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A B S T R A C T   

Langerhans cells (LCs) are specialized dendritic cells (DCs) that play a defense role in recognizing foreign an
tigens, in tissue where antigenic exposures occur, as in the skin and mucous membranes. LCs are able to 
continuously move within the tissues thanks to dendritic contraction and distension performing their surveil
lance and/or phagocytosis role. These cells are characterized by the presence of Birbeck granules in their 
cytoplasm, involved in endocytosis. LCs have been characterized in several classes of vertebrates, from fish to 
mammals using different histological and molecular techniques. The aim of the present review is to define the 
state of art and the need of information about immunohistochemical markers of LCs in different classes of 
vertebrates. The most used immunohistochemical (IHC) markers are Langerin/CD207, CD1a, S-100 and TLR. 
These IHC markers are described in relation to their finding in different vertebrate classes with phylogenetical 
considerations. Among the four markers, Langerin/CD207 and TLR have the widest spectrum of cross reactivity 
in LCs.   

1. Introduction 

Dendritic cells (DCs) have been described in all lymphoid organs as 
in the liver, intestine and lungs (Vermaelen and Pauwels, 2005). Due to 
their ability to recognize and bind foreign antigens, DCs localize wher
ever there is an antigenic exposure, such as in the skin and mucous 
membranes. At this stage, the DCs are still immature, showing a high 
affinity in intercepting and binding the antigen, but a lower ability to 
stimulate T lymphocytes (Gallucci and Matzinger, 2001). If the detected 
antigen shows molecular traces of pathogens or tissue destruction, DCs 
change becoming mature. Once activated, DCs migrate to the lymph 
nodes, triggering the immune response and presenting antigenic pep
tides to specific T cells. There is a division within the family of DCs into 
myeloid DC (mDC) and plasmacytoid DC (pDC) (Spits et al., 2000). The 
pDCs, when exposed to viral antigens, release high doses of Interferon 1, 
and upon maturing, trigger an adaptive immune response. Langerhans 
cells belong to the myeloid line and are found in basal and suprabasal 
layers of the epidermis and in oral, nasal, pulmonary, corneal, vaginal, 
rectal mucosal epithelia (Romani et al., 2012). They can be character
ized for the presence of Birbeck granules in their cytoplasm, which can 
play a role in endocytosis. Langerhans cells are in continuous movement, 
elongating the dendrites between the keratinocytes in the skin, playing 

their role as overseers (Nishibu et al., 2006). By means of these move
ments of contraction and dendritic distension, they can control even the 
most external layers of the skin, managing to infiltrate through the 
cellular junctions, up to the stratum corneum and also migrate to the 
underlying connective tissue (Lauriano et al., 2019). In a state of 
quiescence, LCs help to regulate the cell populations of the skin, while, 
in alert conditions and together with keratinocytes, trigger an immune 
response which aims to activate T lymphocytes (Klechevsky et al., 2008; 
Polak et al., 2012). Keratinocytes, through the release of cytokines, can 
modulate the functionality of LCs, modifying the type of induced 
response such as TNF alpha which is a powerful activator (Groves et al., 
1995). Several studies report the presence of cells morphologically and 
functionally similar to the LCs of mammals, also in the other vertebrate 
classes (Kordon et al., 2016; Lauriano et al., 2014, 2018, 2019, 2020; 
Lovy et al., 2006, 2009; Zaghloul et al., 2017). These cells do not present 
only long dendrites but are characterized from cytoplasmic granules 
similar to the Birbeck ones and have been highlighted with LCs typical 
markers, such as CD207 and S-100, and for this reason they are called 
Langerhans–like cells. 

Inflammation is an animal defense mechanism, which aims to sani
tize organs and tissues, eliminating any pathogens (Loynes et al., 2018) 
and starting the repair process (Ferrero-Miliani et al., 2007; Medzhitov, 
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2010). It is an innate nonspecific mechanism because cellular or tissue 
damage begins by inducing a vascular reaction, releasing the flogosis 
chemical mediators. Vasodilatation occurs, increase in capillary 
permeability with the appearance of edema, and leukocyte inflation 
(Chertov et al., 2000). This characterizes the clinical picture of inflam
mation with calor, rubor, tumor, dolor e function laesa (Takeuchi and 
Akira, 2010). The first signal for this defensive mechanism is the release 
of cytokines (Mahla et al., 2013). Being implicated in inflammatory 
processes, LCs represent an excellent indicator of diagnosis of various 
pathologies. Many scientific studies have shown that these cells are 
easily detected by immunohistochemistry using antibodies to CD1a, 
CD207 (Langerin), S-100 and TLR. Frequently, these antibodies are 
associated with each other to confirm any pathological diagnosis. The 
aim of this review is to make know the state of art about most common 
immunohistochemical markers of Langerhans cells in Vertebrate. 
Characterization of these cells, using the same antibodies in the different 
vertebrate classes, can clarify the immune system phylogenesis and 
confirm their homology with mammalian Langerhans cells. Moreover, 
immunohistochemical characterization of these cells in vertebrate 
models, could be applied in the diagnosis of skin and mucous membrane 
human diseases. 

1.1. Laboratory validation of primary antibodies 

Immunohistochemistry is an experimental technique whose results 
are based on analyte interpretation, specific reagents and the proper use 
of controls. The concept of specificity is based on the property of anti
bodies to recognize specific epitopes. The binding of antibody to the 
target molecule in a mixture can be tested by means of absorption 
control prior to application to the tissue. This, however, does not 
demonstrate the specific positivity of the antibody in the tissue. The 
most stringent positive controls are carried out by the presence of the 
antigen that is known in another tissue of the same species examined 
(internal positive control) or using a different sample from another 
species (external positive control) which is known to contain the target 
molecule. A negative control demonstrates the reaction between the 
epitope of the target antigen and the paratope of the antibody. Although 
a manufacturer demonstrates specificity through Western Blot, this does 
not mean that this specificity also occurs in tissue samples. Commonly 
negative control is done by omitting the primary antibody, but this 
procedure does not demonstrate its bond specificity. For a valid negative 
control, serum or specific isotypical immunoglobulins shall be replaced 
at the same concentration as the primary antibody (Hewitt et al., 2014). 

Over than the above cited immunohistochemistry laboratory pro
cedures to highlight the specificity of an antibody, the literature review 
highlighted several strategies to validate the use of antibodies for 
research applications (Baker, 2015a, b; Bradbury and Plückthun, 2015; 
Couchman, 2009; Edfors et al., 2018; Uhlen et al., 2016;). 

In one of the most complete study in defining how validate anti
bodies use for research applications Edfors and collaborators (2018) 
reported the results of the following five optimal methods: orthogonal 
methods, genetic knockdown, recombinant expression, independent 
antibodies, and capture mass spectrometry analysis. They showed that 
all these methods can be used for antibodies validation in a systematic 
and standardized way for Western Blot applications. The same methods 
can be also used for other antibodies research application as 
immunohistochemistry. 

It is of fundamental importance the use of these methods in order to 
avoid false positive and doubtful results. Immunohistochemistry sup
ported by the above described methods is then a powerful tool for tissue 
research applications in both mammalian and non-mammalian 
vertebrates. 

The following paragraphs review the main antibodies using in the 
detection of Langerhans cells in mammalian and non-mammalian 
vertebrates. 

2. Langerin/CD207 

Langerin is a C-type lectin detectable in many cell types such as 
Langerhans cells (LCs) and dendritic cells (DCs), in most epithelial and 
connective tissues, which plays a role in the recognition of foreign an
tigens such as pathogens and bacteria (Mayer et al., 2007). Langerin acts 
as an inducer of Birbeck granule formation in human (Valladeau et al., 
2000). In the study of Valladeau et al. (2002), Langerin/CD207 was used 
to mark the LCs, in mouse. The results showed that CD207, like the 
human one, also leads to the formation of pentalamellar membranes 
typical of Birbeck granules (Birbeck et al., 1961; Wolff, 1967), empha
sizing the conservation of its function. 

Several studies have shown the presence of similar LCs in zebrafish 
(He et al., 2017; Lin et al., 2019). It is still unclear whether these cells are 
actually LCs, as the ontogenesis of Langerin/CD207 in zebrafish is not 
known. Identifier markers such as Birbeck granules have been found in 
zebrafish. Lugo-Villarino et al. (2010) identified cells which were 
morphologically similar to DC of mammals in Danio rerio, showing that 
the cellular constituents of the antigen presentation process seem to be 
well preserved from teleosts to higher vertebrates. The presence of 
DCs-like cells in teleosts has been demonstrated in salmonids (Fuglem 
et al., 2010; Haugarvoll et al., 2006; Ohta et al., 2004); and in the turbot 
(Psetta maxima) (Hu et al., 2010). Further studies have shown the 
expression of markers such as MHC II (Koppang et al., 2004; Morrison 
et al., 2006; Olsen et al., 2011) and Langerin/CD207, highly conserved 
among vertebrates (Lovy et al., 2009). CD/207 antibody is considered 
one of the most efficient markers of Langerhans and dendritic cells. 

2.1. Human 

Pagliari et al. (2011) conducted research on LCs in para
coccidiomycosis (PCM). This fungal infection is caused by Para
coccidioides brasiliensis and occurs with evident skin and mucous 
membrane lesions. LCs were found in the skin of the control group 
specimens by immunoreaction with CD207 (Fig. 1). Furthermore, in the 
group with PCM lesions, the LCs were localized in the inflammatory 
infiltrates, in the dermis and in the corium of the lesions. Powell et al. 
(2017) showed that Langerin/CD207 is a marker to confirm LCs his
tiocytosis (LCH). By immunohistochemistry, the proliferation of positive 
CD1a and CD207 cells was noted, which, and, together with S-100, 
confirms that these are the most effective markers for the diagnosis of 
histiocytosis. Hattori et al. (2011) characterized the expression of 
CD207 in the cornea by confocal immunohistochemistry. LCs CD207 
positive were localized in the epithelium and corneal stroma. Morpho
logically the LCs in the stroma showed a more rounded soma while those 
present in the epithelium were characterized by long dendrites and a 
smaller soma. These data allow to distinguish two different LCs resident 
populations in the stroma and epithelium. 

2.2. Mammals 

Dauch et al. (2013) studied the role of LCs in diabetic mice with 
mechanical allodynia. By immunoreaction with CD207, an increase in 
the number of LCs in the skin of the paw was found in this model. This 
increase could be caused by a proliferation of LCs in response to the 
diabetic pathological condition, or an increased recall of immature LCs 
towards the epidermis. The data collected demonstrate an increase of 
CD207 positive cells in the subepidermal plexus under conditions of 
mechanical allodynia (Dauch et al., 2013). Pergolizzi et al. (2020a) 
testing the biological effects of green coffee beans in rat paw edema, 
demonstrated positive LCs in inflamed skin after carrageenan adminis
tration through immunohistochemical analysis with CD207 and S-100. 
In an ex vivo rabbit corneal keratitis model, Pergolizzi et al. (2020b) 
demonstrated the presence of Langerin/CD207 positive dendritic cells in 
basal epithelial layer and in the stroma. Lauriano et al. (2020), carried 
out a study on the expression of Langerin/CD207 in the respiratory 
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system of Stenella coeruleoalba. Immunohistochemistry with CD207 has 
shown dendritic cells like LCs in the lung and associated lymph nodes. 
Dendritic cells strongly positive for CD207 have been found in the 
epithelium and in the connective tissue of the airways (Fig. 2). These 
results were confirmed by the presence of langerin positive cells in 
dolphin skin. 

2.3. Fishes 

Lovy et al. (2009) characterized LCs in the hematopoietic organs of 
salmonids. Specimens of Atlantic salmon (Salmo salar) and rainbow 
trout (Oncorhyncus mykiss) were used for the research. Spleen incubation 
with CD207 revealed the presence of positive langerin cells. The Atlantic 
salmon cephalic kidney also showed positivity to the reaction with 
CD207. These data suggest the possibility to characterize with Langer
in/CD207, Langerhans-like cells in primitive vertebrates. Kordon et al. 
(2016) carried out research on LCs in Ictalurus punctatus, channel catfish. 
Using antibodies to CD207, LCs-like cells have been labeled in the spleen 
and cephalic kidney of the catfish (Fig. 3). Since these cells have been 
identified in the organs proper to the catfish’s immune system, they 
could also have functional competences, as well as morphological sim
ilarities, with those of mammals. Electron microscopy also describes 
granules in the cytoplasm of these cells, like to Birbeck granules in 
mammalian LCs. These results clarify the similarity between teleost and 

mammalian Langerhans cells. CD207 has been proposed as a potential 
marker of DCs in the dogfish Scyliorhinus canicular (Lauriano et al., 
2019). In the study, the authors highlighted the presence of DC-like cells 
in the gut associated lymphoid tissue (GALT) using a panel of antibodies 
composed by Langerin/CD207, TLR2 and S-100. 

3. CD1a 

CD1a (Cluster of Differentiation 1a) is a human protein related to the 
Major Histocompatibility Complex (MHC), which play the role of me
diators in antigen presentation to T lymphocytes. Phylogenetically, CD1 
genes have not been found in basal vertebrates as fish (Reinink and Van 
Rhijn, 2016), despite an immunohistochemical study reported 
Langerhans-like cells in the spleen of African catfish (Clarias gariepinus) 
(Zaghloul et al., 2017). Other studies revealed CD1 genes in reptiles 
(Yang et al., 2015), birds (Miller et al., 2005; Salomonsen et al., 2005), 
and marsupials (Baker and Miller, 2007; Cheng and Belov, 2014). It is 
probable that CD1 proteins arose in a common ancestor of placental 
mammals from a primordial form of CD1. 

3.1. Human 

CD1a is often used in diagnostics, associated with CD207, to confirm 
the presence of full-blown pathology, as shown by the data obtained by 

Fig. 1. Immunohistochemical detection of lan
gerin positive in Human normal skin and in 
cutaneous lesions. Positive langerin cells with 
long and short dendrites in the epidermis of 
normal skin (A, B); langerin positive cells with 
short dendrites slightly distributed in PCM skin 
lesions (C, D); positive Langerin cells distrib
uted in the inflammatory infiltrate in the 
epidermis / dermis interface (E) and dermis (F). 
Streptavidin-biotin peroxidase method - x200 
(C) and x400 (A, B, D, E, F). Reproduction from 
Pagliari et al., 2011. ELSEVIER LICENSE N◦

4881280962191.   
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da Silva (2020) and Fernandes (2020). da Silva et al. (2020), studied 
how immature DCs, plasmacytoid DCs and LCs, were distributed in oral 
submucosal fibrosis (OSMF), associated squamous cell carcinoma 
(OSMF-OSCC), oral leukoplakia (OL) and OSCC. The study was con
ducted by immunohistochemistry with CD207, CD1a and CD303. The 
data obtained show a reduction of CD207+ and CD1a + cells in all 
groups, except in oral leukoplakia for CD1a in OL, claiming that such 
reductions could be associated with the development of these pathol
ogies, as an indicator of malignant neoplastic transformation. Further
more, this study showed that CD1a and CD207 are effective in 
identifying immature DC and Langerhans cells. CD1a is also frequently 
associated with S-100, as highlighted by Chang et al. (2017b)in a study 
carried out on LCs in odontogenic keratocysts (OKS). Anti-CD1a and 
anti-S100 antibodies have been used to mark LCs. The presence of LCs is 
closely related to the inflammatory stage with an increasing trend from 

mild to severe inflammatory state (Chang et al., 2017a). Ungari et al. 
(2020) carried out a research on LCs histiocytosis (LCH) of a mammary 
lymph node in an 18-year-old woman. The biopsy showed CD1a-, 
CD207- and S-100-positive LCs. Xu et al. (2018) carried out a study on 
the effect of a topical ointment with 0.03 % of tacrolimus in the treat
ment of UVB irradiation. The results showed a strong reversal of irra
diation damage with an increase in CD1positive LCs (Xu et al., 2018). 
Abd Elazim et al. (2020) carried out a research on cryopeeling in the 
treatment of solar freckles, in comparison with peeling with trichloro
acetic acid (TCA). CD1a positive LCs were found only in cryopeeling 
treatment. An immunohistochemical study on CD1a positive LCs and 
CD57 positive Natural Killer (NK) was conducted by Talwar et al.(2009) 
on gingivitis. The results showed an increase in Natural Killer cells 
against a decrease in LCs. They concluded that the reduction of LCs is 
probably related to the regulation of NK cells. Kulkarni et al. (2016) used 

Fig. 2. Immunoperoxidase and confocal immunofluorescence reactions with Langerin/DC 207 in dolphin (Stenella coeruleoalba) lymph nodes. The lymph node 
parenchyma capsule (c); the projections of the collagen septa that infiltrate the central portion of the lymph nodes dividing the parenchyma into the lymphoid 
follicles (If) in the cortex; the medulla (m) shows few immune cells (*) separated by sinusoids (black arrow) and trabeculae (t). Mallory’s trichome stain (A). Alveolar 
macrophages (white arrowheads) and lymphocytic cords (white asterisks) are evident in the lymphoid follicles. Mallory’s trichome stain (B). Blood vessels (bv) and 
granular eosinophils (black arrowheads). Hematoxylin/Eosin staining (C). Langerin/CD207 positive dendritic cells (black arrows and insert). Immunoperoxidase 
method (D). Langerin/CD207 positive dendritic cells (black arrow) in close contact with alveolar macrophages (white arrowhead). Immunoperoxidase method (E). 
Langerin/CD207 positive dendritic cells (red arrows) in the cortical region of the lymph nodes. Immunofluorescence method (G-H). Control experiments were 
conducted excluding the primary antibody (F). Magnifications: A 20x; B-C-D-E-F 100x, G–H 40 × . Scale bars: 3A (50 μm), 3B-C-D-E-F-G-H (20 μm). Reproduction from 
Lauriano et al., 2020. ELSEVIER LICENSE N◦ 4881300568867 (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article). 
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CD1a to characterize immature LCs in Oral Lichen Planus. The results 
obtained showed a significant increase in the expression of CD1a in LCs 
under pathological conditions both in the epithelium and in the con
nective tissue. In a recent study, Kumar et al. (2019) on OLP confirm the 
presence of positive CD1a LCs in the suprabasal and spinous layers of 
OLP lesions. 

3.2. Fishes 

A study by Zaghloul et al. (2017), conducted on the African catfish, 
allowed to characterize Langerhans-Like cells in the spleen of this fish. 
The spleen consisted of a white pulp and a red pulp, rich in blood vessels. 
The immunohistochemical reaction with S-100 and CD1a showed the 
presence of LCs in the red pulp around the vessels. Three types of 

granules, similar to Birbeck granules were found in the cytoplasm of 
these cells. Nevertheless, as already said in the section 3., CD1a genes 
have never been found in fishes; this gives rise a question about the 
immunoreactivity of CD1a in LCs-like in the study by Zaghloul et al. 
(2017). Is it possible that African catfish possess CD1a in LCs-like? 
Future molecular and immunohistochemical combined studies are 
needed to answer the question. 

4. S-100 

S-100 s are a family of heterodimeric proteins that bind calcium. To 
these belongs calprotectin, which binds calcium and zinc and is present 
in the cytoplasm of monocytes, neutrophils, and macrophages. Calpro
tectin also shows a bacteriostatic activity, suggesting an important role 

Fig. 3. Langerin/CD207 positive cells in the 
spleen, anterior kidney, and gill of catfish and 
in Rainbow trout spleen with pAbs in different 
concentrations; the inserts on the left are 
magnified images of selected areas. Panel I: 
Catfish spleen, Abs dilution 1:50 (A); Catfish 
spleen, Abs dilution 1: 500 (B); Catfish anterior 
kidney, Abs dilution 1: 500 (C); Catfish gill, Abs 
dilution 1: 500 (D); Rainbow trout spleen 
(positive control), Abs dilution 1:50 (E). Panel 
II shows the respective negative controls 
(normal goat IgG). Immunoperoxidase method. 
Photomicrographs (600x). Reproduction from 
Kordon et al., 2016. ELSEVIER LICENSE N◦

4881300043294.   
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in the body’s defense systems (Alesci et al., 2014). S-100 s have been 
characterized in many vertebrates as mammals, birds, reptiles, am
phibians, and fishes and it is well conserved in the different groups. 
These proteins are absent in non-vertebrate organisms. It seems that 
S-100 s arose 460 million years ago before vertebrates move to land 
(Morgan et al., 2006; Ravasi et al., 2004). S-100 s differentiated then in 
two different lineages in fishes and tetrapod (Bobe and Goetz, 2000; 
Fonseca et al., 2011; Hsiao et al., 2003; Kraemer et al., 2008). Then 
S-100 genes remained intact during the last 165 million years. S-100 is 
used marker for melanocytes, Schwann cells, neuromast hair cells, 
nerve, and myoepithelial cells (Kahn et al., 1983; Montalbano et al., 
2018), but it is often used to study Langerhans cells (Chang et al., 
2017a). S-100 antibody has been used as marker for DCs in fish as 
described in the above section (2.3) 

4.1. Humans 

A study by Chang et al. (2017a), evaluated the LC count in dentig
erous cysts, using S-100 as a marker. Through immunohistochemical 
investigation, LCs positivity was found in epithelial and in subepithelial 
connective tissue. This study has shown how LCs increase significantly 
from a mild or moderate to a severe inflammatory state. A study by 
Maloth et al. (2015) compared LCs data in oral Lichen planus (OLP) and 
oral squamous cell carcinoma (OSCC), by anti-S-100 antibodies. The 
study aimed to demonstrate the function of LCs in local immune 
response. Histomorphometric quantification was made only on S-100 
positive cells, excluding those of the basal layer, identified as melano
cytes. The positivity of the reaction has shown that LCs play crucial roles 
in various oral pathological conditions (Maloth et al., 2015). Also, in a 
study on the histiocytosis of LCs in an adult with diabetes insipidus 
conducted by Allen et al. (2019), the anti-S-100 antibody was used to 
highlight LCs in the tissue samples studied. 

5. TLR 

Inflammation triggers a cascade of signals that regulate chemical 
mediators and blood cells (Lawrence, 2009). During an inflammatory 
stage, the Pattern Recognition Receptor (PRRs) are activated (Mahla 
et al., 2013). They are proteins expressed by cells of the innate immune 
system such as Langerhans cells, macrophages, monocytes, and neu
trophils (Alberts et al., 2002; Schroder and Tschopp, 2010). PRRs 
recognize Molecular Patterns associated with pathogens (PAMPs) (10) 
and associated with damage (DAMPs) (Seong and Matzinger, 2004). 
PRRs can be associated with the membrane (Toll-like receptor TLRs) 
(Janeway and Medzhitov, 2002; Takeda and Yamamoto, 2010) or 
immersed in the cytoplasm (Nod-like receptor NLRs and RIG-I-like re
ceptor RLRs) (Takeuchi and Akira, 2010). TLRs are membrane receptors 
located on sentinel cells such as Langerhans cells and macrophages 
(Lauriano et al., 2016). For instance, toll-like receptor 2 (TLR2) recog
nize virus envelope glycoprotein B (gB1) inducing the secretion of 
interleukin-8 (IL8), involved in inflammatory states (Marino et al., 
2019). Toll-like receptors (TLRs) are recognition molecules with key 
functions in the body’s defense system. Since their structure is highly 
preserved over time, it has been hypothesized that they perform the 
same function in all vertebrate classes. In fact, 20 types of TLR have been 
isolated in many teleosts, such as rainbow trout (Oncorhynchus mykiss) 
and Atlantic salmon (Salmo salar). Six types were found in all vertebrate 
taxa: TLR1, TLR3, TLR4, TLR5, TLR7 and TLR11 (Lauriano et al., 2016). 
Despite numerous types of TLRs have been characterized in the different 
classes of vertebrates, these receptors are structurally and genotypically 
high conserved (Marino et al., 2019) (Palti, 2011). For example, com
parison between profiles of TLRs from two fish species (Danio rerio and 
Takifugu rubripes) revealed a core set of orthologous genes with high 
sequence conservation to human TLRs (Jault et al., 2004; Meijer et al., 
2004; Oshiumi et al., 2003). In addition to these considerations, Purcell 
et al. (2006) demonstrated that the TLR-signaling molecules is 

conserved among vertebrates. The authors of this study, in order to 
validate their hypothesis, stimulated Oncorhynchus mykiss leukocytes 
with well-known mammalian TLR agonists. Stimulated rainbow trout’s 
leukocytes reacted showing different patterns of cytokine expression 
correspondent to mammalian responses. This allowed the authors to 
conclude that TLR-signaling genes are conserved among different 
vertebrate classes and they are able to recognize TLR ligands inducing a 
cascade of events. The above cited features of TLRs could be at the basis 
of the usefulness of TLR antibody to characterize LCs. 

5.1. Humans 

Tang et al. (2020), in a study on the verruca vulgaris lesion, high
lighted LCs and plasmacytoid dendritic cells (pDCs) and their role in the 
cutaneous response to the virus. Verruca vulgaris is a chronic skin 
infection caused by the human papilloma virus (HPV). In this study 
CD1a, CD2AP, CD123, TLR7/9 were used. By immunohistochemistry, 
positive TLR9 cells, such as mononuclear cells with positive reaction 
cytoplasm, were detected in the dermis. In cases of skin lesion, they were 
present for 60 % compared to 7.7 % of cases without lesion. Further
more, TLR9 was also present in the spinous layer keratinocytes, with a 
less marked reaction. The TLR7 positive cells were localized only in the 
dermis, without positivity in the epidermis. In contrast, pDCs showed 
high levels of TLR7/9 triggering the regulation of cytokines and IFN 1, 
determining the antiviral response. 

5.2. Mammals 

In a study carried out striped dolphin, Lauriano et al. (2014) marked 
whit TLR2 and S100 numerous Langerhans like cells in the skin. By 
means of anti-S100, several dendritic cells in the dolphin epidermis were 
labeled, which showed correspondence with LCs. These cells were 
multifaceted with long dendritic processes that infiltrated the kerati
nocytes, even reaching the stratum corneum. Dendritic cells have also 
been found in the dermis, but with a smaller body and less extensive 
processes. 

5.3. Fishes 

In the study on the mudskipper Periophtalmus schlosseri skin, Laur
iano et al. (2018) marked dendritic cells similar to LCs, using TLR2, in 
addition to S-100, by immunohistochemistry and counterstain with H/E. 
TLR2 positive dendritic cells were similar to LCs in mammalian skin. It 
was noted that TLR2 was more present in cell bodies than in dendrites. 
TLR2 has also been reported to be an efficient marker for DCs in the 
GALT of the lesser spotted catshark Scyliorhinus canicula (Lauriano et al., 
2019). 

6. Conclusion 

The use of specific markers for LCs is certainly useful not only to 
improve knowledge on phylogenesis and function of these cells in the 
different vertebrate classes, but also shows a diagnostic tool, allowing 
the identification of LCs in their different stages (immature and mature). 
In addition, the combined use of two or more of these markers allows a 
more effective characterization of the cell or an efficient diagnosis of a 
clinical picture. In order to summarize the markers for LCs, schematic 
representations are given in Figs. 4–7. Among the others Langerin/ 
CD207 and TLR antibodies resulted to have the widest spectrum of cross 
reactivity in LCs of: mammals (human, mouse, rat, dolphin, rabbit) and 
fish (Atlantic salmon, rainbow trout, channel catfish, giant mudskipper, 
small spotted catshark). S-100 is an immunohistochemical marker useful 
for the detection of several cell types including LCs in both mammals 
and other vertebrate classes; despite this, S-100 marker is too generic 
and needs other immunoreaction experiments, in order to confirm the 
characterization of LCs. CD1a, on the contrary, is a good 
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Fig. 4. Schematic representation of Langerin CD/207 cross reactivity on different vertebrate classes DCs.  

Fig. 5. Schematic representation of CD1a cross reactivity on vertebrate classes DCs.  

Fig. 6. Schematic representation of S100 cross reactivity on different vertebrate classes DCs.  
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immunohistochemical marker of LCs, but is limited to mammalian 
species. Future studies on both immunoreactivity and gene conserva
tion/evolution are necessary to state how LCs can be localized in all 
vertebrate classes using a single biological marker/target. For sure, 
Langerin/CD207 and TLR remain the main candidates to play this role. 
Furthermore, future studies on other Langerhans cells markers could be 
useful in the diagnosis of some pathologies. For example, IL-6 is a 
cytokine that serve as an important costimulatory factor of T lympho
cyte activation; production of this cytokine has been suggested as a 
potential prognostic marker of COVID-19 disease severity (Russell et al., 
2020). Langerhans Cells and lymph node dendritic cells express 
interleukin-6 (Cumberbatch, 1996). More studies on different molecules 
related with the IL-6 pathway in vertebrate models, could lead to 
perfection in future, diagnostic techniques applied human research. 
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