In addition, the 8YSZ+4Yb2O3-NaCl/KCl (800 °C) 

Figure 3. The log (σT)~1000 T−1 plots of the 8YSZ, 8YSZ+4Yb2O3, 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C),
and 8YSZ+4Yb2O3-NaCl/KCl (1000 ◦C) pellets in air at 400–700 ◦C.

To reveal the ionic conduction of the 8YSZ+4Yb2O3 and 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C)
samples, the variation of the conductivities with the partial pressures of oxygen in the range of
pO2 = 10−20~1 atm were evaluated. It can be seen from Figure 4 that the conductivities were
almost independent of pO2 at 700 ◦C, implying that the 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) composite
electrolyte is a virtually pure ionic conductor, which agrees with previous reports [20,37,38]. The result
illustrates that the conductivities of the two electrolytes in Figure 3 are purely ionic.
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Figure 4. The conductivities of the 8YSZ+4Yb2O3 and 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) as a function
of pO2 at 700 ◦C.

To explore the oxide ionic conduction of the 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) composite under
an oxygen-containing atmosphere, an oxygen concentration discharge cell was fabricated and tested
at 700 ◦C, as illustrated in Figure 5. The calculated electromotive forces (EMFcal) of the oxygen
concentration discharge cell can be obtained from EMFcal = RT

4F tO ln[pO2(A)/pO2(B)] when tO = 1. It was
obvious that the measured open circuit voltage exhibited a value of 33 mV, which was consistent
with the calculated EMF (32.7 mV). In addition, the 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) composite was
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believed to be an oxide ionic conductor under an oxygen-containing atmosphere due to the exhibited
stable discharge curve [41,42].
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700 °C, hydrogen and oxygen were supplied at the anode side and cathode side, respectively, and 
the I-V and power density curves are displayed in Figure 7. The following two reactions occur at the 
cathode and anode compartments: cathode reaction: 2H+ + O2 + 4e− = H2O + O2− and anode reaction: 
2H2 + O2− = 2H+ + H2O + 4e− [44]. As can be observed from Figure 7, the open circuit voltages were as 
high as 1.09 V, which confirmed that the samples possessed high densities. This can be attributed to 
the fact that NaCl–KCl eutectic melt fills the pores inside the composite electrolyte, leading to the 
increase in the density of the composite electrolyte at 700 °C. In this state, the 8YSZ+4Yb2O3 

Figure 5. The oxygen concentration discharge cell: air, Pd-Ag|8YSZ+4Yb2O3-NaCl/KCl
(800 ◦C)|Pd-Ag, O2 at 700 ◦C.

Figure 6 is the typical impedance spectra of the 8YSZ+4Yb2O3 and 8YSZ+4Yb2O3-NaCl/KCl
(800 ◦C) measured at 700 ◦C under open-circuit conditions. The spectra gave an incomplete semicircle
at intermediate to high frequencies, and an arc at low frequency. The high frequency related to
the ohmic resistance (Ro) and the low frequency can be attributed to the resistance between the
electrode and the electrolyte [43]. The interval between the high and low frequencies corresponded to
interfacial polarization resistance (Rp) where the Rp and Ro of 8YSZ+4Yb2O3 were 0.41 Ω·cm2 and
5.45 Ω·cm2, while those of 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) were 0.16 Ω·cm2 and 0.87 Ω·cm2 at
700 ◦C, correspondingly.
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The single cells based on 8YSZ+4Yb2O3 and 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) were operated at
700 ◦C, hydrogen and oxygen were supplied at the anode side and cathode side, respectively, and the
I-V and power density curves are displayed in Figure 7. The following two reactions occur at the
cathode and anode compartments: cathode reaction: 2H+ + O2 + 4e− = H2O + O2− and anode reaction:
2H2 + O2− = 2H+ + H2O + 4e− [44]. As can be observed from Figure 7, the open circuit voltages were
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as high as 1.09 V, which confirmed that the samples possessed high densities. This can be attributed
to the fact that NaCl–KCl eutectic melt fills the pores inside the composite electrolyte, leading to the
increase in the density of the composite electrolyte at 700 ◦C. In this state, the 8YSZ+4Yb2O3 electrolyte
and NaCl/KCl were between the continuous and discontinuous phases. The conductivities can be
ascribed to the mobility of various species (Na+, K+, H+, Cl− and O2−). And protons vacancies are
the predominated defects under wet conditions, especially in a hydrogen containing atmosphere.
Therefore, the fuel cell based on 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) exhibited good cell performance
and gave a power output density of 364 mW·cm−2 at 700 ◦C. The result was much better than the best
performance of 8YSZ+4Yb2O3 and that ever reported for intermediate temperature SOFCs based on
SrCe0.9Eu0.1O3-α-NaCl-KCl of 207 mW·cm−2 [37] at 700 ◦C. However, the durabilities of the electrolytes
were not been tested, and will be done in future work.
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Figure 7. I-V and I-P curves based on 8YSZ+4Yb2O3 and 8YSZ+4Yb2O3-NaCl/KCl (800 °C) at 700 °C. 

4. Conclusions 

In this study, Yb3+ and Y3+ double doped ZrO2 and its composite electrolytes were successfully 
fabricated by a solid state reaction method. The result of the logσ~log (pO2) plot indicated that the 
8YSZ+4Yb2O3-NaCl/KCl (800 °C) composite electrolyte was a virtually pure ionic conductor. 
Furthermore, the oxygen concentration discharge cell illustrated that the 8YSZ+4Yb2O3-NaCl/KCl 
(800 °C) composite was an oxide ionic conductor under an oxygen-containing atmosphere. The Rp 
and Ro were 0.41 Ω·cm2 and 5.45 Ω·cm2 for 8YSZ+4Yb2O3, and 0.16 Ω·cm2, and 0.87 Ω·cm2 for 
8YSZ+4Yb2O3-NaCl/KCl (800 °C) under open-circuit conditions at 700 °C correspondingly. Finally, 
an excellent performance of 8YSZ+4Yb2O3-NaCl/KCl (800 °C) was obtained with a maximum power 
density of 364 mW·cm−2 at 700 °C. 
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4. Conclusions

In this study, Yb3+ and Y3+ double doped ZrO2 and its composite electrolytes were successfully
fabricated by a solid state reaction method. The result of the logσ~log (pO2) plot indicated that
the 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) composite electrolyte was a virtually pure ionic conductor.
Furthermore, the oxygen concentration discharge cell illustrated that the 8YSZ+4Yb2O3-NaCl/KCl
(800 ◦C) composite was an oxide ionic conductor under an oxygen-containing atmosphere. The Rp

and Ro were 0.41 Ω·cm2 and 5.45 Ω·cm2 for 8YSZ+4Yb2O3, and 0.16 Ω·cm2, and 0.87 Ω·cm2

for 8YSZ+4Yb2O3-NaCl/KCl (800 ◦C) under open-circuit conditions at 700 ◦C correspondingly.
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