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D-allulose is one sort of C-3 epimer of D-fructose with the low calorie (0.4 kcal/g) and high
sweetness (70% of the relative sweetness of sucrose), which can be biosynthesized by
D-allulose-3-epimerase (DAE). In this work, we report the characterization of a novel DAE
from Ruminiclostridium papyrosolvens (RpDAE) by genome mining approach. The activity
of RpDAE reached maximum at pH 7.5 and 60°C, supplemented with 1 mM Co?*. Using
D-fructose (500g/L) as the substrate for epimerization reaction, RpDAE produced
D-allulose (149.5g/L). In addition, RpDAE was immobilized within the microporous
zeolite imidazolate framework, ZIF67, by in situ encapsulation at room temperature.
The synthesized bio-composites were characterized by powder X-ray diffraction and
Fourier transform infrared spectroscopy. RpDAE-ZIF67 maintained 56% of residual activity
after five reaction cycles. This study provides helpful guidance for further engineering
applications and industrial production of D-allulose.

Keywords: allulose, metal-organic frameworks, enzyme immobilization, ruminiclostridium papyrosolven, p-allulose
3-epimerase

INTRODUCTION

Vascular risk factors, exemplified by type 2 diabetes, hypertension, and obesity, have become
health concerns worldwide. The quantity of type 2 diabetes victims in 2017 is assessed to be 415
million, and 31.1% of adults (13.9 billion) have hypertension (Wyss et al., 2020). In addition,
NCD Risk Factor Collaboration predicts that the global obesity incidence rate will reach 18%
for men and 21% for women by 2025 under existing trends (Trends in Adult body-mass, 2016).
Amassing proof demonstrates that excessive caloric intake contributes to the development of
these chronic diseases (Xia et al., 2021) (Johnson et al., 2007). Thusly, developing and intaking
low-calorie food supplements can be the practical methodology to defuse vascular risks (Chung
etal., 2012). D-allulose (D-ribo-2-hexylose, C4H;,0s), initially named D-psicose, is one sort of
rare sugar. Because of its low bioavailability, D-allulose keeps up with 70% of the relative
sweetness of sucrose (Chung et al., 2012) with energy of only 0.4 kcal/g. U.S. Food and Drug
Administration has ratified D-allulose as “generally recognized as safe” since 2012 (GRN No.
400), which makes it an attractive sugar substitute. The presence of D-allulose in nature is very
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scant, which is found in a small number of plants exemplified
by wheat (Miller and Swain, 1960) and Itea (Ayers et al., 2014)
and a few processed foods, such as commercial fructose syrup
mixtures and steamed treated coffee (Oshima et al., 2006).

The scarcity of D-allulose in nature enormously limits its large-
scale application. Chemical synthesis of D-allulose has many defects,
including complex purification process, by-product formation, and
chemical waste pollution (Chen et al,, 2021). By comparison, the
biosynthesis of D-allulose is more efficient, with mild reaction
conditions, without by-product formation, which allows better
sustainability to be achieved. All monosaccharides can be cyclically
transformed by four kinds of enzymes, including polyol
dehydrogenase, aldose isomerase, aldose reductase, and ketose-3-
epimerase (KEase). D-allulose-3-epimerases (DAEs) are one type of
KEase catalyzing reversible epimerization of D-fructose, the most
abundant ketose in nature, into D-allulose (Mu et al, 2015).
Promising progress has been noted in the biosynthesis of
D-allulose, until now, approximately 20 DAEs from different
strains have been characterized (Chen et al, 2021). Most DAEs
discovered to date are of bacterial origin, mainly derived from soil
bacteria, e.g., A. tumefaciens (Kim et al.,, 2006a), C. cellulolyticum (Mu
et al, 2011), Desmospora sp. 8,437 (Zhang et al, 2013), and N.
thermophilus (Jia et al., 2021). Most DAEs rely on Co”* or Mn** as
co-factor and are inactive in the absence of metal ions.

Although the use of enzyme is an environment-friendly
strategy, the actual production of D-allulose by the enzyme
faces the problems of high cost, and poor operation stability.
Enzyme immobilization has been proved to be an effective way to
improve robustness, ease of recovery, and continuous utilization
of enzymes in industrial processes (Homaei et al., 2013). High
porosity, tunable pore sizes, good thermostability, and opportune
biocompatibility endow metal-organic frameworks (MOFs) with
potential as matrices to immobilize biological macromolecules,
such as enzymes (Liang et al., 2015). Among the various MOFs,
zeolitic imidazolate frameworks (ZIFs), which are formed by self-
assembly of tetrahedral metal clusters (Zn>" or Co®*) and 2-
methylimidazole ligands, have been extensively studied in situ
encapsulation because of their mild synthetic conditions in
aqueous solution (Gross et al., 2012). Lyu and colleagues (Lyu
et al., 2014) pioneeringly employed this strategy with cytochrome
¢ and ZIF8, obtaining Cyt ¢/ZIF8 bio-composite with 10-fold
higher bioactivity over free enzyme. Rafiei and co-workers
constructed lipase/ZIF67 composite and applied it in the
transesterification of soybean oil to biodiesel. The biocatalytic
composite maintained excellent enzymatic catalytic performance
after six cycles (Rafiei et al., 2018).

In the present study, a putative DAE from Ruminiclostridium
papyrosolvens C7 (RpDAE) was identified. The RpDAE was cloned
and overexpressed as recombinant proteins in E. coli BL21 (DE3).
The enzyme properties of purified RpDAE and its application in the
biological production of D-allulose were studied. In addition, RpDAE
was encapsulated by ZIF67 under mild conditions to enhance its
thermal stability and reusability. The RpDAE-ZIF67 bio-composites
were characterized by powder X-ray diffraction (PXRD) and Fourier
transform infrared (FT-IR) spectroscopy, and the catalytic
performance and reusability were also evaluated.

Characterization and Immobilization of RpDAE

MATERIALS AND METHODS

Gene Cloning, Expression, and Purification

of RpDAE

The gene sequence of RpDAE (NCBI ACCESSION:
WP_020816056.1) was codon-optimized for E. coli expression
and fused with a modified His-based tag (HE tag) containing
eight repeat histidine-glutamate residues
(HEHEHEHEHEHEHEHE) at C-terminus, which is capable of
immobilized metal ion affinity chromatography purification. The
sequence was synthesized (GenScript, Nanjing, China) and
subcloned into the pET-2la (+) between Ndel and Xhol
restriction sites. Recombinant plasmid pET-RpDAE was
cloned and transformed into E. coli. BL21 (DE3) for protein
expression.

Recombinant strains were inoculated into 10 ml of Luria-
Bertani (LB) medium. When needed, ampicillin was added
into LB medium at the concentration of 100 pg/ml. Then,
strains were cultured at 37°C with shaking at 200 rpm
overnight. The seed was transferred into 100 ml of LB medium
and after cultivated at 37°C with shaking at 200 rpm. When cells
grown to the proper optical density (ODgyo = 0.7), 0.5 mM
isopropyl-B-p-1-thiogalactopyranoside (IPTG) was added, and
induced recombinant cells were further cultured at 15°C with
shaking at 180 rpm for 16 h.

Recombinant cells were harvested by centrifugation at
8,000¢ for 5min at 4°C. Subsequently, cells were washed
thrice in lysis buffer (50 mM Tris-HCI, 100 mM NaCl, pH
7.5). Then, cells were lysed by sonication at 30 amplitudes
(pulse on for 3 s and pulse off for 3 s) for 30 min over the ice.
The cell debris was removed by centrifugation at 10,000g for
5 min at 4°C, and the supernatant was obtained for further
purification. Enzyme with HE tag was trapped on His Trap™
FF column (Cytiva, MA, USA) at a flow rate of 0.5 ml/min.
Wash buffer (50 mM Tris-HCl, 10 mM imidazole, 0.5 M
NaCl, pH 7.5) was used to elute unbound proteins, and the
target enzyme was eluted by elution buffer (50 mM Tris-HCI,
300 mM imidazole, 0.5 M NaCl, pH 7.5). Eluant was further
dialyzed to remove imidazole c\D/vith 50 mM Tris-HCI (pH 7.5)
and concentrated by Amicon Ultra filter (10 kDa) (Merck,
USA). The protein concentration was measured by Bradford
Assay (Thermo Fisher, MA, USA). The purified protein was
loaded onto sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) gel for the determination of
molecular mass and purity.

Enzyme Assay

The enzyme activity was determined by quantitative
determination of product converted from the substrate.
Data for this study was collected by high-performance
liquid chromatography (HPLC) system, linked to a 2424
evaporative light scattering detector and an xBridge BEH
amide column (all from Waters, MA, USA). The
temperatures of the detector and column were set at 65°C
and 35°C, respectively. The mobile phase was acetonitrile and
water mixture (80:20, v/v, with 0.1% v/v ammonia added) at a
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flow rate of 1 ml/min. The reaction system incorporated
D-fructose (50g/L), 1 mM Co>*, appropriate amount of
RpDAE or RpDAE-ZIF67, and 50 mM KH,PO,/Na,HPO,
(pH 7.5). The reaction was performed at 60°C for 5 min and
terminated by boiling for 5min. One unit (U) of RpDAE
activity was defined as the amount of enzyme required to
catalyze 1 umol of D-allulose within the unit time (min) under
the reaction condition.

Effect of Metal lons and Substrate
Specificity

To determine the influence of metal ions on the RpDAE
activity, the activity was examined under standard enzyme
assay except for supplemented with different metal ions
(Mg**, Cu**, Co**, Ni**, Mn®*, Ca®", and Zn*") at the final
concentration of 1 mM. The activity measured without metal
ions was defined as 100% relative activity. The substrate
specificity of RpDAE was tested by adding different ketoses
(D-allulose, D-fructose, D-sorbose, and D-tagatose) into the
reaction system as substrates. The reaction conditions were
standard.

Bioconversion of D-Allulose

To determine the bioconversion from D-fructose to D-allulose,
2 uM purified RpDAE was added with 1 mM Co®" and D-fructose
(500 g/L) in 50 mM KH,PO,/Na,HPO, buffer (pH 7.5) at 50°C.
Samples were taken at designated time intervals and diluted
tenfold. The yields of the accumulative D-allulose were
detected by HPLC.

Effect of Temperature and pH

To study the effect of temperature on RpDAE activity, RpDAE
was added in KH,PO,/Na,HPO, buffer (pH 7.5) at
temperatures varying from 40°C to 80°C. To investigate the
effect of the pH on the activity of RpDAE, the reaction was
conducted at 60°C across a pH range of 6-10 in MES buffer
(50mM, pH 6.0) or KH,PO,/Na,HPO, buffer (50 mM, pH
7.0-10.0).

Preparation and Characterization of

RpDAE-ZIF67
RpDAE-ZIF67 was synthesized by in situ approach in the

aqueous solution. Experimentally, 2 ml of purified RpDAE
(2mg/ml) and 2 ml of cobalt nitrate hexahydrate (0.04 M)
were mixed with 2-methylimidazole (1.2 M, 2 ml) in distilled
water and stirred for 1 h at ambient temperature. The sample
solution was aged for 7 h and collected by centrifugation at
6,000 rpm for 20 min. Subsequently, samples were washed
three times with distilled water. It was freeze-dried for 12 h.
PXRD data were collected by SmartLab 9kW X-ray

diffractometer (Rigaku, Tokyo, Japan) with Cu-Ka
radiation at 20 from 5° to 40°. FT-IR measured was
performed by Nicolet 1iS20 spectroscopy (Thermo

Scientific, MA, USA) in the range of 400-2,500 cm™".

Characterization and Immobilization of RpDAE

RESULTS AND DISCUSSION
Sequence Analysis of RpDAE

The genome mining approach has turned out to be a promising
way toward the detection of novel industrial enzymes, such as
lipase (Vorapreeda et al., 2015), §-glucosidase (Zou et al., 2012),
and laccase (Fang et al., 2011). To explore novel DAE applicable
to biosynthesis D-allulose, the amino acid sequence of
Clostridium cellulolyticumm DAE (GenBank: ACL75304.1) with
significant thermostability was chosen as the template to BLAST
in the NCBI database. The sequence that encoded a deduced DAE
(NCBI: WP_020816056.1) from Ruminiclostridium
papyrosolvens C7 with 59% amino acid identity with C.
cellulolyticum DAE was selected. R. papyrosolvens strain was
initially isolated from mud in Massachusetts, and its whole-
genome shotgun sequence data was uploaded to NCBI
database in 2013 (Zepeda et al., 2013), with the NCBI
accession number PRINA201398.

As presented in comparison of amino acid sequence
(Figure 1A), deduced DAE from R. Papyrosolvens showed
maximum homology identity with DAE from Dorea sp.
(59.4%, GenBank: CDD07088.1), followed by DAE from
Clostridium sp. (59.2%, GenBank: EDP19602.1). Except for
DAEs from Pirellula sp., R. baltica, S. aureus, and S. fredii
origin, there was more than 40% of homology identity
between RpDAE and other characterized DAEs, while existed
relatively low (less than 40%) homology identity with most
D-tagatose-3-epimerases and L-ribulose-3-epimerases.
Phylogenetic analysis with previously characterized KEases
revealed its evolutionary relationship with DAE from genera
of T. caenicola (Figure 1B).

So far, the crystal structures of A. tumefaciens ATCC33970
DAE (PDB: 2HKO) (Kim et al., 2006b) and C. cellulolyticum H10
DAE (PDB: 3VNI) (Chan et al., 2012) have been successfully
resolved, and they are homotetramers with similar monomeric
structures; each subunit possesses a distinct TIM barrel structure
forming by eight p-sheets and a-helices, and the catalytic activity
center is strictly conserved (Jia et al., 2021). Multiple amino acid
sequences alignment was performed between characterized DAEs
and RpDAE (Figure 2). Crucial residues of RpDAE for the
catalytic activity, including metal coordination sites (Glul50,
Aspl183, His209, and Glu244) and residues binding the O-1,
0-2, O-3 of the substrate (Glul56, His186, and Arg215), were
conserved with other reported DAEs. In general, these analyses
indicate that RpDAE belongs to the DAE family.

Expression and Purification of RoDAE

RpDAE fused with a modified histidine (HE) tag was
recombinantly overexpressed in E. coli. BL21 (DE3) by IPTG
induction. HE tag can function as promoters of both affinity
(Hofstrom et al., 2011) and solubility (Han et al., 2018). After cell
disruption, the supernatants were purified by immobilized metal
affinity chromatography. SDS-PAGE visualization confirmed
expression and purification of proteins of about 35kDa
(Figure 3), which was in accordance with the theoretical
molecular weight of RpDAE (34.89 kDa, containing HE tag).
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Target proteins were mostly expressed in a soluble form under the
conditions described above (Figure 3, Lane 2).

Effect of Metal lon and Substrate Specificity
To capture the effect of metal ions on RpDAE activity, diverse
divalent metal ions were added into the reaction system at the
final concentration of 1 mM. As illustrated in Figure 4A, RpDAE
displayed activity in the absence of metal ions and enhanced in
the presence of Co®" and Mn*', by 1.78- and 1.56-fold,
respectively. In contrast, the addition of Cu®*, Ca®*, Zn**, and
Ni** inhibited enzyme activity, and the inhibitory effect of Zn**
was the most significant, over 80%. Moreover, Mg”* had little
effect on the relative activity of RpDAE. Monosaccharide
epimerase employing deprotonation/reprotonation mechanism
often required metal ions as co-factor to participate in the
catalysis (Van Overtveldt et al,, 2015), and the optimum co-
factor for RpDAE was determined to be Co>".

To explore the substrate specificity of RpDAE, four kinds of
ketoses were used, containing D-allulose, D-fructose, D-tagatose,
and D-sorbose. RpDAE displayed the highest activity in the
presence of D-allulose, which was 40% higher in relation to
D-fructose (Figure 4B). On the contrary, RpDAE displayed
low epimerization activity toward D-tagatose and D-sorbose.

Bioconversion of D-Allulose

The large-scale bioconversion of D-allulose was performed with
D-fructose (500 g/L), 1mM Co®*, and 50 mM KH,PO,/
Na,HPO, (pH 7.5), along with 0.2 g/L RpDAE at 50°C. The
reaction rate for D-allulose production was 107.5 g/h for the first

hour. Finally, the equilibrium ratio of D-allulose and D-fructose
was measured to be 29.9:70.1, and D-allulose (approximately
149.5g/L) were obtained from D-fructose (500 g/L) without
byproducts after 150 min (Figure 4C). At present, many
multinational enterprises are researching and developing the
biological production of D-allulose. In 2021, the European
Food Safety Authority certified the safety of the two kinds of
food enzyme DAEs, which were produced by genetically modified
E. coli K-12 W3110 (pWKLP) strain (Matsutani Chemical
Industry Co., Ltd) (Lambré et al, 202la) and
Corynebacterium  Glutamicum FIS002 strain (CJ-Tereos
Sweeteners Europe SAS) (Lambré et al., 2021b), respectively.
The efficiency of biocatalysts is crucial in industrial
production. Generally, the conversion rates of different DAEs
reported in the literature were between 22% and 32.9% (Jia et al.,
2021), and the highest conversion yield was achieved by A.
tumefaciens ATCC33970 DAE (Kim et al., 2006a). Compared
to reported DAEs, the catalytic performance of RpDAE at the
substrate scale of 500 g/L was at middle-upper levels, revealing as
a potential candidate in the biological production of D-allulose.

Effect of Temperature and pH on RpDAE

The enzyme activity of RpDAE was dependent on temperature and
pH conditions. The influence of the temperatures on RpDAE activity
was depicted in Figure 5A, and the activity was assayed with a
temperature range of 40°C-80°C at pH 7.5. RpDAE displayed more
than 82.9% relative activity at the temperature range between 55°C
and 70°C. The maximum enzymatic activity of RpDAE was recorded
at 60°C, which was higher than optimum temperature of C.
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cellulolyticun DAE (Mu et al, 2011). To further determine the
activation energy (E,) of epimerization reaction at pH 7.5, activities
measured at 40°C-60°C were plotted as In (relative activity) versus
1000/T, and Arrhenius equation [Ink = (—E,/RT) + InA] was used to
calculate the E, of 23.51 kJ/mol (illustration of Figure 5A).

The effect of pH on RpDAE was examined at 60°C over a pH
range from 6.0 to 10.0, and the optimal pH occurred at a weak level
of alkaline, which was pH 7.5 (Figure 5B). Most characterized
DAEs showed optimum epimerization activity at pH 7.0 to 9.0,
and the exception was Dorea sp. DAE with an optimal pH at 6.0
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FIGURE 3 | SDS-PAGE analysis for RpDAE cloned in pET-21a (+) and
expressed in E. coli BL21 (DES3). Lane M, protein marker; Lane NC, Cell lysate
without induction; Lane 1, cell lysate with induction; Lane 2, supernatant of cell
lysate with induction; Lane 3, debris of cell lysate with induction; Lane 4,
purified protein.

(Zhang et al., 2015). RpDAE showed more than 87% of relative
activity at pH 7.0, demonstrating application potentials in
D-allulose production, because neutral conditions help to
reduce browning of monosaccharide, thereby reducing yield loss.

Preparation and Characterization of
RpDAE-ZIF67

Immobilized enzymes are widely utilized in the food industry. On
the one hand, immobilized enzymes are heterogeneous catalysts so
that can be simply separated from the reaction medium and obtain a
pure product without contamination. On the other hand, they can
be applied multiple times to the production process, thus reducing
costs (Yushkova et al,, 2019). Benefiting from high biocompatibility
and mild synthesis conditions, ZIFs are the most widely used in situ
immobilization matrices (Lian et al, 2017). RpDAE-ZIF67 was
synthesized through crystallization of ZIF67 around RpDAE in
aqueous solution (Figure 6A), which is a straightforward, rapid,
and cost-effective process (Patil and Yadav, 2018). To remove
loosely attached RpDAE on the surface, the obtained RpDAE-
ZIF67 particles were washed three times with deionized water.
The synthesized ZIF67 and RpDAE-ZIF67 were characterized by
PXRD. As shown in Figure 6B, the conspicuous reflections of
synthesized ZIF67 at 20 = 7.5, 10.5", 12.9°, 14.8°, 16.6°, 18.1°, 22.2°,
24.6°,25.7°,26.8°,29.7°, 30.7°, 31.6°, and 32.5° were associated with (0
11),(002),(112),(022),(013),(222),(114),(233),(224),(1
34),(044),(334),(244),and (2 3 5), respectively, of the simulated
ZIF67 single-crystal planes (Banerjee et al., 2008) (Guo et al., 2016).
Similar diffraction patterns were also observed in RpDAE-ZIF67,
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which indicated that the crystal structure of ZIF67 remained
unaffected after the enzyme being incorporated. Figure 6C
showed the FT-IR spectra of RpDAE and RpDAE-ZIF67. The
vibrational bands of bare ZIF67 in the range of 600-1,500 cm™
correspond to the characteristic stretch and bending modes of
imidazole rings. Furthermore, the band at 1,574cm™ can be

attributed to the stretching mode of C=N in 2-methylimidazole.
The above bands were all well represented in the spectrum of
RpDAE-ZIF67. In addition, RpDAE-ZIF67 had a new absorption
band at 1,658 cm™' compared to bare ZIF67, corresponding to the
stretching vibration mode of C=0 in the amide I bond, confirming
the existence of DAE within ZIF67.
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The relative activities of encapsulated DAE were evaluated, and
Figure 5A demonstrated nearly identical activities of RpDAE and
RpDAE-ZIF67 under 60°C. However, at higher temperatures (over
65°C), the encapsulated DAE displayed higher relative activity than
free DAE. At 80°C, the free DAE showed only 55.3% of relative
activity, whereas the encapsulated DAE retained 76.1% of relative
activity. These results demonstrated that encapsulating enzymes in
MOFs prevented conformational transitions at high temperatures
and improved the thermostability. As shown in Figure 5B,
encapsulated DAE reached maximum activity at pH 8.0 and
showed the higher tolerance in alkaline compared with free DAE.
Another purpose of immobilization is to make the biocatalyst easy to
recover and reuse, which is a key factor for economic viability.
Hence, the reusability of RpDAE was examined in consecutive
epimerization reactions. Accordingly, the encapsulated DAE was
separated from the reaction system by centrifugation. As shown in
Figure 6D, the encapsulated DAE was successfully cycled for five
times, and the residual activity was determined to be 56%. Wang
et al. immobilized laccase within ZIF67 by the one-pot synthesis
strategy, which maintained 59% residual enzyme activity after five
reaction cycles (Wang et al, 2020). The gradual loss of activity
during recycling may cause by mechanical damage to the enzyme.
The reusability can be attributed to the small window size of the
cages, physically preventing the leaching of the enzymes from ZIF67.

CONCLUSION

In the present study, a novel RpDAE was identified,
overexpressed in E. coli, purified, and characterized. RpDAE
activity was not dependent on the presence of metal ions and
can be enhanced by cobalt ions. The application potential was
evaluated by large-scale bioconversion from D-fructose to
D-allulose. Further, we pioneered the immobilization of DAE
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