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The successive emergence of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) variants has presented a major challenge in the management of the

coronavirus disease (COVID-19) pandemic. There are growing concerns regarding the

emerging variants escaping vaccines or therapeutic neutralizing antibodies. In this

study, we conducted an epidemiological survey to identify SARS-CoV-2 variants that

are sporadically proliferating in vaccine-advanced countries. Subsequently, we created

HiBiT-tagged virus-like particles displaying spike proteins derived from the variants to

analyze the neutralizing efficacy of the BNT162b2 mRNA vaccine and several therapeutic

antibodies. We found that the Mu variant and a derivative of the Delta strain with E484K

and N501Y mutations significantly evaded vaccine-elicited neutralizing antibodies. This

trend was also observed in the Beta and Gamma variants, although they are currently

not prevalent. Although 95.2% of the vaccinees exhibited prominent neutralizing activity

against the prototype strain, only 73.8 and 78.6% of the vaccinees exhibited neutralizing

activity against the Mu and the Delta derivative variants, respectively. A long-term analysis

showed that 88.8% of the vaccinees initially exhibited strong neutralizing activity against

the currently circulating Delta strain; the number decreased to 31.6% for the individuals

at 6 months after vaccination. Notably, these variants were shown to be resistant to

several therapeutic antibodies. Our findings demonstrate the differential neutralization

efficacy of the COVID-19 vaccine and monoclonal antibodies against circulating variants,

suggesting the need for pandemic alerts and booster vaccinations against the currently

prevalent variants.
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INTRODUCTION

The rapid and nearly unrestricted global spread of coronavirus disease (COVID-19) has resulted in
the evolution of various mutants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). With vaccines being the principal effective modality to curtail the pandemic, it is crucial to use
them effectively and prepare for a rise in the number of immune-escape mutants that can evolve
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due to the selection pressure exerted. Based on their clinical
and epidemiological significance, theWorld Health Organization
(WHO) has identified variants of concern (Alpha, Beta, Gamma,
and Delta), variants of interest (Lambda and Mu), and variants
under monitoring (1). Although the Delta strain is the principal
mutant responsible for the majority of the infections currently,
variants with a few more amino acid substitutions in the Delta
spike are emerging.

Previous studies have shown that mRNA vaccines such as
BNT162b2 and mRNA-1273 confer robust protection against
SARS-CoV-2 (2). However, several recent reports have shown
that antibody titers drop markedly after 6–8 months of vaccine
administration (3–6). However, there has been no temporal
and comprehensive study of neutralizing activities against the
increasing number of delta derivatives.

Several human monoclonal antibodies have been used for the
treatment of COVID-19, which contribute to the reduction of
viral load and symptoms (7, 8). However, some mutants have
been shown to be resistant to these therapeutic antibodies, and
the neutralizing capacity of the antibodies is greatly reduced
(9, 10).

We recently developed a rapid neutralizing test, hiVNT, which
enables the detection of SARS-CoV-2 neutralizing antibodies in
sera within 3 h (11, 12). Therefore, by using hiVNT, we aimed
to evaluate the efficacy of vaccine-derived neutralizing antibodies
(nAbs) and therapeutic antibodies against the increasingly
emerging recent variants.

MATERIALS AND METHODS

Subjects and Ethics Statement
Participants were recruited from among the medical staff of
Yokohama City University Hospital in March 2021. Written
informed consent was obtained from all the participants.
Blood samples were collected 1 week and 6 months after the
administration of the second dose of Pfizer/BioNTech mRNA
vaccine. Until the assessment date, we collected 126 one-week
sera samples and 98 six-month sera samples, and all the samples
were used. We randomly selected a set of 19 samples with
blinding to demographic characteristics and designated this set
as “Pvac19 sera panel.” Prior to the experiment, all samples were
tested for antibodies against SARS-CoV-2 spike and nucleocapsid
protein and were confirmed to be positive and negative,
respectively (there was no previous/breakthrough infection).
Blinding was not deemed necessary because the experiments did
not involve any subjective assessment. No sample size calculation
was performed. The study was conducted in accordance with
the Declaration of Helsinki. This study was approved by the
Yokohama City University Certified Institutional Review Board
(Reference No. B210300001).

Spike Haplotype Analysis
A total of 3,302,486 full genomes extracted from human subjects
were downloaded from GISAID (13, 14) and the National Center
for Biotechnology Information (NCBI) up to September 23,
2021. In total, 2,400,159 genomes met a data quality criterion

of a < 200 bp gap. After a pairwise sequence alignment was
performed with respect to the reference genome, we checked for
improper alignments which induce artifactual frameshifts and
removed such sequences from further analysis. Furthermore, we
eliminated the hyper-variant samples with over 500 mutations.
We did not observe any recurrent stop gain mutations in
our analysis. Variant annotation was performed as described
in our previous report (15). Briefly, a SARS-CoV-2 genome
was first aligned in a pairwise manner against the NC_045512
reference genome using the Needleman-Wunsch algorithm (16)
and differences from the reference genome were extracted as
genome changes and subsequently annotated for the types of
variants and for amino acid changes. A set of variants associated
with amino acid changes in the spike protein were extracted
for each genome. Such a set of variants was called the spike
haplotype. Distinct spike haplotypes were identified from the
entire set of genomes. Next, spike haplotypes were assigned to
each genome, including the subset spike haplotypes. Therefore, a
single genome could be classified into multiple spike haplotypes.
For instance, a Delta variant spike haplotype consisting of T19R,
256_258delinsG, L452R, T478K, D614G, P681R, and D950N is
also assigned to another haplotype group of T19R, L452R, T478K,
D614G, P681R, and D950N, which is missing a 256_258delinsG
variant. After grouping, the number of immune-escape variants,
as reported previously (17–20), as well as the momentum, a
metric of how quickly the frequency of a haplotype is increasing,
were evaluated to identify the best candidates for antibody
neutralization experiments.

Rapid Neutralization Test (HiVNT)
hiVNT was performed as described previously (11, 12). Briefly,
the target cells seeded in 96-well plates were inoculated with
50 µL of HiBiT-tagged virus-like particles (hiVLPs) containing
diluted serum (1:20–1:43,740 dilution for the quantitative assay;
1:20 dilution for the qualitative assay). Intracellular luciferase
activity was measured at 3 h after inoculation.

For the qualitative assay, the hiVNT score (percentage of
luminescence signal inhibition) was calculated as follows:

RLU
(

without serum
)

− RLU (with serum)

RLU
(

without serum
)

− RLU (blank)
× 100 (1)

For the quantitative assay, the dilution factor of serum that
resulted in a 50% reduction in luminescence compared with
that in the non-serum control was set as the hiVNT50. We
calculated the hiVNT50 value using the curve-fitting tool ImageJ
(NIH). When the serum exhibited no observable neutralizing
activity to interpolate hiVNT50, it was assigned a hiVNT50

value of 10. Alternatively, cells were inoculated with 50 µL of
hiVLPs containing diluted antibody (final concentration of 0.64–
50,000 ng/mL for REGN-CoV2 and 0.32–25,000 ng/mL for LY-
CoV). REGN-CoV2 and LY-CoV were research grade and were
obtained from ProteoGenix and Invivogen, respectively. The
concentration of the antibody that resulted in a 50% reduction
in luminescence compared with that of the non-antibody control
was set as EC50. The antibodies were tested individually, and the
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FIGURE 1 | Identification of vaccine-escape variants. (A) Flow of this research. Spike haplotype analysis was used to search for mutants with specific mutations, and

those with high growth rates were extracted and tested for neutralization. (B) Neutralizing activity of Pvac19 sera panel (n = 19, 1 week after the second dose) against

each variant, calculated via a rapid neutralization test (qualitative hiVNT). The percentage of inhibition of viral infection by 20-fold dilution of serum is shown as the

hiVNT score in the scatter plot. The mean of two independent determinations is plotted. The brown lines indicate the mean hiVNT scores, the values of which are

displayed above the graph.

FIGURE 2 | Neutralization of SARS-CoV-2 variants by mRNA vaccine sera and therapeutic antibodies. (A) Neutralizing activity of Pvac19 sera panel (n = 19, 1 week

after the second dose) against each variant. Serum dilutions showing 50% inhibition of infection (hiVNT50) were determined via a quantitative hiVNT. The dotted line

indicates the cut-off threshold of this assay (hiVNT50 = 20). The mean of two independent determinations is plotted. The brown lines indicate the geometric mean

titers (GMT) ± 95% confidence intervals, the values of which are displayed above the graph. (B) Neutralization of each mutant strain by two dual antibody cocktails

[REGN-CoV2; REGN10933 (Casirivimab) and REGN10987 (Imdevimab), and LY-COV; LY-CoV555 (Bamlanivimab) and LY-CoV016 (Etesevimab)]. The numbers

indicate the 50% effective concentration (EC50, ng/mL), determined by two independent experiments. Since these nAbs are treated as a cocktail, they are considered

effective if the EC50 of either antibody is equivalent to or lower than that of the D614G control.

cocktail was considered effective against the viral mutant if it was
neutralized by at least one antibody in the cocktail.

RESULTS

Identification of Vaccine-Escape Variants
Of the 3,302,486 SARS-CoV-2 full genomes downloaded from
GISAID on September 23, 2021, we selected 2,400,159 genomes

that met the data quality criteria for the spike haplotype analysis.
We identified 12,248 distinct spike haplotypes (i.e., sets of
variants) with over 10 recurrences from the whole genome set
using previously reportedmethods (15, 16). Based on the number
of cases, the momentum, and immune escaping codons or
mutations (17–20), we evaluated the number of immune-escape
variants and the momentum to identify the best candidates for
neutralization tests (Figure 1A).
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FIGURE 3 | Long-term analysis for vaccine-elicited antibodies against the indicated strains. Positive rates for neutralizing antibodies determined via a qualitative hiVNT

(n = 126 for 1 week and n = 98 for 6 months after the second dose) against the indicated variants. The mean of two independent determinations is plotted. The

brown lines indicate the mean ± 95% confidence intervals. The percentage of neutralization potency based on the hiVNT score of each serum sample against the

indicated variants is shown in the pie chart. An hiVNT score below 40 (equivalent to pvNT50 < 50) indicates non-neutralizing serum, a score of 40–70 (equivalent to

pvNT50 > 50 but < 200) indicates weakly neutralizing serum, and a score above 70 (equivalent to pvNT50 > 200) indicates strongly neutralizing serum. See also

Supplementary Figure 1 for a description of this definition. The mean of two independent determinations is plotted. ****P < 0.0001 (unpaired t test).

To comprehensively identify the vaccine-escape strains, we
performed a virus-like particle (VLP)-based rapid neutralization
test (hiVNT) (11, 12) on post-vaccination sera collected from
individuals one week after administration of the second dose of
the BNT162b2 mRNA vaccine. In this study, a hiVNT score of
40 was set as the lower threshold, which is equivalent to 50% of
the neutralizing titer against SARS-CoV-2 pseudovirus (pvNT50)
>50, and a hiVNT score of 70 was set as the higher threshold
(equivalent to pvNT50 >200) (Supplementary Figure 1). These
thresholds were decided based on a recent study reporting that
the pvNT50 in sera of individuals with vaccine-breakthrough
infections was approximately 200 (21). Samples that fell below
the lower threshold were considered to exhibit no neutralizing
activity, those between the lower and higher thresholds were
considered to exhibit weak neutralizing activity, and those
above the higher threshold were considered to exhibit strong
neutralizing activity.

A “Pvac19 sera” panel (sera from 19 individuals collected
one week after the second dose of Pfizer/BioNTech mRNA
vaccine was administered) were used to determine the hiVNT
score for each variant. The mean hiVNT score for most
variants was approximately 80, indicating that the vaccine could
induce sufficient levels of neutralizing antibodies against these
mutants as well. However, four variants, namely Beta and
Delta derivatives (Delta+E484Q, Delta+E484K+N501Y), Mu,
and C.1.2, showed relatively low hiVNT scores (Figure 1B),
suggesting that the neutralizing activity of post-vaccination sera
against these variants might be weak.

Neutralization of SARS-CoV-2 Variants by
Vaccine Sera and Therapeutic Antibodies
Next, we quantitatively evaluated the neutralizing activity against
these variants. The serum dilution factor that inhibits VLP entry
by half (hiVNT50) was assessed to demonstrate the neutralizing
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FIGURE 4 | Epidemiological characterization of vaccine-escape variants. The upper graph shows the number of variants detected from week 1 to week 32 in 2021,

and the lower pie chart shows the countries where the variants were detected. The numbers in the pie chart represent the number of detections.

activity of the sera against these variants. The geometric mean
titers (GMTs) were 225 for D614G, 38 for Beta, and 37 for Delta
+ E484K + N501Y (Figure 2A), suggesting that the sera had 6-
fold reduced neutralization efficacy against the Beta and Delta
variants. However, the GMTs for all variants were above the
effective threshold, suggesting that the vaccine-derived nAbs can
neutralize the majority of variants tested.

We then evaluated the efficacy of the therapeutic antibodies
(10, 22), REGN10933 (casirivimab), REGN10987 (imdevimab),
LY-CoV555 (bamlanivimab), and LY-CoV016 (etesevimab),
against these mutants. In the casirivimab/imdevimab
combination, all tested mutants were found to be neutralized by
at least one of the two antibodies in the cocktail (Figure 2B).
In contrast, bamlanivimab and etesevimab were less effective,
especially against the Beta and Gamma strains (Figure 2B).
Etesevimab was still effective against Delta, but the effect was
reduced in Delta + E484K + N501Y. We further demonstrated
that the Mu variant can also cause cell–cell fusion, similar to the
Delta variant (Supplementary Figure 2), which is highly likely
to promote viral resistance to nAbs (23).

Long-Term Analysis for Vaccine-Elicited
Antibodies Against the Variants
We recently reported that neutralizing antibody titers drop to
20% at 6 months after vaccination (24). To examine the vaccine-
elicited neutralizing antibody retention on a larger scale and over
a longer period of time, we further increased the number of serum
samples and compared the hiVNT scores of the variants at both
1 week (n= 126) and 6 months (n= 98) post-vaccination.

At 1 week after vaccination, strong neutralization (hiVNT
score > 70) of all variants was observed in most of the sera
samples, ranging from the highest (95.2%) in D614G to the
lowest in the Beta variant (70.6 %) (Figure 3). Delta + E484K

+ N501Y and Mu showed a pattern similar to that of Beta,
with 73.8% and 78.6% of the samples strongly neutralized,
respectively. The proportion of sera samples that did not exhibit
neutralizing activity was notably lower than that of those
exhibiting neutralizing activity for each variant. The highest
occurrence of nAb escape (including weak and non-neutralizing
activity, i.e., hiVNT score < 70) was noted with Beta (29.4%),
followed by Delta + E484K + N501Y (26.2%) and Mu (21.4%).
This indicates that even immediately after two doses of mRNA
vaccine, ∼20–30% of vaccinees may be at a risk of breakthrough
infection of these variants.

Our results indicated that, at 6 months after vaccination,
82.7% of the vaccinees exhibited strong neutralizing activity
against the conventional strain. However, at 6 months after
vaccination, strong neutralizing activity was significantly reduced
against all mutant strains, ranging from the highest (60.2%)
in the Lambda to the lowest in the Delta + E484K + N501Y
variant (15.3 %) (Figure 3). This result suggests that the strong
neutralizing activity against SARS-CoV-2 variants wane in 6
months after vaccination, yet a weak neutralization is present.

Epidemiological Characterization of
Vaccine-Escape Variants
Finally, we examined the regions in which these strains of
concern were mainly detected. Our epidemiological analysis
demonstrated that the frequency of Delta + E484Q increased
since week 24 of 2021 and the strain is still detected worldwide.
Delta + E484K + N501Y was detected only in Turkey from
week 26, Mu was prevalent in South America from week
14, and C.1.2 was prevalent in South Africa from week 26
(Figure 4). The vaccination status in these countries is shown
in Supplementary Figure 4. We noticed that many of these
haplotypes emerged before widespread vaccination, suggesting
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that vaccination might not be the likely cause of this emergence.
Since vaccine-induced humoral immunity is less effective against
these variants, their spread needs to be monitored carefully.

DISCUSSION

In this study, by combining haplotype analysis and hiVNT,
we identified immune evasion variants that showed an
increasing local trend. In addition, we tested the long-term
efficacy of the Pfizer/BioNTech mRNA vaccine against
these variants.

With the rise in emerging variants such as Delta derivatives,
Mu, and C.1.2, concerns regarding the efficacy of the
currently available vaccines and antibody cocktail therapy
have emerged. Our results show that the vaccine-derived
nAbs and the antibody cocktail exhibit neutralization efficacy
against these variants. We observed this effect in the sera
of vaccine recipients shortly after the administration of
the second dose when the nAbs were considered to be at
peak levels.

As vaccine-derived nAbs wane over time, follow-up studies
are necessary to assess the persistence of nAbs against these
variants. In fact, our analysis using sera 6 months after
vaccination showed that the positive rate of nAb against the
conventional strain was relatively maintained, while that against
the mutant strains was markedly decreased. In particular,
only about 15–30% of vaccinees showed potent neutralizing
activity against Delta, Delta + E484K + N501Y, and Mu
strains. A comprehensive depiction of antibody prevalence by
a hiVNT mutant panel not only allows for a rapid assessment
of vaccine-elicited humoral immunity, but also highlights the
need for booster vaccinations in areas where the mutant strains
are prevalent.

Several reports have shown that after 2–3 months of
vaccination, the neutralizing activity on variants such as Delta
strains is significantly lower than that of WT (25). We have also
shown a faster time-bound deterioration in neutralizing activity
against the Delta strain (38% negative for neutralizing activity)
than the WT strain (7% negative for neutralizing activity) in
6 months after vaccination, and this may be a major factor in
breakthrough infections caused by Delta.

Analysis of the therapeutic antibodies against the variants
showed that imdevimab had high neutralizing activity against
all the mutants tested, but casirivimab had reduced activity
against Beta, Gamma, and Mu. These strains commonly include
the E484K mutation, and this mutation is considered to be a
limitation associated with casirivimab, as previously indicated
(10). Unfortunately, bamlanivimab showed no neutralizing
activity against the variants except Alpha, suggesting that it
is ineffective against the current prevalent strains. Etesevimab
showed absolutely no neutralizing activity against Beta and
Gamma, consistent with a previous report (9), and we found that
this mAb was less effective against other mutant strains besides
Delta and Lambda. The N501Y mutation was common in the
strains with reduced efficacy, suggesting that this mutation is a
limitation of etesevimab.

Our results show that the Delta derivatives possess
a higher vaccine escape than their parent Delta strain.
Likewise, the Mu variant possesses a higher vaccine-escape
ability than the Delta variant and also exhibits cell–cell
fusion property like the latter. In general, an increased
cell-cell fusion capacity indicates a high concentration
of virus (or spike) in the fusion zone, and a relatively
high concentration of nAbs is required to prevent the
infection of neighboring cells (26). Therefore, such viral
strains are more likely to evade humoral immunity.
Hence, these variants could present a major challenge
if either or both, or other immune escape mutants
progresses to replace the Delta variant as the most
predominantly transmitted variant. In the future, vaccines
and therapeutic antibodies should be designed to address
this problem.
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