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Abstract

Atrial natriuretic peptide (ANP) has vasodilatory, natriuretic and diuretic properties.

It is secreted in response to atrial wall distension and thereby provides an indirect

evaluation of central blood volume (CBV). Adrenaline has chronotropic and inotropic

effects that increase cardiac output. In the present study, we evaluated whether

these effects were influenced by an increase in CBV and reflected in mid-regional

proANP (MR-proANP) concentrations in the circulation, a stable proxy marker of

bioactive ANP. Changes in CBV were evaluated by thoracic electrical admittance

and haemodynamic variables monitored by pulse-contour analysis during two inter-

vals with graded infusion of adrenaline. Adrenaline infusion increased heart rate (by

33 ± 18%) and stroke volume (by 6 ± 13%), hence cardiac output (by 42 ± 23%;

all P < 0.05). The increase in cardiac output did not result from an increase in CBV,

because thoracic electrical admittance remained stable (−3 ± 17%; P = 0.230). Serum

MR-proANP concentrations were increased (by 26 ± 25%; P < 0.001) by adrenaline

infusion and remained elevated 60min postinfusion.We conclude thatMR-proANP in

the circulation is affected not only byCBV, but also by increased chronotropy/inotropy

of the heart, or that adrenaline directly induces release of ANP variants from the

myocytes.
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1 INTRODUCTION

Atrial natriuretic peptide (ANP) is a peptide with potent vasodilatory

effects besides its diuretic and natriuretic properties. In healthy

humans, ANP is secreted in response to atrial wall distension (Clerico

et al., 2011), predominantly in the right atrium (Seul et al., 1992;

Wong et al., 1988). Measurement of ANP in the circulation permits
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evaluation, albeit indirect, of the central blood volume (CBV), as

illustrated, for example, by a marked decrease when preload to the

heart is reduced by head-up tilt (Matzen et al., 1990). Conversely,

plasma ANP concentrations increase when atrial filling is enhanced

during blood volume expansion (Legault et al., 1992), such as during

exercise (Yoshiga et al., 2019). In support, there is an inverse

relationship between plasma ANP and central venous pressure (CVP)
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during positive-pressure breathing (Schütten et al., 1990), and ANP

concentration in plasma, rather than CVP, is correlated with the

reduction in CBV during hyperthermia (Vogelsang et al., 2012).

Despite atrial stretch being the major stimulus for ANP secretion,

that is, by manipulating CBV, infusion of adrenaline increases plasma

ANP in healthy volunteers (Morrow et al., 1989; Sanfield et al., 1987;

Tunny et al., 1988). Adrenaline is known for its chronotropic and

inotropic effects on the ventricles and the atria (Lemoine et al., 1988;

Molenaar et al., 2007). Moderate intravenous infusion of adrenaline

raises heart rate (HR) and systolic blood pressure, while diastolic blood

pressure falls, making mean arterial pressure (MAP) change little with

an increase in cardiac output (CO) and stroke volume (SV), hence total

peripheral resistance decreases (Barcroft & Konzett, 1949). However,

the increase in SV with adrenaline infusion does not seem to be the

result of increased venous return to the heart, because there is no

change in the diastolic heart volume (Kjellberg et al., 1952). Thus, it

could be that ANP is released in response to increased cardiac contra-

ctility in addition to atrial distension as revealed by CBV. The increase

in SV and CO during adrenaline infusion can be reflected by pulse-

contour analysis (Niemann et al., 2019; Rokamp et al., 2017), which

uses deviations in arterial pressure determined either non-invasively

or invasively. Non-invasively derived SV and CO are comparable to

those derived by invasive monitoring during cardiothoracic surgery

(Martina et al., 2012; Truijen et al., 2018), during orthostasis (Harms

et al., 1999), in cardiovascular disease (Bogert et al., 2010) and in septic

shock patients (Jellema et al., 1999).

We evaluated the response of serum mid-regional proANP(53–90)

(MR-proANP), a stable variant of ANP, to adrenaline infusion inmiddle-

aged to elderly humans and to changes in CBV by thoracic electrical

admittance (TEA) with simultaneous recording of haemodynamic

variables with pulse-contour analysis.

2 METHODS

2.1 Ethical approval

The study was approved by the Danish national ethics committee

(H-20026057) and conducted in accordance with standards of the

Declaration of Helsinki and performed in a subgroup of patients from

a study on osteoarthritis, EFEX-OA-02, registered at clinicaltrials.org

(registration no. NCT04542668). Written informed consent was

obtained from all participants after verbal and written explanation of

the study.

2.2 Participants

The main inclusion criteria were relevant to a clinical population

and were as follows: age 40–75 years, bodyweight 50–100 kg and

body mass index 18.5–35.0 kg/m2. Exclusion criteria were as follows:

treatment with β-blockers, monoamine oxidase inhibitors, systemic

corticosteroids, vitamin K antagonists, new oral anticoagulants or

heparin; systemic infection; inflammatory immune or autoimmune

New Findings

∙ What is the central question in this study?

Atrial natriuretic peptide (ANP) is secreted in

response to atrial wall distension and thus allows

for evaluation, albeit indirect, of the central blood

volume. Adrenaline has chronotropic and inotropic

effects. We evaluated whether the chronotropic

and inotropic effects of adrenalinewere reflected in

mid-regional proANP.

∙ What is themain finding and its importance?

Central blood volume remained stablewith infusion

of adrenaline and yet mid-regional proANP

increased. Thus, the chronotropic and inotropic

state of the heart or adrenaline directly induces

release of ANP variants from themyocytes.

disease; any signof previousor current cardiovascular disease; or being

an athlete or highly trained individual.

2.3 Experimental protocol

On intervention days, subjects refrained from caffeinated beverages

and fasted for ≥6 h before visiting the laboratory. The subjects rested

for 30 min. Then 0.06 mg/kg of adrenaline in 50 ml of saline solution

was administered.With theparticipants semi-recumbent (30◦ from the

horizontal) and under ECG monitoring, adrenaline was administered

through a forearm 20-gauge intravenous catheter using an Infusomat

Space (B. Braun, Melsungen, Germany). Adrenaline was administered

in four 5-min progressive intervals, with the infusion rate being

increased gradually, while considering the subjective and objective

wellbeing of the subjects. The infusion was increased gradually over

each 5-min interval in an attempt to mimic the cardiovascular stress

during running and cycling to increase HR to ≥80% of the estimated

heart rate reserve (Bjerre-Bastos et al., 2022). After the first and

third intervals, the infusion was paused for ∼1 min to reset resting

cardiovascular variables, and the infusionwas stoppedafter the second

interval for blood collection. Blood sampleswere collected at rest, mid-

way (i.e., after the second interval), after completion (i.e., after the

fourth interval) and 1 h postinfusion for the determination of serum

MR-proANP and blood gas variables (Figure 1).

2.4 Measurements

2.4.1 Haemodynamic variables

Arterial pressure andHRwere recorded using photo-plethysmography

(Nexfin; BMEYE, Amsterdam, The Netherlands) with the finger cuff
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F IGURE 1 Experimental protocol. The two times two periods of adrenaline infusion were separated by∼3min. Solid arrows indicate the time
for data analysis, and dotted arrows indicate time points for blood sampling

on the third middle phalanx, and a heart reference sensor was

mounted to report values at the level of the heart. A pulse contour

method (Nexfin CO-trek; BMEYE) adapted for age, sex, height and

weight (Bogert et al., 2010; Truijen et al., 2018) provided left

ventricular SV. The CO was calculated as SV multiplied by HR, and

systemic vascular resistance (SVR) was defined as the ratio of MAP

to CO.

2.4.2 Thoracic electrical admittance

The participants were instrumented with a pair of electrodes (N-00-

25; Ambu, Ballerup, Denmark) placed on the right sternocleidomastoid

muscle and another pair high in the left mid-axillary line, with each

pair separated by ∼5 cm, to estimate changes in CBV by TEA.

Evaluation of TEA was based on an excitation current of 200 μA
at 1.5 and 100 kHz (C-Guard, Danmeter, Denmark), with the outer

electrodes providing the current and the inner pair determining

TEA. The low-frequency current does not penetrate the cell lipid

membrane readily and thus reflects the extracellular volume.

Conversely, the high-frequency current is correlated with total

(regional) body water because it penetrates the cell membrane (Cai

et al., 2000b). Changes in the difference between TEA (1/impedance,

IDX) with a low- and a high-frequency current are taken to reflect

changes in intracellular volume, hence, presumably, in the regional red

cell volume (Cai et al., 2000a, b). In support of this, there is an almost

perfect correlation between TEA and haemorrhage/reperfusion in

pigs (Krantz et al., 2000), and TEA is sensitive to manipulation of CBV

during, for example, simulated haemorrhage by head-up tilt (Matzen

et al., 1991; Van Lieshout et al., 2005) and lower-body negative

pressure (Cai et al., 2000b).

2.4.3 Blood sampling

Venous blood samples were collected into 2 ml EDTA vacutainers for

thedeterminationof serumMR-proANP.MeasurementofMR-proANP

(amino acids 53–90) was chosen instead of ANP (amino acids 98–128)

because ANP has a half-life of only 2–3 min (Potter, 2011), whereas

the MR-proANP is suggested to be excreted in equimolar amounts to

ANP but with a longer half-life (Yagmur et al., 2019). After collection,

the samples were coagulated for 30 min, centrifuged at 1610 g for

15 min at 4◦C, and the serum samples were stored at −80◦C until

analysis.

Serum MR-proANP was determined using an automated method

from Thermo-Fisher (the Kryptor Plus platform) and the sandwich

immunoassay validated with excellent performance (Hunter et al.,

2011). Also, venous blood was collected in a heparinized syringe (Pico;

Radiometer, Brønshøj, Denmark) and immediately analysed for blood

gas variables (ABL800 FLEX; Radiometer).

2.5 Statistics

Data arepresentedas themean±SDafter the rawdatawere inspected

and heart beats without apparent artefacts selected. A Shapiro–Wilk

test was used to evaluate data distribution and a one-way ANOVA

with repeated measures to identify changes. Deviations from rest

were identified using the Bonferroni post hoc test, with statistical

significance set atP<0.05, usingSPSS statistics v.26 (IMB,Armonk,NY,

USA). To evaluate changes over time, a 30 s averagewas used from rest

and during the beginning and end of each infusion interval for cardio-

vascular variables and 15 s average for TEA. For overall evaluation, the

last 1 min of rest and the infusion intervals were averaged for cardio-

vascular variables and an average from the last 15 s from the 5th and

10thminute values for TEA.

3 RESULTS

Twenty-seven healthy adults (13 females) participated in the study

(mean ± SD: age 59 ± 8 years, height 175 ± 6 cm, weight 83 ± 11 kg,

hence body mass index 27 ± 3 kg/m2). Cardiovascular variables and

blood sample analysis are presented for 26 participants because one
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F IGURE 2 Changes in mid-regional pro-atrial natriuretic peptide
(MR-proANP) at rest, during infusions of adrenaline and 60min after
the end of infusion (Post-60). Open circles indicate individual data, and
the horizontal lines indicate themean values. *P< 0.05 comparedwith
baseline. †P< 0.05 comparedwith previous time point

participant experienced white fingers during infusion and an increase

rather than a decrease in SVR and was therefore excluded for further

analysis. Data from 20 participants are presented for impedance data

owing to lack of baseline measurement (n = 5) and a measurement

error (n= 2).

The time of blood collection was 117 ± 68 s after the end of

infusion (P= 0.47 between the two sample times), and therewas 313±

115 s between the two intervals. The volunteers received 9 ± 2 ml of

adrenaline solution for the four periods combined with a peak infusion

rate of 30± 6ml/h, corresponding to 0.3± 0.2 μg/kg/min.

There was a marked increase in serumMR-proANP concentrations

(from 88± 29 to 108± 30 pmol/L) during adrenaline infusion, with the

increase being statistically significant during interval 2 (by 26 ± 25%,

P<0.001; Figure2). The increase in serumMR-proANPconcentrations

was sustained60minafter theendof infusion (at114±34pmol/L). The

increase inMR-proANPdid not result froman increase inCBV, because

IDX (−3±17%,P=0.230) and total (regional) bodywater (T100: 3±7%,

P = 0.260) remained similar and yet extracellular (T1.5) increased (by

5±5%, P<0.005; Figure 3). Therewas no significant difference for any

of the haemodynamic variables between the two periods of adrenaline

infusion, and the average is presented (Table 1). Adrenaline infusion

increased HR by 33 ± 18% (P < 0.005), SV by 6 ± 13% (P = 0.028),

hence CO (by 42 ± 23%, P < 0.005). The HR increased from the start

of the infusion, hence CO also increased from the beginning (Figure 4).

TheMAP increased (by 18± 13%, P< 0.005), hence SVR decreased (by

14± 17%, P= 0.006).

Adrenaline infusion increased venous haemoglobin and plasma

sodium, while plasma potassium and calcium decreased. All these

variables normalized within 1 h postinfusion, with no change in plasma

pH (Table 2). Adrenaline infusion also increased plasma glucose and

lactate, with further increases during the second infusion period (both

P< 0.005), and both remained elevated for 1 h postintervention, while

plasma bicarbonate decreased during the two intervals.

F IGURE 3 Change in thoracic electrical admittance at 1.5 (T1.5)
and 100 kHz (T100) at rest and during the four infusions of adrenaline
depicted in 5min segments, with the dotted vertical line indicating the
separation between intervals for blood sample collection. IDX is the
difference between T1.5 and T100 to indicate changes in regional
intracellular water. Open circles indicate individual data, and the
horizontal lines indicate themean values. *P< 0.05 comparedwith
baseline

4 DISCUSSION

This studyaddressedwhether the chronotropic and inotropic effects of

adrenaline (Stratton et al., 1985) are reflected in (serum) MR-proANP

concentrations, as reported for plasma ANP (Morrow et al., 1989;

Sanfield et al., 1987; Tunny et al., 1988), and reflected in CBV as

evaluated by TEA. Adrenaline increased both HR and SV, hence CO,

but was accompanied by only a small increase in low-frequency TEA,

whereas serum MR-proANP increased to the highest level after the

end of the infusion.
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TABLE 1 Haemodynamic and thoracic electrical admittance
variables at rest and during infusion of adrenaline

Variable Rest Adrenaline

MAP (mmHg) 88 ± 10 103 ± 14*

HR (beats/min) 63 ± 10 83 ± 14*

SV (ml) 94 ± 13 100 ± 17*

CO (L/min) 6 ± 1 8 ± 1*

SVR (dyn s/cm5) 1,268 ± 269 1,067 ± 239*

T1.5 (S) 138 ± 31 145 ± 32*

T100 (S) 183 ± 43 187 ± 42

IDX (S) 45 ± 19 42 ± 17

Abbreviations: CO, cardiac output; HR, heart rate; IDX, index value;

MAP, mean arterial pressure; SV, stroke volume; SVR, systemic vascular

resistance; T1.5 thoracic electrical admittance at 1.5 kHz; T100, thoracic
electrical admittance at 100 kHz. Note. Values are the average of the last

minute of rest and of the last minute during the second and fourth infusion

intervals. Data are presented as themean± SD.

*P< 0.05 comparedwith baseline.

As expected, SV increased with administration of adrenaline. With

the increase in HR, the CO also increased, in accordance with

classical investigations (e.g., Barcroft and Konzett, 1949; Freyschuss

et al., 1986). Also, studies implementing pulse-contour analysis during

adrenaline infusion (Niemann et al., 2019; Rokamp et al., 2017; Seifert

et al., 2009) demonstrate a ∼40–76% increase in CO compared with

a 44% increase in the present study using a stepwise rather than

a continuous infusion rate and a peripheral rather than a central

venous line. The time and dose differ among the studies (0.08–

0.01μg/kg/min), andCO increases∼2-foldwhen the present peak dose

of ∼0.3 μg/kg/min is administered for 5 min (Elliott et al., 2014) as

adrenaline increases CO in a stepwise fashion to its concentration, for

example, from0.001 to 0.08μg/kg/min (Freyschuss et al., 1986; Leenen

et al., 1988; Maggs et al., 1994). Yet, the present subjects were older

than those typically exposed experimentally to adrenaline, and with

age, the SV rather than the HR response is blunted (White & Leenen,

1997).

Adrenaline infusion also increases HR in a dose-dependent manner,

emptying the left ventricle, and increases systolic pressure with little

change in the diastolic heart volume (Kjellberg et al., 1952; Stratton

et al., 1985). However, the left ventricular end-diastolic dimension has

also been observed to increase during adrenaline infusion (Leenen

et al., 1988). TheCBV, as evaluated by TEA, did not increase on infusion

of adrenaline; however, there was an increase in the extracellular

thoracic volume as reflected by low-frequency current TEA that might

support CO (González-Alonso et al., 2006) and is reflected in venous

haemoconcentration, and also arterial haemotocrit tends to increase

(Rokamp et al., 2017). We found that serum MR-proANP increased

with adrenaline infusion and remained elevated 60 min thereafter.

Thus, ANP is not only released in response to changes in CBV, such as

during head-up tilt (Matzen et al., 1990) or as a consequence of cardiac

disease (Elmas et al., 2008; Lindberg et al., 2015; Moertl et al., 2009),

but also by infusion of adrenaline (Morrow et al., 1989; Sanfield et al.,

1987; Tunny et al., 1988), apparently independent of CBV.

Adrenaline has widespread metabolic actions, and infusion of

adrenaline decreased plasma potassium and calcium in accordance

TABLE 2 Metabolic responses to adrenaline infusion at rest, during four periods of infusion (collected after interval 2 and interval 4) and 1 h
postinfusion

Variable Rest Interval 2 Interval 4 Post-60

MR-proANP (pmol/L) 88.2 ± 29.1 92.8 ± 27.2 107.6 ± 30.4*† 113.8 ± 34.3*

pH 7.38 ± 0.02 7.38 ± 0.02 7.38 ± 0.08 7.36 ± 0.03

PCO2
(kPa) 6.2 ± 0.7 6.0 ± 0.4 5.9 ± 0.5 6.5 ± 0.6§

PO2
(kPa) 5.0 ± 2.0 4.9 ± 1.1 4.9 ± 1.1 3.4 ± 1.2*§

SO2
(%) 0.63 ± 0.20 0.66 ± 0.14 0.66 ± 0.16 0.41 ± 0.19*§

FO2Hb (%) 0.61 ± 0.20 0.65 ± 0.13 0.65 ± 0.15 0.41 ± 0.18*§

Hb (mmol/L) 8.7 ± 0.6 8.9 ± 0.6* 8.9 ± 0.7* 8.7 ± 0.8§

K+ (mmol/L) 4.1 ± 0.3 3.4 ± 0.4* 3.1 ± 0.3* 4.1 ± 0.4§

Na+ (mmol/L) 141.3 ± 1.6 142.2 ± 1.7* 142.5 ± 1.7* 140.8 ± 2.7§

Ca2+ (mmol/L) 1.20 ± 0.03 1.21 ± 0.03 1.19 ± 0.03*† 1.20 ± 0.03‡

Glucose (mmol/L) 5.8 ± 1.0 7.1 ± 0.9* 9.0 ± 1.0*† 7.2 ± 1.3*‡

Lactate (mmol/L) 1.1 ± 0.3 2.0 ± 0.5* 2.9 ± 0.7*† 1.6 ± 0.5*§

HCO3
– (mmol/L) 24.9 ± 0.9 24.3 ± 1.1* 23.2 ± 1.1*† 24.4 ± 1.1†

Abbreviations: FO2Hb, fraction of oxygenated haemoglobin, Hb, haemoglobin; MR-proANP, mid-regional pro-atrial natriuretic peptide; PCO2
, carbon dioxide

partial pressure; PO2
, oxygen partial pressure; Post-60, 60 min after the end of infusion; SO2

, fraction oxygen saturation. Note. Data are presented as the

mean± SD.

*P< 0.05 comparedwith baseline.
†P< 0.05 comparedwith previous interval.
‡P< 0.05 comparedwith interval 4.
§P< 0.05 comparedwith intervals 2 and 4.
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F IGURE 4 Change in blood pressure (systolic and diastolic), heart
rate (HR), stroke volume (SV), cardiac output (CO) and systemic
vascular resistance (SVR) at rest and during the four infusions of
adrenaline depicted in 5min segments, with the vertical dotted line
indicating the separation between intervals for blood sample
collection. Open circles indicate individual data and the horizontal
lines indicate themean values. *P< 0.05 comparedwith baseline.
†P< 0.05 comparedwith previous time point

with thework ofHansen et al. (1990). Also, catecholamines (e.g., during

whole-body exercise) stimulate liver gluconeogenesis and muscle

glycogenolysis (Kjær et al., 1987); therefore, the increase in plasma

glucose and lactate in response to adrenaline is to be expected.

ProANP has 126 amino acids and a longer half-life than ANP and

is therefore suggested to be a more reliable analyte (Buckley et al.,

1999). However, proANP1–98 is exposed to further fragmentation

(Cappellin et al., 2001; Morgenthaler et al., 2004), and immunoassays

have been developed to target different regions. The right atrium

becomes smaller when venous return to the heart is limited, for

example, by manipulating CBV, and plasma ANP decreases during

lower-body negative pressure (Cai et al., 2000b), such as during head-

up tilt (Matzen et al., 1990) and during sitting and standing (Vogelsang

et al., 2006). Yet, ANP fragments respond in different ways to CBV.

Athletes demonstrate an enlarged CBV (Sawka et al., 2000), and

their proANP(31–67) is elevated, although proANP(1–30) is not (De

Palo et al., 2000). Conversely, proANP(1–30) rather than proANP(31–67)

responds to acute exercise, reflecting that proANP(1–30) has a shorter

degradation time than proANP(31–67) (Nielsen et al., 2001). When

targeting themid-regionof proANP (aminoacids53–90), the analysis is

correlatedwith perioperative fluid balance and follows a compromised

CBV during laparoscopic procedures including head-up tilt (Strandby

et al., 2017), open cystectomy (Rasmussen et al., 2016) and open

oesophagectomy (Strandby et al., 2019a). Conversely, MR-proANP

does not followchanges in haemorrhage-inducedhypovolaemia in pigs,

with or without thoracic epidural anaesthesia (Strandby et al., 2019b).

Haemorrhagic shock increases plasma adrenaline (e.g., Jacobsen et al.,

1990), possibly explaining an increase in MR-proANP. Also, when

conducting maximal (rather than submaximal) exercise, the large

increase in adrenaline could contribute to the increase in plasma ANP

(Perrault et al., 1989), because adrenaline infusion results in similar

levels to those during physiological stress with similar changes in SV,

ejection fraction and SVR (Stratton et al., 1985). Concomitant with

positive inotropy and chronotropy, exercise also increases CBV by the

muscle pump, thereby increasing ANP (Vogelsang et al., 2006; Yoshiga

et al., 2019), and physiological stress imposed by passive heating

results in a correlation between changes in CBV and ANP (Vogelsang

et al., 2012).

In the present study, serum MR-proANP remained elevated 1 h

after adrenaline infusion. Tunny et al. (1988) found that venous plasma

ANP reached resting values 30 min after the infusion of adrenaline.

Likewise, Perrault et al. (1989) found that both venous plasmaANPand

adrenaline levels returned to resting values 30 min after termination

ofmaximal ergometer cycling. However, plasma proANP1–30 remained

elevated 30 min after the end of maximal exercise (Engelmann et al.,

2005). When manipulating CBV by head-up tilt, arterial plasma ANP

did not reach resting values 30 min after a return to supine rest

(Matzen et al., 1990), whereas arterial plasma ANP returned to

the resting level 10 min after lower-body negative pressure was

terminated (Cai et al., 2000b). Thus, plasma ANP has a short half-life,

whereas the half-life of different prohormones is prolonged to various

extents, as also illustrated by Baker et al. (1991), who found that ANP

returns to the resting level within 30 min, whereas proANP remains

elevated 1 h after maximal cycling exercise.
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A limitation to the present study is the peripheral site of infusion,

which, potentially, affected the even distribution of adrenaline. Also,

other variants of ANP could have been determined and, for example,

echocardiography couldhavebeenused toevaluate filling of the atrium

during the infusion.

In conclusion, given that CBV remained similar, serum mid-regional

proANP is not only influenced by CBV, but also responds to the

chronotropic and inotropic state of the heart induced by adrenaline

infusion, or adrenaline might directly induce release of ANP variants

from the myocytes. Yet, for example, central hypovolaemia (e.g., head-

up tilt or lower-body negative pressure) is associated with elevated

catecholamines at the same time as ANP fragments decrease in

plasma.
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