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Abstract

Flavopiridol (FVP; Alvocidib), a CDKs inhibitor, is currently undergoing clinical trials for
treatment of leukemia and other blood cancers. Our studies demonstrated that FVP also inhibited
p38 kinases activities with 1C5q (UM) for p38a.: 1.34; p38 PB: 1.82; p38y: 0.65, and p386: 0.45.
FVP showed potent cytotoxicity in cutaneous T-cell lymphoma (CTCL) Hut78 cells, with ICsq
<100 nM. NMR analysis revealed that FVVP bound to p38+y in the ATP binding pocket, causing
allosteric perturbation from sites surrounding the ATP binding pocket. Kinomic profiling with the
PamGene platform in both cell-based and cell-free analysis further revealed dosage of FVP
significantly affects downstream pathways in treated CTCL cells, which suggested a need for
development of synergistic drugs with FVVP to prevent its clinically adverse effects. It led us
discover niclosamide as a synergistic drug of FVP for our future /n vivo study.
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Introduction

Flavopiridol (FVP; alvocidib), an FDA-approved orphan drug, has been studied in clinical
trials under both single treatment and combination scenarios; several single-agent Phase |
and Phase 11 clinical trials against leukemia, lymphomas, and solid tumors are active [1-3].
To date, there have been more than 50 clinical trials involving FVP in the United States [4].
Unfortunately, almost half of patients on FVP clinical trials showed serious adverse effects,
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implicating appropriate dosages need to be found and an alternative way to circumvent the
toxicity of FVP with synergistic agents. Here, we summarize a selection of completed
studies that had posted results in Table 1.

Currently four FV/P trials are actively recruiting, two in patients with AML (NCT03969420,
NCT03441555), one in patients with myelodysplastic syndrome (NCT03593915), and one
in patients with solid tumors (NCT03604783). However, there has yet to be any publication
or clinical trial focusing on the effects of F\VVP on Cutaneous T cell lymphoma (CTCL)
which is a disfiguring and incurable cancer with limited effectual therapeutic options. Here,
we report that the CDK inhibitor FVP also inhibits p38 kinase activity and induces apoptosis
in cultured CTCL cells in the nanomolar range. The purpose of this study was to determine
the mechanisms through which FVVP-mediated inhibition of signaling molecules induces cell
death in CTCL, which will have far reaching significance toward the cure of this disease.

FVP targets p38vy kinase activity in a cell-free based assay

We have identified one important signaling molecule, the mitogen-activated protein kinase
p38+y, which is overexpressed in CTCL cells, but not in normal healthy T cells [5]; this
makes it a good target for developing a drug against CTCL. Therefore, we attempted to
screen p38y inhibitors from a natural product library by performing an /n vitro kinase assay
using ADP-Glo as readout for activated p38 isoforms. We tested a few flavonoid-backbone
compounds for their anti-p38 activities (Appendix A. Figure 1A). We noted only FVP and
myricetin have anti-p38 kinase activities. Myricetin targets three isoforms except p388, the
ICgps are p38a.: 1.34 uM; p38p: 1.82 uM and p38y: 1.6 uM.

In Figure 1A, we demonstrate that FVP (with flavo-backbone structure) inhibits p38y kinase
activity with an 1Cgq of 0.65 uM (Figure 1B). We further analyzed FVP inhibition of all
other isoforms of p38 (a, B, and &) and found the I1Csqs to be p38a.: 1.34 uM; p38p: 1.28
UM; and p386: 0.45 uM (Appendix A. Figure 1B).

To confirm the specificity of FVP for p38+y, we performed NMR titration and identified the
FVP binding site on p38+y. Extensive NMR chemical shift changes and line broadening were
observed in both 1H-15N HSQC and 1H-13C HMQC spectra upon the addition of FVP
(Appendix A. Figure 2). Residues with line broadening effects are indicated in red (amide)
and blue (methyl) on the p38y structure (Figure 2A); other residues with large NMR
chemical shift perturbations (CSPs; calculated as described in Methods) are represented in
different colors according to the categories shown. The most significant chemical shift
changes occurring around the ATP-binding pocket infer that FVP associates with p38y in
the pocket.

We further analyzed normalized CSP of FVP in comparison to p-OG, a small lipid molecule
that binds to the lipid binding site of p38-y (unpublished data). We confirmed allosteric
binding because CSPs propagated to residues distal from the ATP-binding site, mostly in the
N-lobe, caused by the binding of FVVP such as G36, A40, K69, L89 and K363 (Figure 2A).
The residues that lie outside the ATP pocket according to normalized CSPs are: M109,

J Clin Haematol. Author manuscript; available in PMC 2021 July 01.


https://clinicaltrials.gov/ct2/show/NCT03969420
https://clinicaltrials.gov/ct2/show/NCT03441555
https://clinicaltrials.gov/ct2/show/NCT03593915
https://clinicaltrials.gov/ct2/show/NCT03604783

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhang et al.

Page 3

M112, D116, K118, L154, G157, L159, L174, L292, A302, K325, V323, L334, T336 and
L337 (line broadening or CSP > 0.02-0.03 ppm in amide/methyl correlation spectra) (Figure
2B and 2C). This suggests that the allosteric effects of FVVP at high dosages on the kinase
activity of p38-y, which may apply to other p38 isoforms, probably causing adverse effects
when all four isoforms of p38 are inhibited /n vivo.

FVP has cytotoxic effects on Hut78 cells compared to other flavonoid compounds.

Given that FVP inhibits p38y kinase activity, and that p38-y is elevated in CTCL cells and is
important for cell viability [5], we tested the cytotoxic effects of FVP on Hut78 CTCL cells.
FVP was cytotoxic to Hut78 cells, with 1C5q = 0.094 uM (Figure 3A), which is far more
potent compared to any natural flavonoid compounds (Appendix A. Figure 3). Cytotoxicity
ICsq of myricetin for Hut78 cells is 19.2 pM.

To understand molecular mechanism of FVVP in Hut78 cells, we performed Western blot
analysis of Hut78 cells treated with 0.12 uM or 2 uM FVP and showed that within 4 hr,
p38a and p386 protein expression did not change significantly, whereas p38y expression
increased with dose (Figure 3B). Within 24 hr, ITK expression disappeared upon 2 uM FVP
treatment. Further reduction of pSTAT3 Y705 indicated cell cytotoxicity is due to targeting
STAT3 (Figure 3D). The reduction of DLGH1 pS158 suggests blockage of the nuclear factor
of activated T-cells (NFAT) pathway upon FVP treatment by 24 hr and it is partially due to
p38y inhibition in Hut78 cells, because DLGH1 pS158 is specifically phosphorylated by
p38+y and activated DLGH1 directs TCR signaling in the NFAT pathway, as we and others
previously reported [5,6].

To investigate whether FVVP induced apoptosis in Hut78 cells, we performed Annexin V
staining after treatment. Indeed, FVP caused apoptosis in Hut78 cells (Figure 3C, the
apoptosis population increased with dose from 7% to 31%). Thirty-one percent of Hut78
cells treated with 240 nM FVP for 48 hr are Annexin V-positive, which indicates cells that
have gone through apoptosis.

To further confirm the mechanisms through which FVP-mediated cell death is due to or
partially due to inhibition of p38-y, we knocked down p38y using a lenti-viral ShRNA
strategy, followed by Western blot analysis (Figure 3D). We found loss of p38+y increases the
contrast of cytotoxicity effects by two different dosages, i.e., 120 nM and 2 uM in sh_p38y-
treated Hut78 cells, compared to control cells (shCtr). Upon 0.12 uM FVP for 24 hr
treatment, several signaling proteins were upregulated such as NF-xB related signal proteins
p65 Serd68, pIKKa/p Serl78/180, and p-STAT3 Y705 and STAT3, but downregulated by 2
UM FVP treatment, suggesting p38y participates in the NF-xB pathway in FVP-induced
apoptosis at high-doses (Figure 3D).

We further performed PamGene kinomic profiling analysis following FVP (120 nM) in
comparison to p38-y-silenced Hut78 cells (KEGG human 2019). We showed that p38y
participated in Thl and Th2 cell differentiation, the NF-xB pathway and MAPK pathway
(Figure 3E), which confirmed our Western blot results that p38+y plays an indispensable role
in the FVP-triggered NF-xB pathway.
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Protein kinomic profiling of FVP-treated Hut78 cells and p38y gene silencing Hut78 cells
with PamGene platform

To understand functionally relevant properties of kinases alteration in CTCL cells by FVP,
we performed PamGene kinomic profiling in Hut78 cells. The PamGene platform revealed a
few selective downstream targets with differential expression upon FVP treatment. Using a
protein tyrosine kinase (PTK) assay (Figure 4A), we measured protein tyrosine kinase
activities in Hut78 cells treated with 120 nM FVP for 4 hr. We identified tyrosine
phosphorylation of Calmodulin, Annexin A2/A1 and CD3( are significantly changed. Serine
and Threonine kinase (STK) assays were also applied, and our results showed that many
downregulated targets by FVP at 4 hr aligned with the NF-xB pathway (Figure 4B).

a) PTK panel assay identified phosphorylation of Calmodulin at Y100 and
phosphorylation of ITAM sites of CD3(—The PTK heatmap (Figure 4A) reveals that
phosphorylation sites of each protein and their responses to FVVP. Phosphorylation of both
ANXAZ2 (aal7_29) and ANXAL (aal4 26) showed increased, whereas phosphorylation of
CALM (aa95_107) significantly decreased by FVP, compared to untreated control cells
(Figure 4A, indicated with arrows). Tyrosine phosphorylation levels of both Tyr123 of CD3(
(aa116_128) and Tyr158 of CD3( (aal46_158) are increased, which was further confirmed
by our western blot analysis of p-Tyr antibody staining in Hut78 cells that most of proteins
of which tyrosine phosphorylation are increased by FVP at 4 hr. With two dosages of FVP at
2 time-points, phosphorylation of tyrosine kinases is increased upon treatment at 4 hr in
general, but it has significantly decreased at 24 hr of FVP treatments (Appendix A. Figure
4).

Here we focus on phosphorylation of Calmodulin at Y100 (p-Y100 CaM) for further
discussion, because it is the only phosphorylation that showed significant decreases by FVP
at 4 hr. The phosphorylation of human calmodulin at Y100 plays many vital pathological
roles in cancer. It enhanced ligand-dependent EGFR activation in an in vitro study [7]. It
binds to the SH2 domain of the regulatory p85 subunit of PI3K, activating the catalytic p110
subunit and the K-Ras/PI13K/Akt pathway. Molecular modeling suggests that direct
interaction occurs between the p-Y100 CaM and P13Ka with high affinity, which fully
activates PI13Ka by oncogenic K-Ras to promote cancer [8-10]. One possible mechanism of
FVP function in CTCL is to arrest cell cycle progression by dramatically reducing tyrosine
phosphorylation on CaM at Y100 at its earlier time point of treatment to prevent its direct
interaction with PI3Ka and thereby to halt cell growth. As to the curation of Y100 on
calmodulin (®3FDKDGNGY 100l SAAEL05), until 2018, all but one citation [11], described it
as Phospho-Y99-CaM (DGNGY gglSAA) of human calmodulin [7-10,12-14]. Here we use
p-Y100-CaM as it is currently curated in Uniport and phosphor Site, since the initiator
methionine was removed [15].

Another important target protein identified by our PamGene analysis of FVP-treated Hut78
cells is CD3(, whose phosphorylation at Y123 (ITAM 2) and Y153 (ITAM 3) are increased
(FVP 120 nM at 4 hr). CD3(, alternatively named as the T-cell receptor (TCR) zeta chain, is
an essential TCR signaling protein. Shortly after TCR activation, the lymphocyte specific
PTK Lck gains proximity to the TCR/CD3 complex and phosphorylates intracellular
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tyrosine activation motifs (ITAMs) within the CD3 complex. Phosphorylation of the CD3
ITAMs promotes the docking of ZAP70 to the CD3 complex, which is also phosphorylated
by Lck for its activation [9,16,17].

Further analysis with p38y gene silencing Hut78 cells (sh- p38y) that are treated with FVP
showed that loss of p38+y and/or inhibition of p38+y activity failed to phosphorylate ITAM 2
(Y123) or ITAM 3 sites (Y153) of CD3(. This suggests that loss of p38y in Hut78 cells
results in loss of high-affinity interaction between CD3( and ZAP70 when the
phosphorylation at ITAM sites are annulled, as it is known that the phosphorylation on
ITAM 2 or 3 sites of CD3( are crucial for C-associated protein of 70 kilodaltons (ZAP70)
recruitment through high-affinity binding sites on CD3( [18]. CTCL Hut78 cells became
malignant likely due to p38y direct interaction with TCR complex proteins, which may
address the reason why the normal healthy T cells keep p38y silenced.

b) STK panel phosphorylation of Hut78 cells—Using the serine-threonine kinase
(STK) PameGene panel assay (Figure 4B), we screened downregulated Ser/Thr
phosphorylation targets, and proteins with significant reduction of Ser/Thr phosphorylation
were as follows: LMNB1, ANXA1, GPSM2, CSF1R, CGHB, BCKD, H2B1B, KCNAZ2,
ESR1, H32, KCNA3, VASP, P53, FRAP, REL, RYR1, VASP, GSUB, LIPS, KIF2C, IF4E,
PLEK, STMNZ2, PTK6, MPIP3, and NMDZ1. We scored the DNA sequences of above genes
against the position weight matrix (PWM) with TRANSFAC and JASPAR database, and
found binding motifs for NF-xB existed at the promoters of in the following genes: VASP,
GPSM2, CSF1R, KCNAZ2, REL, PTK6, KIF2C, and ESR1. We further confirmed that
phosphorylation level of each protein product of these genes was reduced by 120 nM FVP
treatments at 4 hr in Hut78 cells (Figure 5A), which strongly support that FVP inhibits NF-
xB pathway via multiple downstream target genes in Hut78 cells. The phosphorylation of
REL/p65 at Ser267 (2590KMQLRRPS,57DQEVS272) also reduced by FVP echoes others’
finding that a direct link between MAPK and NF-xB pathways by MAPK downstream
kinase Mitogen-and Stress-activated Kinase 1 (MSK1) -mediated phosphorylation of Ser276
REL/p65 of NF-xB [19].

In addition, the reduction in phosphorylation of p53 Ser315

(308 PNNTSSS;15PQPKKKPLDGE325) in the STK panel by FVP treatment is also
observed (Figure 4B). It suggests that FVP inhibits CDK1/2 [20] or/fand AURKA [21] in
Hut78 cells. In addition, Metacore pathway analysis showed the involvement of CREB and
mTOR along the path targeting NF-xB by FVP (Figure 5B).

Of note another important regulator targeted by FVVP is protein tyrosine kinase 6 (PTK®6), the
phosphorylation of which was significantly reduced at S442
(438ALRERLS 42S443F T445S446Y448). PTK®, also known as breast tumor kinase (BRK), is
a non-receptor kinase that is negatively regulated by phosphatases including protein tyrosine
phosphatase 1B (PTP1B) and phosphatase and tensin homologue (PTEN) [22]. Many
downstream targets of PTK6 have been identified, including RNA-binding proteins in the
nucleus such as SAM68, and signaling molecules in the cytosol [23]. Notably, PTK6
substrates in the cytoplasm include transcription factors STAT3 and STAT5a/b, which are
activated upon phosphorylation and translocate into the nucleus to promote gene expression
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[24,25]. We have observed reduction of PTK6 phosphorylation by PamGene experiment
following 4 hr FVP treatment of Hut78 cells (Figure 5A), p-STAT3 Y705 was first
upregulated at 4 hr and was reduced at 24 hr by FVP (Figure 5C), which suggests that PTK6
is an upstream regulator of STAT3 in CTCL.

c) Differential biological effects of lower dosage vs. higher dosage of FVP—
Side effects of FVVP in clinical usage prompt us to dissect the optimal dosage of FVVP for
CTCL. We compared two datasets of PamGene profiling at two FVP doses, 120 nM and 2
UM, and observed that 15 target proteins exhibited contrasting differential phosphorylation
status: PTPN12, CREB1, RYR1, GRIK2, NCF1, KCNAG, PFKFB3, CFTR, VTNC, KAP3,
EPB42, KIF2C, KPB1, SCN7A, and CSF1R. To identify the subcellular location of these 15
protein targets, we performed database analysis Jensen Compartments using the EnrichR
program [26]. The top hits we identified are ion channel complex and transporter complexes
(p<0.000001), which matches five targets on the 15-protein list, RYR1, GRIK2, KCNAG,
CFTR, and SCN7A (Appendix A. Figure 5). We used Western blot analysis to assess
important signaling proteins response to FVP treatment in Hut78 cells with 2 uM FVP for 24
hr, we observed unchanged phosphorylation on NF-xB p65 at Ser468, but phosphorylation
on p65 at Ser536 is downregulated (Figure 5C). Ser536 is within the transactivation domain
(TAD) of p65, and is a phosphorylation site that is targeted by several kinases, including
IKKp [27,28]; we also observed downregulation of both NF-xB subunits p65 and p105.

Combined with our apoptosis analysis at 48 hr (Figure 3C), we concluded that when FVP is
above 240 nM, it increases apoptosis in Hut78 cells compared to that of lower doses (below
120 nM), which demarcates as high dosage cytotoxicity effects of FVP. The high-dose FVP
caused damage to ion channels in T cells, most likely to the calcium channels (Appendix A.
Figure 5).

Selection of drugs that have synergistic effects with FVP

To develop novel drugs that work synergistically with FVVP, we selected inhibitors of which
signaling pathways are complementary to FVP p38+y inhibition, with an expectation that the
combination treatments only kill cancer cells but spare healthy cells.

a) FVP in combination with the PTK®6 inhibitor cpd 4f—Our observation that
phosphorylation of the non-receptor tyrosine kinase PTK6 was significantly inhibited by
FVP in our STK panel of kinomic profiling (PamGene) experiments (Figure 4B) supports
our rationale for selecting PTK6 as a target. In addition, the STAT3-PTK6-NF-xB axis
targeted by PTKG6 inhibitors is very likely complementary to FVP efficacy through p38
inhibition. We tested this by selecting the PTK6-specific inhibitor cpd 4f for synergistic
study with FVP. We treated Hut78 cells for 72 hr with both F\VVP and cpd 4f, using two doses
of FVP (90 nM, 180 nM) and four doses of cpd 4f (15 nM, 30 nM, 15 uM, 30 uM) and
measured cell viability to assess for drug synergy (Appendix A. Figure 6). Our results show
no significant synergy in Hut78 cells using the combination treatment, but our future studies
will involve testing additional PTK6-specific inhibitors to identify one that works
synergistically with FVVP. We also attempt to choose inhibitors that inhibit other pathways
other than STAT3-NF-xB pathway.
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b) FVP in combination with the dual STAT3 and mTOR inhibitor niclosamide
—Niclosamide, a dual inhibitor of STAT3 and mTOR, was selected not only because of its
efficacy against cancer and its synergistic effects with many other drugs [29]; but because
the mTOR pathway is parallel to STAT3-NF-xB axis. Niclosamide is known to act
synergistically in combination with many frontline chemotherapeutic agents in acute
myelogenous leukemia (AML), including Ara-C (Cytarabine), VP-16 (etoposide), and DNR
(daunorubicin) [30]. We tested its synergistic effects with FVP, which inhibit NF-xB-
regulated genes [31]; whereas Niclosamide targets STAT3 and mTOR which served as our
rationale of the complement treatment.

We treated Hut78 cells with three doses of FVP (60 nM, 120 nM, 240 nM) in combination
with four doses of niclosamide (200 nM, 1 uM, 5 uM, 25 uM) for 72 hours to examine drug
synergy. We found a synergy effect (C1=0.6) of niclosamide (200 nM) with FVP (60 nM). In
addition, the combination of 200 nM niclosamide and 240 nM FVP also seemed to exhibit
synergistic effects (CI1=0.7) (Figure 6).

Discussion

Niclosamide is an FDA-approved drug [31] that has been successfully used for over 5
decades to treat tapeworm infections with few adverse effects. Now it has found a new
application in cancer therapy [29]. Its molecular mechanism has been thoroughly studied
and occurs through targeting Wnt/B-catenin, mTOR, JAK/STAT3, NF-xB, and Notch
pathways [32]. Based on our study, a higher dose FVP (240nM) impairs ion channel
complexes of cancer patients likely contributed to the adverse effects that F\VVP recipients
experienced in clinical trials. Our finding of synergistic effects of niclosamide with FVVP has
great potential for therapeutic application in CTCL and other hematopoietic cancers; the
synergy allowed the dose of FVP to be reduced to 60 nM, the amount less likely to have
adverse effects. The effective niclosamide dose was also reduced when used synergistically.
We are currently performing /n vivo studies of FVP and niclosamide synergy using Hut78
cell-xenograft and CTCL patient-derived xenograft mouse models. Here, we show that FVVP
inhibited CDK9 and p38vy, and showed potential clinical efficacy in CTCL cells through
targeting p38y. It is worth noting that in addition to FVP, other drugs targeting CDK9 also
inhibit p38y kinase activity, such as P276-00 and PIK75/F7 (Appendix A Figure 7); among
them, FVP and F7 showed strong efficacy in CTCL (with 1Cggs of 120 nM and 29-33 nM,
respectively). The mechanism of this synergy is proposed to be FVP targeted pathways of
IL-21-BATF, p38 and NF-xB, which parallel that of niclosamide signaling.

Because we observed dual inhibition of p38y and CDK9 by a single compound, FVP, it also
suggests FVVP harbors HDAC inhibitor property as well for it likens a synergistic effect of
F7/PIK75, a potent TRAIL apoptosis sensitizer which through CDK®9 inhibition with two
HDAC inhibitors (SAHA and Abexinostat), respectively in CTCL. We demonstrated that the
downstream targets of FVP have potential dual effects on the two kinases p38y and CDKO,
which resembles our previous studies of F7 in combination with the histone deacetylase
inhibitor SAHA, evidenced by the loss of ITK, which parallels loss of p386 and loss of
STAT3 activation via phosphorylation by Western blot (Figure 3B). We observed a loss of
ITK, a downstream biomarker of the TCR signaling pathway (Figure 3B). The interplay
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between ITK and STAT3 may direct the NFAT pathway, which is consistent with our
Western blot result showing that DLGH1 reduction by FVP was blunted upon loss of p38-y
(Figure 3D).

IL-21-BATF and its downstream proteins are also potential targets for therapeutic synergistic
drug screening with p38 inhibitors. The IL-21 signaling pathway in T cells proceeds via
binding of IRF4 to AP-1-IRF composite elements (AICES), which requires involvement of
the basic leucine zipper transcription factor ATF-like (BATF), thereby forming BATF-JUN-
IRF4 complexes [29,33,34]. Thus, many target genes of IL-21 are regulated through BATF,
JUN, IRF4, and STAT3 [33-37]. However, here we have observed at 24 hr FVP induced
IL21 with decreased BATF (Figure 5C) which suggests alternative BATF-independent
pathway by FVP upon IL21 induction via epigenetic regulations [38-40].

In addition, our Western blot results indicated that FVP targeted the STAT3-NF-xB pathway
via p38 inhibition in CTCL Hut78 cells. The downregulation of both phosphorylation sites
Ser32/36 and Ser178/180, the two critical sites of IxBa, together with pSTAT-Y 705, further
suggests that FVVP-induced apoptosis occurs through IKKa regulation of NF-xB-dependent
gene transcription via STAT3, which further led to apoptosis as the treatment time extended
to 48 hr (Figure 3C). To trace FVVP-induced apoptosis further upstream, it may occur through
the IxBa protein, which we observed reduction of, alone and with its kinase IKKa/p.
IKKa, an important IKK core element of the NF-xB cascade, regulates NF-xB-dependent
gene transcription through a mechanism called “de-repression” of NF-xB target genes. 1xB
binds to NF-xB which keeps NF-xB in the inactive stage in the cytoplasm. In response to
stimuli such as inflammatory cytokines, or various types of stress, 1B becomes
phosphorylated on two critical serine residues. Phosphorylation of 1«B at these two critical
sites leads to its own poly-ubiquitination and its degradation; as a result, NF-xB is freed for
nuclear translocation and activation of transcription. IKKa phosphorylates the SMRT
repressor recruited by p50 and p52 homodimers, and promotes its nuclear export, together
with HDAC3, and degradation [41]. Then IKKa phosphorylates NF-xB p65 on Ser536,
which is chromatin-bound, to proceed to full transcription by acetylating p65 at Lys310 via
p300 [42].

In summary, in this study we provided parallel pathways for synergistic drug development of
FVP as a multi-target inhibitor in the light of p38 inhibitors in CTCL.

Conclusions

We performed comprehensive assessments of important signaling proteins using western
blot and kinomic profiling by the PamGene platform. We found that FVP affected CTCL
cells at multiple layers of regulation, from gene regulation to post-transcriptional and post-
translational regulation. In Western blots, we observed that ITK and p-DLGH1 S158 were
downregulated by FVP treatment, which indicates that the NFAT pathway was blocked via
p38+y inhibition. In the PTK panel of the PamGene platform, we observed an important role
for p-Cam Y100 and p-CD3( at Y123 and Y153, which were influenced by FVP upon 4 hr
treatment. In the STK panel, we observed that the majority of protein phosphorylation at
Ser/Thr was decreased, which included p53, Rel, and PTK6. We also performed analyses
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using the TRANSFAC and JASPAR databases, in which eight proteins showed reduced
phosphorylation; these proteins are subject to NF-xB transcriptional regulation, because they
all harbor NF-xB binding motif(s) in their promoter regions. We are also actively
investigating epigenetic regulation through Histone deacetylase (HDAC) or
methyltransferases (DNMT1) by FVP. To select drugs that have synergistic effects with FVP,
we must consider the side effects of a higher dose FVP, which impairs human ion channel
complexes. Using knowledge gained from the present study on signaling pathways that are
complementary to FVP p38y inhibition, we have since designed experiments to select
candidate drugs that show synergy with FVVP; we identified the FDA-approved drug
niclosamide as an ideal match for FVP, which we will investigate in future /n vivo studies.

Materials and Methods

Compounds, samples, and cell culture

FVP and niclosamide were ordered from Selleck. Cpd 4f was ordered from Sigma. DMSO
was used as solvent for FVP, cpd 4f, and niclosamide. Compounds in solution were
aliquoted and stored at —80°C until use. Isolation of peripheral blood mononuclear cells
from healthy donors, and culture of CTCL cell lines (Hut78) were performed as previously
described [43].

Viability assays using trypan blue exclusion and CellTiterGlo Cell Viability Assay

Cell viability was calculated by diluting cell suspensions 1:1 in 0.4% Trypan Blue solution
(Sigma, St. Louis, MO) and counting the number of viable cells using a TC20™ automated
cell counter (Bio-Rad, Irvine, CA) which automatically excludes the number of non-viable
cells stained with trypan blue per total cells. CellTiterGlo Cell Viability Assay (Promega)
method was used as described previously [5]. All data points are an average of triplicate
experiments.

In vitro kinase assay using ADP-Glo

To identify p38y inhibitors using /n vitro kinase assay, a library of kinase inhibitors was
screened. The library consists of 244 compounds on three plates (EMD Cat#539744,
#539745 and #539746) that are mostly ATP mimics. All compounds are cell-permeable,
reversible, and well-characterized. For biochemical screening, /7 vitro kinase assays were
performed using an ADP-Glo kit (Promega, Madison, WI) according to the manufacture’s
protocol. All data points are average of triplicate experiments unless stated otherwise, and all
compounds have been tested to show no inhibition of luciferase activities when using the
ADP-Glo kit. Briefly, for in vitro assay experiments, human recombinant p38a., B, y, or &
protein kinases (active full-length) were acquired from SignalChem, and the assay was
performed followed protocols from the company. The p38 kinase was pre-incubated with
FVP in a dose-dependent manner for 10 min before synthetic peptide substrates
(IPTTPITTTYFFFKKK) were added at final concentration of 0.2 pg/uL followed by
addition of ATP. Then, ADP-Glo Reagent was incubated in the mixture at room temperature
for 40 min, followed by incubation of Kinase Detection Reagent for another 30 min. 1Cgq
values were determined using CalcuSyn software (Biosoft, Cambridge, United Kingdom).
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Enzyme kinetics

The inhibitory mechanism of FVVP was measured using the TR-FRET method [44]. Assays
were conducted in a 384-well black round-bottom plate in kinase reaction buffer (50 mM
HEPES, pH 7.5; 10 mM MgCI2; 1 mM EGTA, 100 uM Na3V04; 0.01% Tween-20; 0.5 mM
DTT). p38y kinase (700 ng/ml) was mixed with ULightTM-4E-BP1 peptide (50 nM,
PerkinElmer, Waltham, MA) and varying concentrations of ATP (1, 1.5, 2, 3, 4, 6, 15, 30
uM) and FVP (0, 50, 200, 400, 1000 and 2000 nM). Time course data were collected by
stopping the kinase reaction at various times by adding detection buffer containing
Europium-anti-phospho-4E-BP1 antibody (4 nM, PerkinElmer). Fluorescence signals were
measured at 665 nm with a 50 ps delay after excitation at 320 nm using a CLARIOstar
microplate reader. The signal ratio at 665/620 nM was used for data analysis. The inhibition
mechanism and Kinetic rate constants were analyzed using GraphPad Prism 7 software
(GraphPad, La Jolla, CA).

Apoptosis detection using Annexin V antibody FITC staining

Hut78 cells, seeded at 2 x 10° cells/ml, were treated with FVP (0, 60 nM, 120 nM, 240 nM,
or 480 nM) for 48 hr. The BD FITC Annexin V Apoptosis Detection Kit was used according
to the manufacturer’s protocol. Briefly, cells were collected and washed with 1x PBS twice,
resuspended in 1x binding buffer, and incubated with FITC Annexin V antibody and
propidium iodide for 15 minutes in the dark at room temperature. Samples were analyzed
using an Attune Nxt cytometer within 1 hour.

NMR studies
2D; 11e61-[13CH3]; Leu, Val - [13CH3, 12CD3]; Mete--[13CH3]-labeled p38y sample was
prepared, and the NMR spectra were collected and analyzed as described [5]. In the complex
sample, 100 pM was added with five-fold of F\VP. NMR chemical shift changes were
calculated as

CSP = \/ (461 2+ (015425 N2+ (0.341- [45) _0)2)

where ASH, A8N, and A8C are the chemical shift differences between the free and bound
states in the proton, nitrogen, and carbon dimensions, respectively.

CSP normalization method: The CSP for each compound was normalized separately.
The values in each dataset (different compounds) were between 0 and 1. CSPs were
calculated and further normalized using the min-max method using the following equation:
normalized CSP = (CSP - CSPmin)/(CSPmax - CSPmin); where CSPmax and CSPmin are
the largest and smallest CSPs in each titration of the compound.

IC5g value determination of cytotoxicity of FVP against Hut78 CTCL cells

To determine the cytotoxicity of FVP in cancer cell line panel assay, MTS assays (Promega)
were performed and cell viability was determined as described previously [45]. CellTiterGlo
Cell Viability Assay (Promega) was used to measure viability of Hut78 CTCL cells.
Absorbance was monitored at 490 nm using an automated BMG PHERAstar plate reader
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(BMG Labtech, Ortenberg, Germany). ICsq values were determined using CalcuSyn
software. All experiments were repeated in three independent experiments and data
represented are the average of triplicate experiments.

Western blot

Western blots were performed as described previously [43]. Rabbit primary antibodies (Cell
Signaling Technology (CST), Danvers, MA) were used at the following dilutions: anti-p38a.,
-p38p, -p38y, and -p386 (1:1000), anti-B-tubulin (1:2000), anti-p38 GAPDH (1:1000); anti-
B-Actin (8H10D10), mouse mAb (1:2000). Anti-DLGH1 and anti-phosphor DLGH1 at
serine 158 and 431, total DLGH1 (SAP97) are affinity-purified sheep polyclonal antibodies
which were from University of Dundee, Scotland (1:1000). HRP-conjugated goat anti-rabbit
(Cat#7074) and anti-mouse 1gG, HRP-linked Antibody Cat#7076 (CST, 1:2000) were used
as secondary antibodies.

Primary antibodies purchased from CST were used at the following dilutions: p38a (#9218,
1:1000), p38p (#2339, 1:1000), p385 (#2308, 1:1000), p38y (#2307, 1:1000), p-p38
Thr180Tyr182 (#4511, 1:1000), GAPDH (#2118, 1:5000), CBP (#7389, 1:1000), p300
(#86377, 1:1000), Ezh2 (#5246, 1:1000), TNFa (#3707, 1:1000), and Anti-SAPK3 (p38y,
ab205926) were purchased from abcam and used at 1:1000 dilution. p-p38 Tyr323 antibody
(#12322-1) was purchased from Signalway Antibody and used at 1 pg/mL.

Kinase array profiling using PamGene technology

The kinase activity profiling assay was performed using the PamChip®4 microarray utilized
by PamStation®12. The PamChip®4 kinase array platform monitors phosphorylation of 144
Tyr or 144 Ser/Thr kinase peptide substrates manufactured with 3-D membranes. The
experiment was carried out using the vendor’s protocol (PamGene, Netherlands). Briefly,
Hut78 CTCL cells were treated with 0.12 uM and 2 uM FVP for 4 hr or 24 hr. DMSO was
used as a vehicle control. Intact whole cell lysates were prepared using M-PER Mammalian
Extraction Buffer supplemented with Halt Phosphatase and Protease Inhibitor Cocktail
(Pierce, Waltham, MA). PamChip®4 arrays were blocked with 2% bovine serum albumin
(BSA). Cell lysates (5 pg/array for Tyr chip and 3 pg/array for Ser/Thr chip) were applied
per array of PamChip®4. Next, a kinase reaction mixture (KRM) containing kinase buffer,
DTT, kinase additives, BSA, fluorescent antibody, and 400 uM final concentration of ATP
was added to each array. Phosphorylation of kinase activities was detected with a
fluorescent-conjugated antibody and images were acquired by an optical CCD-camera
equipped in the PamStation®12. Each experiment was performed in triplicate. The data was
analyzed with the advanced software BioNavigator62.

p38y kinase assay ex vivo using PamGene kinomic array platform

To determine whether FVP inhibits phosphorylation of p38-y substrates, we performed the
kinase activity profiling assay ex vivo using PamChip microarrays (PamGene, Netherlands).
The kinase array platform monitors phosphorylation of 144 Ser/Thr kinase peptide
substrates in the STK chip manufactured with 3-D membranes. The experiment was carried
out using the vendor’s protocol with a minor modification. Briefly, STK PamChips were
blocked with 2% BSA. For the basic mixture solution, BSA, STK antibody mix, and ATP
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were mixed in the kinase buffer. Next, for the reaction, recombinant full-length p38-y kinase
protein (50 ng/well) obtained from SignalChem (BC, Canada) and ATP were added to the
basic mixture solution, followed by addition of DMSO or FVP (0.5 uM, 1 uM, and 2 pM at
final concentrations). The final concentration of ATP was 100 UM and reaction volume was
40 L in each well of chips. After 90 min reaction, a fluorescent-conjugated (FITC)
antibody was added to the reaction mixture. Each reaction was performed in triplicate.
Images of phosphorylation of kinase activities were acquired by an optical CCD-camera
equipped in the PamStation 12. The data was analyzed with the advanced software
BioNavigator62.

Statistical analysis

All experimental data are shown as mean + SEM unless indicated otherwise. The statistical
significance of differences, i.e., in cell viability assays, were assessed by student T-test
(SPSS, IBM, Armonk, NY) or one-way ANOVA (GraphPad PRISM v. 3.0, GraphPad).
Differences were considered significant if P < 0.05. Sign Test, a nonparametric test, was
used for inhibitory 1Csq of 8 cells of NCI 60 cells by p38-y candidates, significant if
P<0.005.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
FVP inhibits p38+y kinase activity. (A) Structure of FVP; (B) ICsq of FVP against enzyme

activity of p38+y isoform.
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Figure 2:

FVP binds to ATP binding pocket of p38y which has allosteric binding outside the pocket
(A) 3D structure of p38y chemically perturbed by FVP based on 2D NMR CSP
experimental results; (B) normalized NMR CSP 1H-15N data for p38y with FVP (round blue
dots) and B-OG; (C) normalized NMR CSP 1H-13C data for p38y with FVP (round blue
dots) and B-OG (red square or diamond), respectively.
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3 Viral carcinogenesis 0.005207 0.5346 18.09 95.12
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Figure 3: Cytotoxicity | Csg measurement of FVP in Hut 78 cells.
(A) ICsq of FVP in Hut78 CTCL cells; (B) Western blot results of Hut78 cells treated with

0, 0.12, or 2 uyM of FVP for 4 or 24 hours; (C) FVP induces apoptosis in Hut78 cells.
Annexin V apoptosis assay of Hut78 cells treated with 0, 0.12, 0.24, or 0.48 uM FV/P for 48
hours; (D) Loss of p38+y increases differential cytotoxicity effects by dosage difference.
Western blot of shCtr and shp38-y cells treated with 0, 0.12, or 2 pM FVP for 24 hours; and
(E) Pathway analysis with KEGG 2019 human pathway indicating NF-xB and MAPK are
top pathways targeted by FVP in p38y-silenced Hut78 cells.
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Kinomic profiling with PamGene in FVP-treated Hut78 cells. (A) Protein tyrosine kinase
(PTK) assay; (B) Serine-threonine kinase (STK) assay.
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Figure5:
STK kinomic assay showed NF-xB is major targeted pathway by FVP in CTCL cells. (A) a

list of target gene hit by FVP has NF-xB binding motif that are down-regulated in their
phosphorylation; (B) Metacore pathway analysis of FVP treated Hut cells; (C) Western blot
assessment of phospho-proteins of Hut78 cells treated with 0, 0.12, or 2 uM of FVP for 4 or
24 hours.
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CI Data for Non-Constant Combo: FVPNic (FVP+Nic)

FVP(nM) Nic(uM) Effect CI
60.0 0.2 0.7766  0.63218
60.0 1.0 0.7207  0.99263
60.0 5.0 04874  0.71975
60.0 25.0 0316  0.98765
120.0 0.2 0.8184  1.62966
120.0 1.0 0.6747  0.80879
120.0 5.0 0.5094  0.87545
120.0 250 03291  1.10495
240.0 0.2 0.6851 0.71319
240.0 1.0 0.7484  2.09650
240.0 5.0 0.5357 1.14151
240.0 250 03935  1.82910

Combination treatment of FVP and niclosamide in Hut78 cells. (A) MTS results of Hut78
cells after combination treatment with FVVP (0, 60nM, 120nM, or 240nM) and niclosamide
(0,0.2 uM, 1 uM, 5 uM, or 25 uM) for 72 hours; (B) Calculation of ClI using CompuSyn.
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