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Tailoring superradiance to design 
artificial quantum systems
Paolo Longo, Christoph H. Keitel & Jörg Evers

Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a 
cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics 
added a new twist to this line of research by exploiting superradiance in order to construct artificial 
quantum systems. However, so far, systematic approaches to deliberately design superradiance 
properties are lacking, impeding the desired implementation of more advanced quantum optical 
schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance 
in extended media applicable across the entire electromagnetic spectrum, and show how it can be used 
to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not 
only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, 
but also leads to a unified view on and a better understanding of superradiance across different physical 
systems.

A single atom coupled to an environment is usually subject to spontaneous emission and experiences a frequency 
shift referred to as the Lamb shift. In an aggregation of atoms coupled via the radiation field, collective effects 
can significantly alter the properties compared to a single emitter. For instance, this was realised by Dicke1,2, who 
showed that N identical atoms confined to a volume much smaller than a wavelength cubed collectively behave 
as one “super atom”. This leads to exaggerated properties such as an acceleration of spontaneous decay by a factor 
of χDicke =  N (known as superradiance) or an enhanced frequency shift (sometimes also termed “collective Lamb 
shift”). Recently, also the correlated emission from extended ensembles of emitters has become the focus of exper-
imental and theoretical3–5 investigations, where either the system size and/or the minimal interatomic distance 
a exceeds the scale of the characteristic wavelength λ0. The systems considered cover a wide range of possible 
realisations, including atoms near a nanofiber6, thin vapor layers7, cold atomic ensembles8–12, or thin-film cavities 
with embedded Mössbauer nuclei in the realm of x-ray quantum optics13-20.

The present work is motivated by the observation that in particular the latter experiments in the field of 
nuclear quantum optics exploited a deliberate control of superradiance properties, going beyond a mere charac-
terisation. For instance, the observation of electromagnetically induced transparency at x-ray frequencies13 was 
enabled by the engineering of two distinct ensembles with different superradiance properties in a single sample. 
Another example is the implementation of spontaneously generated coherences14, which relied on the realiza-
tion of a spatially anisotropic electromagnetic environment via superradiance. In both cases, superradiance was 
employed to design an artificial quantum system, which in turn enabled the observation of the desired effect.

This raises the question whether a systematic and constructive approach could be established to exploit 
superradiance for the design of artificial quantum systems. Such design capabilities could overcome the limited 
resources accessible in state-of-the-art experiments, and thereby enable more advanced level schemes required, 
e.g., for the exploration of non-linear and quantum effects at x-ray energies.

Here, we address this question by developing an analytical framework for superradiance in extended media 
encompassing different system dimensionalities, interatomic couplings, and environments. As our main result, we 
then derive expressions describing how collective decay rates and frequency shifts can be controlled in extended 
media, and show how they can be used for the design of an artificial optical transition.

We start with a single two-level atom (bare transition frequency ω0 =  ck0, k0 =  2π/λ0, c is the speed of light) 
which is embedded in an electromagnetic environment (e. g., free space) and is characterised by its spontaneous 
decay rate Re(V0) ≡  γ0 (assuming Markovian reservoirs21). The coupling to the environment also results in a fre-
quency shift Im(V0)/2 ≡  δω0 (single-atom Lamb shift). In the presence of an identical, second atom, photons can 
be exchanged between the two atoms. Due to irreversible loss to the reservoir, the inter-atomic coupling 
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γ δω= +V 2ir r r r r ri j i j i j
 is complex21–25. Here, γr ri j

 (δωr ri j
) represents the real-valued cross-damping 

(cross-coupling) term for two atoms located at positions ri and rj, respectively. Considering all pair-wise couplings 
in an ensemble of N ≫  1 atoms, we find22,24
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where E denotes the complex eigenenergy of the collective single-excitation atomic state ϕ σ|Ψ〉 = ∑ | 〉=
+ 0i

N
ir1 i

  
(σ+i  and |0〉  signify the atomic raising operator for atom i and the vacuum state, respectively). Equation (1) is valid 
for all dimensions d of the atomic arrangement and for all (physically reasonable) couplings V r ri j

. Collective decay 
rates and frequency shifts are obtained via Γ  ≡  − 2Im(E) and Δ ≡  Re(E) −  ω0, respectively22,24.

In Dicke’s small-volume limit, all atoms couple to each other with equal strength, leading to a collective decay 
rate Γ  =  Nγ0 =  χDickeγ0 and a frequency shift Δ =  χDickeδω0 with an enhancement factor χDicke (see methods). To 
describe an extended sample, we consider ordered atomic arrangements, and focus on chains (d =  1), square lat-
tices (d =  2), and simple cubic lattices (d =  3), see Fig. 1. The smallest inter-atomic distance is given by the lattice 
constant a. Such ordered arrays are naturally provided by crystalline samples (e. g., solid state targets employed 
in x-ray quantum optics13–18, optical lattices of atoms26, or atom–cavity networks27). Furthermore, we consider a 
generic class of inter-atomic couplings
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which depend on the distance r between atom pairs. Here, the coefficient α classifies the distance-dependence 
and Ad is a dimensionless coupling strength. We also assume the atomic dipole moments to be uniformly aligned 
along the x3 axis. This orientation dependence is taken into account by the angle θ (see methods for further 
details). Since multiple terms of type (2) can be accounted for by a linear combination, in particular also the 
three common implementations of three-dimensional free space22, atoms confined to two spatial dimensions28, or 
atoms coupled to a one-dimensional waveguide29 are covered. The coupling parameters for these three examples 
are specified in table 1. Note that in principle α can be artificially engineered and controlled as has recently been 
demonstrated at optical frequencies10.

Results and Discussion
The solution of eigenproblem (1) (see methods) reveals that those eigenstates |k〉  whose wavevector’s magnitude 
matches the wavenumber set by the single atom transition, i. e., k =  |k| =  k0, exhibit the maximum possible decay 
rate Γ max =  χmaxγ0 if the constraint

α≤ <
+d0 1
2 (3)

is fulfilled. This criterion is a necessary condition for the emergence of superradiance and represents bounds on 
the allowed power laws of the coupling terms (exponent α in equation (2)) as a function of the lattice dimension 
d. For the remainder, we assume that eq. (3) is satisfied. The enhancement factor χmax is (see table 1 for quantities 
bd and cd, and methods for the prefactor Ld(α))
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Figure 1.  Design of an artificial optical transition through tailored superradiance. A d-dimensional lattice 
of atoms is embedded into an electromagnetic reservoir that mediates an inter-atomic coupling Vr ∝  1/rα, 
where atoms are separated by a distance r and the coefficient α characterises the distance-dependence (see 
equation (2)). We show that the resulting collective eigenstates can be utilised for the implementation of an 
artificial transition with tunable decay rate and transition frequency.
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In contrast to the maximum collective decay rate, we find that the collective frequency shift at k =  k0 is always 
zero independent of the actual physical realisation. We thus conclude that the case of maximum superradiance is 
unsuitable for a control of both collective decay rates and frequency shifts.

To circumvent this problem, we also consider states with wavenumbers around k =  k0. Indeed, for a large but 
finite system, also states with a wavenumber close to k0 can exhibit an enhanced decay rate. We illustrate this for 
the most relevant case α =  (d −  1)/2 (which includes the three common implementations mentioned below equa-
tion (2)). For |k −  k0|a ≪  1, we find
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where ξ ≡ −k k ab N( ) d0
d  and sinc(ξ) ≡  sin(ξ)/ξ. Results are shown in Fig. 2, scaled in such a way that they 

encompass different dimensions and coupling types. As mentioned before, those states which are maximally 
superradiant at k =  k0 do not exhibit a collective frequency shift. Rather, the frequency shift’s first two extrema 
around k0 occur at wavenumbers ≡ ±±k k h ab N/( )d0

d  (where .h 2 3311). This finding represents a unique 
feature as it is independent of the actual realisation and provides a signature suitable for a direct experimental test.

Equations (6) and (7) also offer means to design an artificial optical transition with desired decay rate and 
frequency shift. In fact, the enhancement factor χmax represents a characteristic scale for both decay rates and 
frequency shifts. As expected, we find that the particle number N and/or the sample volume   can be used to 
control χmax. But additionally, eqs. (4) and (5) explain how the dimensionality d, the type of the inter-atomic 
coupling as described by α, as well as the coupling strength to the environment can be used to manipulate the 
enhancement factor. This is of particular relevance, since these parameters could also be tuned in situ10,30. 
However, as mentioned previously, these quantities are not sufficient to change the ratio between decay rate and 
frequency shift. This only becomes possible by also controlling the wave number k (see Fig. 2). Experimentally, 
the wavenumber could be adjusted via the excitation angle of the probing light field.

From a broader perspective, our results also enable us to understand how superradiant states from different 
realisations can be compared and categorised. This is important, e. g., if superradiant ensembles realised using 
different individual constituents are to be combined to an effective artificial quantum system. To this end, suppose 
that we can control the atom number and the volume such that → ∼ ≡N N f NN  and   →

∼
≡ f , respectively, 

where fN and f   are arbitrary positive real numbers. Under this transformation, the enhancement factor changes as
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This behaviour allows us to classify superradiant states from systems with different dimensionality and types of 
coupling. For instance, we may say that two extended samples characterised by (d, α) and (d′, α′ ), respectively, are 
similar if they satisfy the same transformation rule (8) (leading to (α −  1/2)/d =  (α′  −  1/2)/d′ ). As an example, if 
a one-dimensional system (d′  =  1) should “imitate” the superradiant state from three-dimensional free space 
(d =  3, α =  1), the electromagnetic environment would have to be “engineered”10 such that α′  =  2/3. Similarly, if 
an extended sample should realise small-volume superradiance, transformation (8) must reproduce the transfor-
mation of a Dicke system, which is simply χ χ→

Dicke Dicke with χDicke =  N and χ χ=
∼
=


N f NDicke Dicke. Hence, 

α =  (1 −  d)/2 ≥  0, which reveals that only extended samples in one dimension (d =  1, otherwise we would have 
α <  0) can behave “Dicke-like”.

Figure 2.  Collective decay rates and frequency shifts. Decay rates (black dashed curve) and frequency shifts 
(blue solid curve) as function of the wavenumber for α =  (d −  1)/2. The figure is valid independent of 
dimensionality and coupling type, due to the scaling of decay rate χ χ χ≡ − −ˆ ( 1)/( 1)k k max , shift 

δω γ χ∆ ≡ ∆ − −ˆ [( )/ ]/[ ( 1)]k k 0 0 max  and wavenumber ξ ≡ −k k ab N( ) d0
d . Note the offset h between the 

extrema of the frequency shift and the decay rate maximum.
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In conclusion, we have studied single-photon superradiance in extended media, and showed how superradi-
ance can be engineered in such a way that an artificial optical transition with tunable decay rate and level shift is 
realised. This result provides the basic building block for a systematic approach towards engineering advanced 
artificial quantum systems via superradiance by design. A promising avenue for future studies is the extension of 
our work to coupled sub ensembles with the goal to design artificial multi-level atoms13.

Methods
For an extended lattice, the plane wave ansatz ϕ = N(1/ )er

kri  for eq. (1) yields the eigenstates’ decay rates 
Γ k =  − 2Im(Ek) and frequency shifts Δk =  Re(Ek) −  ω0 as

γΓ = + kRe[ ( )], (9)dk 0 

δω∆ = + k1
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Here, r =  (x1, … , xd)T denotes a d-dimensional lattice vector with components xi =  ani, i =  1, … , d, 
= − + …n N N/2 1, , /2i

d d , and Nd  is even. Likewise, k =  (k1, … , kd)T is the wavevector of the collective atomic 
excitation. The sum runs over all combinations of {ni} except n1 =  …  =  nd =  0 and the couplings depend on the 
distance = = + … +r a n nr d1

2 2  between atoms. We assume the atomic dipole moments to be uniformly 
aligned along the x3 axis (e. g., by applying a weak magnetic field). Thus, for d =  1, 2 the distance vector r (in the 
x1-x2 plane) is perpendicular to the dipole moments, and for d =  3 we have to take into account the polar angle 
θ =  arccos(x3/r). Furthermore, we make use of the assumptions N ≫  1 (many atoms) and k0a >  1 (extended sample).  
The decay rate eq. (9) can also be rewritten in terms of the enhancement factor

χ
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To arrive at the final expressions eqs (4–7), we further manipulate eqs (9–12) as follows. In this paper, we focus 
on the system’s eigenstates and—to keep the analysis general—do not consider geometric details or questions of 
how to excite and probe the system since such details vary from experiment to experiment. Around k ≡  |k| =  k0, 
we can utilise a continuum formulation, rewrite the lattice sums in eq. (11) into an integral, and perform the 
angular integration for couplings of type (2) (see supplementary information for further technical details of the 
calculation), leading to
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The dimension-dependent quantities Ad, bd, cd, and gd are listed in table 1 (for instance, Ad is real for d =  1, 2 and 
purely imaginary for d =  3). Note that the factor exp(± ik0r) from eq. (2) in the eigenproblem (1) can be under-
stood as a radial translation in wavenumber space. In the shifted frame, a long-wavelength limit of the collective 
atomic excitation (which can be accounted for by a continuum description) corresponds to k →  k0. This contin-
uum formulation is applicable in the range  π−k k ab N/ d0

d . Further, in eq. (2), we have not included expo-
nential damping of the form exp(− k0r/), where  denotes a dimensionless absorption length that, for instance, 
empirically accounts for material imperfections. Such a damping factor in the integral in eq. (14) would lead to a 

d Re[Ad] Im[Ad] bd cd   gd(.)
1 ≥ 0 = 0 1

2
1 cos(⋅ )

2 ≥ 0 = 0
π

1 π2 cos(⋅ )

3 = 0 ≤0
π
3

4
3 π ⋅ ϑ2 sin2 sin(⋅ )

Table 1.   Dimension-dependent quantities. The table summarises the quantities appearing in eqs. (4), (13), 
(14), and (16)–(19) as function of the system dimension d for the three considered example cases. Here, 
ϑ = ˆ kkearccos( / )x3

 denotes the angle between the eigenstate’s wavevector k and the x3 axis.
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broadening and modification of the k =  k0-criterion for maximal superradiance, going beyond the scope of this 
paper. Details on the calculation of the integrals in eq. (14) can be found in the Supplementary Material.

The maximum enhancement factor (4) can be cast into the equivalent forms ( = Nad denotes the sample 
volume, ρ = N /  is the number density, and χ χ− 1max max since N ≫  1)
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Which formulation to choose from eqs. (16)–(18) depends on which quantities can be controlled in an 
experiment.

If for small volumes the length scale set by the inter-atomic distance a is effectively eliminated from the 
single-excitation eigenproblem (1) (possibly neglecting divergent contributions to the inter-atomic coupling2,31), 
all atoms couple to each other with equal strength V0. The resulting equation ω ϕ ϕ− = − ∑ =E V(i/2) /j

N
r r0 0 1 j i

 
(which must hold for all ri) yields a maximal decay rate for a spatially constant wavefunction with equal relative 
phase between all atom pairs, representing the maximally symmetric Dicke state. For this state, 
Γ  =  − 2Im(E) =  Nγ0 and Δ =  Re(E) −  ω0 =  Nδω0.
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This Article contains formatting errors in the labeling of the following Equations,
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In Equation 18,
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