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A B S T R A C T

Background: Clinical observations have revealed that patients undergoing organ transplantation 
administered tacrolimus often experience abnormal lipid metabolism with serious consequences. 
Thus, the intricate interplay between tacrolimus and lipid metabolism must be addressed to 
develop targeted therapeutic interventions. Our ongoing research aims to develop precision 
medicine approaches that not only alleviate the immediate repercussions for organ transplant 
patients but also enhance their long-term outcomes. To this end, we investigated the potential 
genes associated with tacrolimus metabolism in familial combined hyperlipidemia (FCHL) to 
identify relevant biomarkers of FCHL, develop predictive diagnostic models for hyperlipidemia, 
and reveal potential therapeutic targets for FCHL.
Methods: Dataset GSE1010 containing information on patients diagnosed with FCHL was obtained 
from the Gene Expression Omnibus (GEO), and an ensemble of tacrolimus-related genes (TRGs) 
was retrieved from the GeneCards, STITCH, and Molecular Signatures Database databases. A 
thorough weighted gene co-expression network analysis was conducted, including a differential 
expression analysis of the GSE1010 and TRG datasets, to identify intricate patterns of gene co- 
expression and provide insights on the underlying molecular dynamics within the datasets. Key 
genes were screened, diagnostic models were constructed, and all genes associated with logFC 
values were assessed using gene set variation and enrichment analyses. Upregulated genes were 
identified by a positive logFC (>0) and P < 0.05, while downregulated genes were characterized 
by a negative logFC (<0) and P < 0.05. These criteria facilitated a more nuanced categorization of 
gene expression changes within the analyzed datasets. Given tacrolimus’s immunosuppressive 
impact, the gene expression matrix data obtained from dataset GSE1010 was submitted to 
CIBERSORT to assess immune cell infiltration outcomes. Finally, we examined the regulatory 
network of screened key genes that interact with RNA-binding proteins, potential drugs, small- 
molecule compounds, and transcription factors.
Results: We screened 14 statistically significant key genes, built a reliable risk model, and grouped 
the dataset into categories at high and low risk for hyperlipidemia development. FCHL was linked 
to memory B and immature B immune cells. The gene set variation analysis revealed two path
ways associated with cholesterol homeostasis and the complement system that were closely 
associated with the potential functions of FCHL and tacrolimus-related differentially expressed 
genes.
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Conclusions: Our research offers a better understanding of FCHL and the TRGs involved in lipid 
metabolism. Additionally, it provides research directions for identifying potential targets for 
clinical therapies.

1. Background

Hyperlipidemia commonly develops subsequent to renal transplantation and is associated with a deterioration in the patient’s 
prognosis [1]. Hypertriglyceridemia (HTG) is a common cause of atherosclerosis and cardiovascular disease [2,3]. Familial combined 
hyperlipidemia (FCHL) stands out as the predominant form of genetic dyslipidemia (11.3 %) in individuals below the age of 60 
diagnosed with coronary heart disease, and it presents a prevalence of 1–2% within the general population [4]. However, the path
ogenesis of abnormal lipid metabolism remains uncertain and may be connected to diet, obesity, and genetic factors [5–9].Dyslipi
demia has emerged as a significant contributor to atherosclerotic cardiovascular disease, which leads to critical life-threatening 
conditions [10]. Reports have suggested that FCHL is brought on by changes in the lipoprotein lipase (LPL), ApoC2, or ApoA5 genes, all 
of which are involved in triglyceride (TG) metabolism [11] and usually characterized by multiple mutations [12].Triglycerides are a 
type of glyceride produced by the esterification of three hydroxyl groups in glycerol with three fatty acid molecules. A recent Men
delian randomized study found that genetic variants of LPL, which is responsible for TG hydrolysis, and the low-density lipoprotein 
(LDL) receptor, which is involved in LDL metabolism, are closely associated with lowering the risk of heart attacks [13]. The principal 
advantage of current lipid-lowering medications, as exemplified by statins, lies in their ability to decrease LDL-C levels. However, 
adverse consequences, including liver function abnormalities, and rhabdomyolysis, are often a concern in clinical practice. To address 
these challenges, lipid-lowering drugs that act on alternative targets are constantly being introduced. For example, the US FDA 
approved the following two noteworthy agents for the treatment of homozygous familial hypercholesterolemia as early as 2012 and 
2013: lomitapide, an inhibitor of microsomal TG transfer protein, and mipomersen, an inhibitor of ApoB100 synthesis [14,15]. 
Moreover, angiopoietin-like protein 3 plays a pivotal role in very-low-density lipoprotein (VLDL) metabolism, assuming a regulatory 
function by impeding the activity of LPL. VLDL is composed of intermediate metabolites of celiac granule remnants, bile acids, fatty 
acids, sugars, proteins and apolipoproteins synthesized in the liver. Its density is 0.96–1.063 mg/dl and contains 60 % triacylglycerols. 
Phase 2 and 3 clinical trials are currently ongoing for evinacumab, a monoclonal antibody designed for humans that specifically targets 
angiopoietin-like protein 3 [16]. Apolipoprotein C3 (ApoC3), a key player in the regulation of chylomicron and VLDL metabolism, 
exerts its influence by suppressing LPL and hepatic lipase activities, thus underscoring its critical role in these intricate metabolic 
pathways. Volanesorsen, a 2nd-generation antisense oligonucleotide of ApoC3, induced a significant 77 % decrease in TG levels in a 
phase 3 clinical investigation; however, it was not approved by the US FDA because of the risk of severe thrombocytopenia [17]. These 
studies underscore the importance of research and development to identify effective targets for regulating lipid metabolism and 
lowering TG levels. In this study, we concentrated on the metabolism of triglycerides, specifically the dysregulation of lipid metabolism 
following the administration of tacrolimus post-transplantation, leading to hypertriglyceridemia.

Tacrolimus (TAC) is a macrolide antibiotic isolated from Streptomyces spp. That is widely used as a potent immunosuppressant in 
solid organ transplant recipients. TAC inhibits the release of interleukin-2 (IL-2), which comprehensively suppresses T lymphocytes. 
Moreover, TAC has a biphasic distribution after absorption in the human body, with most of the TAC (98.8 %) in plasma bound to 
plasma proteins, namely, serum albumin and α-1-acid glycoprotein, and TAC in erythrocytes bound to TAC-binding proteins (FKBP) 
(mainly FKBP-12) [18,19]. In addition, TAC metabolism is dependent on CYP3A4 and CYP3A5 within the hepatic and intestinal walls. 
A comprehensive CYP3A4/5 whole-gene analysis was previously conducted on a cohort of 2595 kidney transplant recipients with 
diverse ancestral backgrounds, including European, African, Native American, and Asian backgrounds, and it revealed an association 
between the CYP3A5*3 variant (rs776746) and elevated doses of standardized tacrolimus (TAC) troughs across all ethnic groups. 
Notably, this association was manifested by varying allele frequencies and effect sizes [20]. Furthermore, certain genes implicated in 
carbohydrate metabolism, such as the LEPR rs1137101 G allele and CDKAL1 rs10946398 cellular components (CC) genotype, have 
been connected to a higher likelihood of developing diabetes mellitus in patients administered TAC treatment during renal trans
plantation [21,22]. A study investigating the disruption in lipid metabolism resulting from the synergy of TAC and hormones identified 
CircFOXN2 as a promising intervention. This circRNA is a regulator that alleviates the adverse effects of disrupted lipid metabolism by 
modulating the polypyrimidine tract binding protein 1 (PTBP1) and fatty acid synthase (FASN) axis [23]. Kidney transplant recipients 
require long-term immunosuppressive medications and present a high prevalence of HTG [24], which is experienced by 27%–71 % of 
organ transplant patients [25]. Moreover, cardiovascular disease is the primary cause of mortality among heart and kidney transplant 
recipients [26] and second most prevalent cause of death among liver transplant recipients [27]. Beyond immediate issues related to 
the transplant, cardiovascular disease persists as a significant contributor to long-term mortality among transplant patients. With the 
advent of solid organ transplantation, new-onset metabolic syndrome after organ transplantation has been increasingly observed as a 
common complication that is significantly associated with a higher prevalence of heart-related conditions [28].An increasing number 
of transplant physicians have noted a correlation between post-transplant hyperlipidemia and cardiovascular disease, suggesting a 
potential link to tacrolimus and its molecular partner, FK506-binding protein 51 (FKBP51) [29–35].Although a multitude of risk 
factors increase the possibility of developing cardiovascular disease following transplantation, dyslipidemia remains one of the most 
common and modifiable risks [36]. In our earlier single-center study of kidney transplant recipients, we observed a consistent cor
relation between TGs and abnormally high TAC drug concentrations. Additionally, a significantly higher incidence of postoperative 
HTG in renal transplant recipients with blood type O than in those with other blood types was observed [37]. Researchers have 
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highlighted a correlation between genetic polymorphisms and an elevated susceptibility to developing metabolic syndrome in re
cipients of solid organ transplants [38] and have suggested that the prevalence of HTG among kidney transplant recipients might be 
functionally regulated by genes or related to immunosuppressive drug administration or immune cell function; thus, they made an 
effort to investigate the connection among the three in terms of gene pooling.

We used GSE1010 data in the manuscript from a study of familial mixed hyperlipidemia (FCHL). Metabolic disorders caused by 
FCHL and TAC (tacrolimus) involve similar changes in lipid metabolic pathways, with hypertriglyceridemia (HTG) being a typical 
manifestation of both.The administration of TAC may elicit metabolic derangements akin to FCHL. Therefore, elucidating the gene 
regulatory mechanisms in FCHL is crucial for comprehending the lipid metabolic alterations induced by TAC. Our examination of the 
GSE1010 data facilitated the identification of key genes implicated in FCHL that could be subject to altered regulation during pro
longed TAC therapy, potentially contributing to lipid metabolism disorders.Although the GSE1010 dataset is centered on familial 
combined hyperlipidemia (FCHL), uncovering the gene expression patterns and regulatory mechanisms within lipid metabolism offers 
a foundation for extrapolating insights to tacrolimus (TAC)-related metabolic research. Leveraging the broad utility of bioinformatics, 
we can harness FCHL data to uncover the mechanisms behind TAC-induced lipid metabolism disorders, potentially pinpointing novel 
targets for intervention. Consequently, we anticipate that this study will yield fresh perspectives and therapeutic strategies aimed at 
the clinical management and prevention of lipid metabolic disturbances in organ transplant patients treated with TACs.

In this study, TAC-related genes (TRGs) retrieved from expression profile data of FCHL patients from different databases, including 
GEO, GeneCards [39], STITCH, and online Molecular Signatures Database (MSigDB) [40], were analyzed to further investigate the 
pathogenesis of TAC action, immune cell function, and hyperlipidemia development. The results presented here are important for 
preserving human health as well as preventing and managing cardiovascular disease.

2. Materials and methods

2.1. Data download and pre-processing

Our initial exploration involved querying the GEO database [41] based on the R package GEOquery for efficient retrieval [42]. The 
expression profiling dataset GSE1010 of human patients with FCHL was downloaded.

The GSE1010 dataset was sampled from lymphoblastoid cells or cell lines from patients with FCHL and healthy donors, and it 
contained a total of 24 data samples. A set of 12 data samples was obtained from patients diagnosed with FCHL, which constituted the 
FCHL subgroup, and another set of 12 data samples was collected from healthy donors, which constituted the control subgroup. The 
entire sample was included in the analysis.

The GSE1010 dataset utilized the GPL96 [HG-U133A] Affymetrix Human Genome U133A Array as its data platform. Annotation of 
dataset probe names was performed using the corresponding chip GPL platform file. See Table 1 for specific dataset information.

The GeneCards [39] database (https://www.genecards.org/) was searched using the phrase "Tacrolimus," and only "Protein 
Coding” results were retained. In total, 1635 TRGs were identified.

The public Comparative Toxicogenomics Database (CTD) [43] (http://ctdbase.org/) was searched using the term "Tacrolimus," and 
475 TRGs were identified.The Comparative Toxicogenomics Database (CTD) facilitates the screening of potential drugs or small 
molecule compounds that interact with key genes. It evaluates mRNA-drug interactions by referencing the associated literature count. 
Furthermore, We employs Cytoscape software to visualize these interactions within a network framework.

The STITCH [44] online website (http://stitch.embl.de/) was searched using the term "Tacrolimus" and the default parameters, and 
10 TRGs were identified.

The ENCORI database, known as starBase 3.0, is engineered to predict interactions between microRNAs (miRNAs), RNA-binding 
proteins (RBPs), and key genes. It enables the screening of interacting pairs involving miRNA-mRNA and mRNA-RBP. Additionally,we 
utilizes Cytoscape software to visualize the interaction networks, providing a comprehensive view of the molecular relationships [45].

CHIPBase 3.0 utilizes ChIP-seq data to identify binding sites and elucidate the transcriptional regulatory relationships between 
transcription factors and their target genes. We also employs Cytoscape software to visualize the interaction networks, offering a 
graphical representation of these molecular associations [46].Related gene sets in the MSigDB [40] were looked up utilizing the 
tacrolimus alias "FK506," and the BIOCARTA_CALCINEURIN_PATHWAY gene set containing 18 TRGs was identified.

Finally, published literature on the PubMed website [47] was searched, and 58 TRGs were identified. After combining and 
de-emphasizing all the TRGs, we obtained 1967 TRGs, as shown in Table 2.

Table 1 
Familial combined hyperlipemia data set information list.

GSE1010

Platform GPL96
Species Homo sapiens
Tissue lymphoblastic cells or cell lines
Samples in FCHL group 12
Samples in Control group 12
Reference –

FCHL, familial combined hyperlipemia; GEO, Gene Expression Omnibus.
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2.2. Analysis of differential expression

To reveal the functional modalities of genes and associated biological traits and pathways in FCHL, differentially expressed genes 
(DEGs) were identified using limma software [48]. This analysis was conducted across diverse subgroups (FCHL/control) within the 
GSE1010 dataset, employing stringent criteria of |logFC| > 0 and P < 0.05. The genes meeting these criteria were selectively 
designated as DEGs for subsequent in-depth analyses. Notably, genes with logFC >0 and P < 0.05 were classified as upregulated, 
indicating heightened regulatory levels, while those with logFC <0 and P < 0.05 were classified as downregulated. This foundational 
step laid the groundwork for a more nuanced exploration of the intricate molecular landscape associated with FCHL.

Tacrolimus-induced differential gene expression was determined by identifying genes meeting the criteria of |logFC| > 0 and P <
0.05 in both the GSE1010 and TRG datasets. Identifying overlaps among these genes provided a robust foundation for subsequent 
analyses, and such connections were visually depicted through Venn diagrams. The differential analysis outcomes were compre
hensively presented using volcano charts via the R tool ggplot2, and gene expression patterns were displayed through heat maps 
generated with the R package pheatmap. This methodological approach enhances the clarity and depth of the insights gained into the 
genomic landscape influenced by tacrolimus across datasets.

2.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis

To gain comprehensive functional enrichment insights, a GO analysis was performed [49], which included biological processes 
(BP), molecular functions (MF), and CC categories. Simultaneously, a KEGG [50] analysis of genome-related information, pathways, 
diseases, and drugs was performed. Using the R package clusterProfiler [51], we conducted GO and KEGG annotation analyses of 
tacrolimus-related differentially expressed genes (TRDEGs). Rigorous criteria of P.adj <0.05 and FDR (q.value) < 0.05 were applied to 
meticulously screen entries for statistical significance. This strategic approach minimized redundancy and provided a more 
comprehensive insights on the functional landscape of TRGs.

2.4. Weighted gene co-expression network analysis (WGCNA)

WGCNA [52] uses the expression correlation coefficients normalized for each gene to evaluate the co-expression relationships 
between genes. Significant links between genes and co-expression are defined as modules. We used the WGCNA package in R [53] for 
the analysis, with an RsquaredCut parameter of 0.90, a minimum threshold of 30 genes for module inclusion, and a module merge 
shear height of 0.2. The co-expression modules associated with genes of different subgroups (FCHL/control) from the GSE1010 dataset 
samples were thus identified. The intersection between TRDEGs obtained from the differential analysis and module genes whose 
correlations met the requirements (|cor| > 0.3, P < 0.05) was determined to obtain the intersection genes (model genes).

2.5. Screening of key genes

To screen key genes and construct diagnostic models, we first performed a one-way logistic (logistic) regression on TRDEGs, using 
P < 0.05 as the screening criterion, and included the screened TRDEGs in the subsequent random forest (RF) analysis.

RF [54] is an algorithm that integrates multiple decision trees via integration learning. It is a bagging integration method, which 
also includes self-sampling integration and bootstrap aggregation. We used the randomForest package(https://posit.cloud/) [55] to 
construct a model with TRDEG expression obtained from one-factor logistic regression screening of the expression matrix of the dataset 
GSE1010, with the parameter set.seed (234) and ntree = 500. MeanDecreaseGini is the average decrease in the Gini coefficient, which 
indicates the impurity of the node. As the Gini coefficient increases, the purity decreases and impurity increases. Therefore, Mean
DecreaseGini represents the average decrease in impurities of the variable separating nodes for all trees, with higher Mean
DecreaseGini values indicating variables with greater importance to the grouping. A tradeoff of the number of variables was then 
conducted by performing five 10-fold cross-validations in conjunction with the cross-validation curves. We used the training set to 
perform the cross-validation and only retained a limited number of variables in comparison to relatively small errors, and the 
important variables were selected for subsequent analyses based on MeanDecreaseGini.

Then, we applied the R package glmnet [56] for a Least Absolute Shrinkage and Selection Operator (LASSO) regression, with the 
parameter set.seed(500) guided by the outcomes of the RF screening [57]. The regression analysis was performed with a run period of 
200 to avoid overfitting. LASSO regression operates on the principles of linear regression but introduces a penalty term (lambda ×
absolute value of slope) to curb overfitting, which simultaneously improves the model’s generalization capabilities. The findings from 
the LASSO regression analysis were effectively visualized through diagnostic model plots and variable trajectory plots. TRDEGs 
included in the final LASSO regression model were the key genes in our subsequent analyses.

2.6. Key genes for constructing diagnostic logistic regression models

Logistic models are frequently employed to examine how independent and dependent variables are related when the dependent 
variable is a dichotomous variable. We included all key genes, constructed a multifactorial logistic model to obtain the coefficients of 
each key gene, and then multiplied by the matching phrase to determine each sample’s risk score. Next, using the median value of the 
RiskScore (high, low), we carefully divided the illness groups within the dataset into distinct high- and low-risk categories. The 
intricate RiskScore, a pivotal metric, was then calculated utilizing a sophisticated formula designed to encapsulate the multifaceted 
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nature of the dataset: 

RiskScore=
∑

i
Coefficient (genei)*mRNA Expression (genei)

A nomogram [58] is a graphical representation in a planar rectangular coordinate system, consisting of non-intersecting line 
segments, and it can reveal the intricate relationships among various independent variables. To illustrate the interconnections among 
pivotal genes incorporated in the multifactor logistic model, a nomogram was constructed using the results derived from the multi
factorial logistic model. This visualization was accomplished through the implementation of the R package rms.

Next, using the outcomes of the multifactor logistic regression analysis, we conducted a calibration analysis and used a calibration 
curve as a visual aid to gauge the model’s precision and discriminative ability.

A straightforward technique for assessing biological markers, diagnostic tests, and clinical prediction models is the decision curve 
analysis (DCA). DCA [59] plots were constructed based on key genes in dataset GSE1010 using the R package ggDCA.

Finally, a receiver operating characteristic (ROC) curve for the logistic risk score (RiskScore) in the GSE1010 dataset was generated 
using the R package pROC. Additionally, the area under the ROC curve (AUC) was computed to evaluate the diagnostic efficacy of the 
logistic risk score (RiskScore) in predicting the onset of FCHL. The AUC, which typically ranges from 0.5 to 1, serves as a metric for 
diagnostic accuracy, with a higher AUC value indicating a more favorable diagnostic effect. AUC values close to 1 indicate extremely 
high accuracy, values between 0.7 and 0.9 indicate moderate accuracy, and values from 0.5 to 0.7 indicate low accuracy.

2.7. Differential expression validation and functional similarity analysis of key genes

Differences in the expression patterns of key genes between different subgroups (FCHL/control) within the FCHL dataset GSE1010 
were then examined based on the Mann–Whitney U test (Wilcoxon rank sum test). The findings were then compared using the R 
package ggplot2.

The pROC package of R [60] has emerged as an indispensable coordinate graphical analysis tool that can identify the optimal 
threshold for a given model and eliminate second-best models. Thus, it is vital for selecting optimal models.

Subsequently, the Spearman algorithm was applied to identify connections between key genes and their expression in the GSE1010 
dataset. Using the R package pheatmap, a correlation heatmap was created to display the correlation analysis findings. Absolute values 
of correlation coefficients below 0.3 were considered weak or uncorrelated; values between 0.3 and 0.5 were considered weakly 
correlated; values between 0.5 and 0.8 were considered moderately correlated; and those above 0.8 were considered highly correlated.

Semantic comparisons of GO annotations offer a quantitative method of calculating the similarity of genes and genomes, and they 
are now a crucial part of many bioinformatic research techniques. We used the GOSemSim package [61] to determine the GO semantic 
similarity among important genes, further calculate the geometric mean of key genes at the BP, CC, and MF levels to obtain the final 
scores, and determine the mean value of the similarity scores between each key gene and others, arranging them in a descending order. 
The ggplot tool was used to illustrate the functional similarity analysis findings and highlight the key genes.

Finally, the R package RCircos [62] was utilized for of chromosomal localization mapping to obtain the locations of key genes on 
the chromosome.

2.8. Gene set enrichment analysis (GSEA)

In this study, we initially assessed genes based on their logFC values and then performed an enrichment analysis using the clus
terProfiler package to identify statistically significant differences within a predetermined set of genes across two distinct biological 
states. GSEA [63] is a computational approach widely acknowledged for its efficacy in identifying shifts in the activity levels of 
pathways and biological processes within expansive expression datasets. The following GSEA parameters were used: a seed value of 
2022, 5000 permutations for calculations, and a minimum of 10 genes and a maximum of 500 genes in each gene set. The gene set 
utilized in this analysis, denoted as "c2.all.v2022.1.Hs.symbols.gmt [Curated/Pathway] (6449)," was sourced from the MSigDB [40]. 
Significant enrichment was defined by the dual thresholds of P.adj <0.05 and FDR value (q.value) < 0.05. This stringent screening 
process ensured robust identification of gene sets exhibiting substantial enrichment in the analyzed biological contexts.

2.9. Gene set variation analysis (GSVA)

GSVA [64] was applied to the gene set "c2.cp.all.v2022.1.Hs.symbols.gmt" from the MSigDB database to identify subtle variations 
in gene set activity and reveal the intricate connections encoded within the gene sets curated within the database. All genes in the 
different subgroups of the FCHL dataset were analyzed, and functional enrichment differences in the genes among the different 
subgroups were calculated. P < 0.05 was applied as the criterion for enrichment screening.

2.10. Immune infiltration analysis

CIBERSORT [65] is an algorithm for immune infiltration analysis. It was used to analyze gene expression matrix data from the 
GSE1010 dataset. This procedural step is akin to providing a key to unlock biological insights, and it provided a comprehensive 
evaluation of immune cell composition and abundance within the intricate genomic landscape. Subsequently, we integrated this 
dataset with the LM22 feature gene matrix to enhance the precision and comprehensiveness of immune cell composition assessment in 
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the context of the provided gene expression data. Data points were selectively retained, and the outcomes of this filtration process were 
illustrated. The percentage of immune cell infiltration percentages was visualized through a stacked histogram, showcasing variations 
between the subgroups categorized. The Wilcoxon rank sum test was used to identify differences in immune cell infiltration abundance 
associated with varying logistic regression risk scores among the distinct subgroups within the GSE1010 dataset, and the results were 
visually depicted using boxplot plots. Significant differences in high and low logistic regression risk scores among the subgroups and 
key genes were determined, and the R program ggplot2 was used to create correlation point plots to illustrate these differences, with 
correlations calculated by Pearson’s correlation analysis.

For the quantification of relative immune cell infiltration abundance, we employed the single-sample gene set enrichment analysis 
(ssGSEA) algorithm [66]. Utilizing the R package GSVA, our ssGSEA algorithm calculated enrichment scores to effectively represent 
the extent of infiltration for various immune cell types. Boxplots were used to visually represent the variations in infiltration abun
dance of the 28 immune cell types between the subgroups characterized by high and low logistic regression risk scores. Next, we 
computed the connection between immune cells with significant differences in the high and low subgroups of logistic regression risk 
score and key genes by combining the gene expression matrix of dataset GSE1010, and the outcomes were demonstrated via corre
lation dot plotting with the R package ggplot2.

2.11. Regulatory network analysis of key genes

Version 3.0 of the starBase database, the ENCORI database [67], provides a number of visual interfaces for miRNA target explo
ration. We searched miRNA–mRNA interaction pairings using pancancerNum >10 as a screening threshold and predicted miRNAs 
interacting with key genes using the ENCORI database. At the same time, we seamlessly integrated the visual tool Cytoscape, which 

Fig. 1. Technology roadmap. 
FCHL, familial combined hyperlipidemia; DEGs, differentially expressed genes; GSEA, gene set enrichment analysis; GSVA, gene set variation 
analysis; TRGs, tacrolimus-related genes; TRDEGs, tacrolimus-related differentially expressed genes; LASSO, Least Absolute Shrinkage and Selection 
Operator; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ssGSEA, single-sample gene set enrichment analysis; TF, tran
scription factor; RBP, RNA-binding protein.
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provides a digital canvas for molecular artistry, to artistically render and illuminate the intricate web of interactions within the 
miRNA–mRNA network.

Additionally, mRNA–RNA-binding protein (RBP) interaction dynamics were screened using the stringent criterion clusterNum >6 
to identify the most relevant interactions. Leveraging the expansive knowledge within the ENCORI database, we explored the intricate 
network between RBPs and pivotal genes to provide a better understanding of the dynamic interplay between mRNA and RBPs. 
Cytoscape was then used to visualize the molecular relationships among these complex data.

The publicly accessible CTD was then used to predict potential pharmaceutical interventions or the connections between small- 
molecule substances and pivotal genes [43], and potential pharmacological targets of the key genes under scrutiny were assessed. 
The mRNA–drug interaction pairings were screened based on the criterion "Reference Count" > 2. Subsequently, Cytoscape software 
was used to illuminate these potential molecular connections. Through this visually immersive approach, we aspired to transcend the 
conventional boundaries of data representation.

The comprehensive CHIPBase database (version 3.0) was then assessed to reveal the transcriptional regulators that bind to pivotal 
genes [68] and identify associated transcription factors (TFs). mRNA–TF interaction pairings were filtered by aggregating both up
stream and downstream samples. The stringent inclusion criterion required that cumulative samples in both directions exceed a 
threshold of 6.

2.12. Statistical analyses

Data processing and analytical methods were performed based on the robust capabilities of R software (Version 4.2.2). Continuous 
variables were expressed by mean values and standard deviations. The Wilcoxon rank sum test was used to analyzed differences 
between two groups, while the Kruskal–Wallis test was used for comparisons involving three or more groups. In addition, Spearman’s 
correlation analysis was used to identify connections between distinct molecular entities. To maintain a comprehensive statistical 
framework, all P-values were derived from two-sided analyses. A significance threshold of P < 0.05 was applied across all analyses (see 
Fig. 2).

3. Results

Fig. 1.

3.1. Data pre-processing

The datasets in Fig. 2A and B were compared before and after normalization using distribution box-and-line plots. The distribution 
boxplots showed that the distribution of expression across the samples in the dataset GSE1010 was rather consistent following the 
process of standardization.

3.2. Differential expression analysis of TRGs

A differential expression analysis was performed using the limma program to identify DEGs within the diverse subgroups of the 
GSE1010 dataset (FCHL/control) and reveal differential molecular dynamics between the FCHL and control groups. Dataset GSE1010 

Fig. 2. Data pre-processing. 
A-B. Box line plots of the GSE1010 distribution of the dataset before standardization (A) and after standardization (B). FCHL, familial combined 
hyperlipidemia.
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had a total of 12,548 genes, of which 451 DEGs met the threshold of |logFC| > 0 and P < 0.05. Adhering to this criterion, a total of 248 
genes exhibited heightened expression in the FCHL group, indicating low expression in the control group with a positive logFC, 
characterizing them as upregulated genes. Additionally, 203 genes were identified as upregulated in the FCHL group, signifying 
elevated expression relative to that in the control group, as evidenced by the negative logFC.

We employed the intersection set of DEGs in dataset GSE1010 to generate TRDEGs that satisfied the thresholds of |logFC| > 0 and P 
< 0.05 and TRGs to acquire 43 TRDEGs (Table S1). The findings are shown as a Venn diagram (Fig. 3A). Additionally, to display the 

Fig. 3. Differential expression analysis of tacrolimus-related genes. 
A. Venn plots of DEGs and TRGs in dataset GSE1010. b. Volcano plots of DEGs analyzed between different subgroups of dataset GSE1010 (FCHL/ 
control), with TRDEGs labeled in the plots. c. Expression heatmap of TRDEGs between different subgroups of dataset GSE1010 (FCHL/control) 
expression heatmap of TRDEGs. FCHL, familial combined hyperlipidemia; DEGs, differentially expressed genes; TRGs, tacrolimus-related genes; 
TRDEGs, tacrolimus-related differentially expressed genes.
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findings of the difference analysis of the dataset GSE1010, a volcano plot was created, with the 43 TRDEGs appropriately labeled in the 
plot (Fig. 3B).

Leveraging insights from the Venn diagrams, the expression dynamics of the 43 TRDEGs within the diverse subgroups of GSE1010 
(FCHL/control) were assessed. The outcomes of this analysis are portrayed through a heatmap generated using the R package 
pheatmap (Fig. 3C).

3.3. GO and KEGG enrichment analysis

The relationships between the BP, CC, and MF categories and biological pathways (pathways) of the 43 TRDEGs and FCHL were 
further explored using GO and KEGG enrichment analyses, as shown in Tables 2 and 3. According to the findings, the 43 TRDEGs were 
primarily enriched in BPs, including ameboidal-type cell migration, response to peptides, extrinsic apoptotic signaling pathway, 
epithelial cell migration, epithelial migration; in CCs, such as platelet alpha granule, endoplasmic reticulum lumen, secretory granule 
lumen, cytoplasmic vesicle lumen, and membrane raft; and in MFs, such as receptor ligand activity, signaling receptor activator ac
tivity, cytokine receptor binding, adenylate cyclase binding, and sodium-independent organic anion transmembrane transporter ac
tivity. Pathways enriched in DEGs included the cAMP signaling pathway, PD-L1 expression and PD-1 checkpoint pathways in cancer, 
Toll-like receptor signaling pathway, coronavirus disease (COVID-19), Chagas disease, and other biological pathways. The results of 
the KEGG and GO enrichment analyses are shown as bubble plots (Fig. 4A). Intricate network diagrams of the BP, CC, and MF cat
egories and biological pathways were generated based on the comprehensive GO and KEGG enrichment analyses (Fig. 4B–E). The size 
of each node within the diagram serves as a visual indicator, with larger nodes representing a higher count of molecules within the 
respective entry. Interconnecting lines delineate the relationships between molecules, thereby annotating the associated entries within 
the dynamic landscape of the network.

3.4. WGCNA

To examine the variations in gene expression across the GSE1010 dataset’s various subgroups (FCHL/control), we performed a 
WGCNA on all genes within these subgroups to look for modules that co-express. We initially selected the genes with a median absolute 
deviation (MAD) of the top 5000 among all genes as the total input genes for the analysis. Then, we clustered the samples of the 
GSE1010 dataset using a clustering tree and set the screening criterion as 0.9 for determining the optimal power threshold (Fig. 5A). 
Fig. 5A shows that the optimal power threshold for our WGCNA analysis was 3. The genes in the GSE1010 dataset (top 5000 genes) 

Table 2 
GO enrichment Analysis results of TRDEGs.

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:0001667 ameboidal-type cell migration 7/43 480/ 
18800

9.84044 
e− 05

0.022214784 0.015045509

BP GO:1901652 response to peptide 7/43 491/ 
18800

0.000113303 0.022736196 0.015398648

BP GO:0097191 extrinsic apoptotic signaling pathway 6/43 221/ 
18800

1.04529 
e− 05

0.004758238 0.003222633

BP GO:0010631 epithelial cell migration 6/43 358/ 
18800

0.00015377 0.023145224 0.015675672

BP GO:0090132 epithelium migration 6/43 361/ 
18800

0.000160903 0.023145224 0.015675672

CC GO:0031091 platelet alpha granule 5/43 91/ 
19594

1.61923 
e− 06

0.000215358 0.000165332

CC GO:0005788 endoplasmic reticulum lumen 5/43 311/ 
19594

0.000572762 0.010616701 0.008150534

CC GO:0034774 secretory granule lumen 5/43 322/ 
19594

0.000670223 0.010616701 0.008150534

CC GO:0060205 cytoplasmic vesicle lumen 5/43 325/ 
19594

0.000698841 0.010616701 0.008150534

CC GO:0045121 membrane raft 5/43 326/ 
19594

0.000708581 0.010616701 0.008150534

MF GO:0048018 receptor ligand activity 7/43 489/ 
18410

0.000125734 0.009702606 0.006648261

MF GO:0030546 signaling receptor activator activity 7/43 496/ 
18410

0.000137301 0.009702606 0.006648261

MF GO:0005126 cytokine receptor binding 6/43 272/ 
18410

3.79227 
e− 05

0.008039606 0.005508767

MF GO:0008179 adenylate cyclase binding 2/43 12/ 
18410

0.00034652 0.018365566 0.012584152

MF GO:0015347 sodium-independent organic anion 
transmembrane transporter activity

2/43 16/ 
18410

0.000626309 0.026555505 0.018195927

GO: Gene Ontology; BP: biological process; CC: cellular component; MF: molecular function. TRDEGs, Tacrolimus related differentially expressed 
genes.
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were clustered in the following 14 modules: MEturquoise, MEbrown, MEblack, MEred, MEtan, MEblue, MEmagenta, MEsalmon, 
MEyellow, MEgreenyellow, MEpink, MEgreen, MEpurple, and MEgrey (Fig. 5B). We then set the module merging shear height to 0.2; 
that is, modules with shear heights below 0.2 were merged by shear (Fig. 5B). The top 5000 genes in the GSE1010 dataset were 
grouped, and connections between the genes and associated modules were examined again (Fig. 5C). Specific correlation values 
between the 14 modules in GSE1010 were then determined (Fig. 5D).

We selected the 13 modules (excluding the MEgrey module) with statistically significant variations (P < 0.05, absolute correlation 
value ≥ 0.3) between different subgroups (HF/control) in the GSE1010 dataset. Genes from module MEmagenta (|COR| = 0.45, P =
0.03) were selected. Next, we took the intersection of the 43 TRDEGs in the GSE1010 dataset with the module genes included in the 
MEmagenta module (Fig. 5E) and plotted a Venn diagram to obtain three TRDEGs: TGFBR1, AKAP5, and RAG2.

3.5. Screening of key genes

To further identify key genes, we initially screened the 43 TRDEGs for significance (P < 0.05) using one-way logistic regression, 
resulting in 24 TRDEGs (Table S2). We then analyzed the expression of these 24 TRDEGs in the disease-control (FCHL/control) 
subgroup of GSE1010 using the RF algorithm. A total of 234 seeds and 500 decision trees were assigned, and then the decision-tree 
error curve was plotted (Fig. 6A). The results showed that the error reached a minimum and leveled off when approximately 300 
decision trees were present. Subsequently, we plotted the MeanDecreaseGini scatter plot (Fig. 6B) for the 24 TRDEGs identified via 
gene screening. Next, we traded off the number of genes by performing five 10-fold cross-validations and plotting the cross-validation 
error plot (Fig. 6C). The graph shows that the model error was reduced when there were 24 genes. This finding was then combined with 
MeanDecreaseGini to select specific genes for subsequent analyses. The results showed (Fig. 6B–C) that the 24 TRDEGs with a sig
nificant impact on the diagnosis of FCHL were as follows (in descending order of importance): HTRA1, TLR2, NFKBIA, CBR3, ASXL3, 
SP3, SNAI2, IARS2, SFTPC, MAP2, RENBP, MMP1, arsb, fos, tlr5, prl, ddr2, tgfbr1, tshb, stxbp3, slc22a6, alb, fga, and polr1d.

After that, we created a LASSO risk model using the 24 TRDEGs screened by the RF algorithm using a LASSO regression analysis, 
and the results were visualized by plotting a LASSO regression model graph (Fig. 6D) and LASSO variable trajectory graph (Fig. 6E). 
The LASSO risk model included 14 TRDEGs: HTRA1, NFKBIA, MMP1, DDR2, CBR3, PRL, FGA, SFTPC, ARSB, FOS, SNAI2, SP3, ASXL3, 
and IARS2. These genes were considered key genes for our subsequent study, and the key genes were plotted on a forest map (Fig. 6F).

3.6. Diagnostic logistic regression models for key gene set construction

To obtain the FCHL diagnostic model, we constructed a diagnostic multifactorial logistic model based on the 14 key genes (HTRA1, 
NFKBIA, MMP1, DDR2, CBR3, PRL, FGA, SFTPC, ARSB, FOS, SNAI2, SP3, ASXL3, and IARS2) and obtained each key gene’s coefficient. 
Then, based on the RiskSore formula, the expression and coefficients of the 14 key genes were substituted in the dataset GSE1010 to 
obtain the RiskSore for each sample. The FCHL group was then sorted based on the median RiskSore values, which indicate high and 
low risk ratings. The formula for calculating the RiskSore is as follows: 

RiskScore= − 1.844*HTRA1 − 10.38*NFKBIA − 1.273*MMP1 − 3.508*DDR2 + 0.44*CBR3 + 3.182*PRL + 0.682*FGA

+ 3.541*SFTPC − 5.216*ARSB + 3.412*FOS + 1.277*SNAI2 − 4.386*SP3 − 1.987*ASXL3 − 6.228*IARS2 

We then plotted the nomograph (Fig. 7A) to show the linkage between the 14 key genes. The graph revealed that the expression of 
NFKBIA contributes the most to the multifactorial logistic model.

To evaluate the multifactor logistic model’s accuracy and discriminative power, a calibration analysis was performed to plot a 
calibration curve graph. The model’s predictive accuracy was then evaluated by analyzing the fit between the actual and predicted 
probabilities for each of the various scenarios plotted in the graph (Fig. 7B). The calibration curve plot of the multifactor logistic model 
demonstrated that the dashed calibration line and the diagonal line of the ideal model coincided, indicating that the model had high 
accuracy and discriminatory power.

We then performed a DCA to evaluate the multifactorial logistic model for FCHL diagnosis based on the GSE1010 (Fig. 7C). The 
findings demonstrated that within a particular range, the model’s line was continuously higher than the All and None lines and that its 

Table 3 
KEGG enrichment Analysis results of TRDEGs.

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue

KEGG has05171 Coronavirus disease – COVID-19 7/33 232/ 
8164

3.107 e− 05 0.0019056 0.00127549

KEGG has05142 Chagas disease 6/33 102/ 
8164

2.7644 e− 06 0.00050865 0.00034046

KEGG has04024 cAMP signaling pathway 6/33 221/ 
8164

0.00022072 0.00559456 0.00374464

KEGG has05235 PD-L1 expression and PD-1 checkpoint pathway in 
cancer

5/33 89/8164 2.5652 e− 05 0.0019056 0.00127549

KEGG has04620 Toll-like receptor signaling pathway 5/33 104/ 
8164

5.4439 e− 05 0.00250421 0.00167616

KEGG, Kyoto Encyclopedia of Genes and Genomes. TRDEGs, Tacrolimus related differentially expressed genes.
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Fig. 4. GO and KEGG enrichment analysis. 
The GO and KEGG enrichment analysis results for TRDEGs are visualized using a bubble plot. B-E. GO and KEGG enrichment analysis results for 
TRDEGs illustrated through network diagrams of the BP (B), CC (C), and MF categories (D) and KEGG pathways (E). In the bubble plot (A), the 
horizontal axis represents GO terms while the vertical coordinates indicate the enrichment factor GeneRatio values for the different GO terms. In the 
network diagrams, specific genes are denoted by blue dots and pathways are represented by pink dots (B, C, D, E). The selection criteria for GO- 
enriched entries were P.adj <0.05 and FDR <0.05. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; TRDEGs, tacrolimus-related differentially expressed genes.

Fig. 5. WGCNA 
A. Sample module screening threshold scale-free network display in the GSE1010 dataset. B. Gene(s) module aggregation result display in the 
GSE1010 dataset. C. Gene(s) and module correspondence in the GSE1010 dataset. D. Correlation analysis of genes in the clustering module with 
different subgroups in the GSE1010 dataset. E. Venn diagram of TRDEGs with genes in the MEmagenta module. WGCNA, Weighted gene co- 
expression network analysis; TRDEGs, tacrolimus-related differentially expressed genes.
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net gain was larger, indicating that the model was effective for diagnosis.
Finally, the diagnostic multifactorial logistic model was validated for the diagnostic utility of the diagnostic multifactorial logistic 

model for FCHL by plotting ROC curves for dataset GSE1010 using the R package pROC. The pROC package in R is a vital tool for 
coordinate graph analysis, designed to identify the optimal threshold for a given model and to discard suboptimal ones. It mitigates 
sample bias in sequencing data by ensuring accurate model selection and rigorously evaluating performance through receiver oper
ating characteristic (ROC) curve analysis.The ROC values showed that the multifactorial logistic model presented a high degree of 
accuracy for the diagnosis of FCHL (Fig. 7D, AUC = 1).

3.7. Differential expression validation and functional similarity analysis of key genes

To verify the differences in the 14 key genes (HTRA1, NFKBIA, MMP1, DDR2, CBR3, PRL, FGA, SFTPC, ARSB, FOS, SNAI2, SP3, 

Fig. 6. Screening of key genes. 
A. RF algorithm model training error plot. B. MeanDecreaseGini scatterplot of TRDEGs (in descending order of MeanDecreaseGini). C. Cross- 
validation error curve plot. D. Diagnostic model plot for the LASSO regression model. E. Variable trajectory plot. F. Forest plots of key genes in 
the LASSO regression model. Forest plots of key genes. TRDEGs, tacrolimus-related differentially expressed genes; LASSO, Least Absolute Shrinkage 
and Selection Operator.
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ASXL3, and IARS2) within the different subgroups of dataset GSE1010 (FCHL/control), their expression was analyzed using the test of 
Wilcoxon rank sum. Variations in expression are presented as group violin plots (Fig. 8A), in which all 14 key genes except SFTPC 
showed significant differences (P < 0.05).

We then correlated the expression of the 14 key genes in the dataset GSE1010 and plotted a correlation heatmap (Fig. 8B), in which 
the strongest positive correlation was found for SNAI2 and PRL (r = 0.59, P < 0.05) and the strongest negative correlation was found 
for IARS2 and ARSB (r = − 0.70, P < 0.05).

The diagnostic performance of the 14 key genes (HTRA1, NFKBIA, MMP1, DDR2, CBR3, PRL, FGA, SFTPC, ARSB, FOS, SNAI2, SP3, 
ASXL3, and IARS2) in dataset GSE1010 for FCHL was determined. We generated ROC curves for each of the 14 key genes in the dataset 
GSE1010 disease-control subgroup (FCHL/control) and presented the results in Fig. 8C–I. The ROC plots reveal that in dataset 
GSE1010, the expression of HTRA1 (AUC = 0.875, Fig. 8C), NFKBIA (AUC = 0.771, Fig. 8C), MMP1 (AUC = 0.792, Fig. 8D), DDR2 
(AUC = 0.743, Fig. 8D), CBR3 (AUC = 0.847, Fig. 8E), PRL (AUC = 0.778, Fig. 8E), FGA (AUC = 0.778, Fig. 8F), SFTPC (AUC = 0.729, 
Fig. 8F), ARSB (AUC = 0.764, Fig. 8G), FOS (AUC = 0.750, Fig. 8G), SNAI2 (AUC = 0.854, Fig. 8H), SP3 (AUC = 0.764, Fig. 8H), ASXL3 
(AUC = 0.792, Fig. 8I), and IARS2 (AUC = 0.826, Fig. 8I) presented a degree of accuracy in the diagnostic results for FCHL.

To study the functional similarity relationship among the 14 key genes, we calculated the GO semantic similarity of key genes using 
the GOSemSim package and further calculated the geometric mean of key genes at the BP, CC, and MF levels to obtain the final score. 
The similarity scores between each key gene and other key genes were averaged and sorted in descending order. The data from the 

Fig. 7. Diagnostic logistic regression model for key gene construction. 
A. Nomogram of the key genes in the diagnostic multifactor logistic model based on dataset GSE1010. B. Calibration curve plot of the key genes in 
the diagnostic multifactor logistic model based on dataset GSE1010. C. DCA plot of the key genes in the diagnostic multifactor logistic model based 
on dataset GSE1010. D. Diagnostic ROC curve of the risk score of the diagnostic multifactor logistic model based on dataset GSE1010. DCA plot of 
key genes in the model. The vertical coordinate of the DCA plot is the net return, and the horizontal coordinate is the probability threshold, or 
threshold probability. DCA: decision curve analysis. ROC, receiver operating characteristic curve; AUC, area under the curve. FCHL, familial 
combined hyperlipidemia.
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Fig. 8. Differential expression validation and functional similarity analysis of key genes. 
A. Subgroup comparison plot of expression differences between different subgroups (FCHL/control) of key genes in dataset GSE1010.B. Heatmap of 
correlation between key genes in dataset GSE1010.C-I. key genes: HTRA1 (C), NFKBIA (C), MMP1 (D), DDR2 (D). CBR3 (E), PRL (E), FGA (F), SFTPC 
(F), ARSB (G), FOS (G), SNAI2 (H), SP3 (H), ASXL3 (I), IARS2 (I). ROC curves among different subgroups (FCHL/control) of dataset GSE1010. J. 
Functionality of key gene similarity plots. K. Chromosomal localization plots of key genes. *P < 0.05 represents statistically significant; **P < 0.01 
represents highly statistically significant; ***P < 0.001 represents extremely highly statistically significant. The higher the diagnostic impact, the 
closer the AUC is to 1. Between 0.5 and 0.7, the AUC has poor accuracy; between 0.7 and 0.9, it has moderate accuracy; and at 0.9 or more, it has 
great accuracy. The strength of the correlation is as follows: |r| > 0.95: significant correlation; |r| ≥ 0.8: high correlation; 0.5 ≤ |r| < 0.8: moderate 
correlation; 0.3 ≤ |r| < 0.5: low correlation; |r| < 0.3: weak correlation.
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functional similarity analysis were plotted in a box-and-line diagram based on the ggplot package (Fig. 8J). The results showed that 
FOS and other key genes had the greatest functional similarity.

Finally, chromosomal localization maps (Fig. 8K) of the 14 key genes were drawn to show their locations on the chromosomes.

3.8. GSEA based on high and low logistic risk score groupings

We analyzed all 12,584 genes between the high- and low-risk-score subgroups (high/low) using GSEA. The associations between 
expression and BPs, CCs, and MFs were analyzed, and P.adj <0.05 and FDR value (q.value) < 0.05 were employed as significant 
enrichment screening criteria. The significantly enriched pathways screened by GSE1010 were visualized using a mountain range 
diagram (Fig. 9A). The outcomes (Fig. 9B–E, Table 4) showed significant enrichment of genes among the different subgroups (high/ 
low) in the GSE1010 dataset in the pathways BLANCO_MELO_BRONCHIAL_EPITHELIAL_CELLS_IN
FLUENZA_A_DEL_NS1_INFECTION_DN (Fig. 9B), CROONQUIST_IL6_ DEPRIVATION_DN (Fig. 9C), SARRIO_EPITHELIAL_MESEN
CHYMAL_TRANSITION_UP (Fig. 9D), and MANALO_HYPOXIA_DN (Fig. 9E).

3.9. GSVA enrichment analyses based on high- and low-logistic risk score groupings

GSVA was applied to all dataset genes to determine the h.all.v7.4.symbols.gmt gene set variations between the high and low-risk 
score subgroups in the FCHL group of GSE1010 (Table 5). The differential expression among four significantly enriched pathways (P <
0.05) was analyzed, and the results were as visually represented through a heatmap (Fig. 10A) and a subgroup comparative plot 
(Fig. 10B). The subgroup comparison plot showed that the following two pathways remained significant (P < 0.05) in the high/low- 
risk-score subgroup: HALLMARK_CHOLESTEROL_HOMEOSTASIS and HALLMARK_COMPLEMENT.

Fig. 9. Enrichment analysis of the GSEA results based on high and low logistic risk score groupings. 
A. Mountain range diagrams of the GSEA enrichment analysis results for the different subgroups (high/low) in dataset GSE1010 for the primary 
biological characteristics. B-E. Genes in dataset GSE1010 were markedly enhanced in the pathways REAC
TOME_AUF1_HNRNP_D0_BINDS_AND_DESTABILIZES_MRNA (B), WP_OXIDATIVE_PHOSPHORYLATION (C), KEGG_OXIDATIVE_PHOSPHOR
YLATION (D), REACTOME_INFLUENZA_INFECTION (E). GSEA, gene set enrichment analysis; FCHL, familial combined hyperlipidemia.
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Table 4 
GSEA enrichment analysis results of FCHL dataset GSE1010.

Description setSize enrichmentScore NES pvalue p.adjust qvalue

BLANCO_MELO_BRONCHIAL_EPITHELIAL_CELLS_INFLUENZA_A_DEL_NS1_INFECTION_DN 137 0.79839326 3.40969979 0.00061312 0.00568501 0.00400179
CROONQUIST_IL6_DEPRIVATION_DN 95 0.8421434 3.38860511 0.00056786 0.00568501 0.00400179
SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_UP 144 0.76153056 3.27631397 0.00062112 0.00568501 0.00400179
MANALO_HYPOXIA_DN 281 0.6921115 3.22505087 0.0007764 0.00600669 0.00422823
TANG_SENESCENCE_TP53_TARGETS_DN 55 0.83914039 3.05770588 0.00052715 0.00568501 0.00400179
WU_APOPTOSIS_BY_CDKN1A_VIA_TP53 50 0.81963946 2.92921109 0.00051733 0.00568501 0.00400179
VILLANUEVA_LIVER_CANCER_KRT19_UP 138 0.67992286 2.90453388 0.00061652 0.00568501 0.00400179
LI_WILMS_TUMOR_VS_FETAL_KIDNEY_1_DN 158 0.66451717 2.87728239 0.00064226 0.00568501 0.00400179
BUFFA_HYPOXIA_METAGENE 46 0.80808409 2.84156298 0.00050607 0.00568501 0.00400179
WIELAND_UP_BY_HBV_INFECTION 97 0.68242569 2.7595773 0.00056593 0.00568501 0.00400179
NAKAMURA_CANCER_MICROENVIRONMENT_DN 39 0.78685688 2.65845552 0.00050582 0.00568501 0.00400179
WILCOX_RESPONSE_TO_PROGESTERONE_UP 145 0.5968719 2.57275641 0.00061767 0.00568501 0.00400179
SCIAN_CELL_CYCLE_TARGETS_OF_TP53_AND_TP73_DN 22 0.85453002 2.51473272 0.00048216 0.00568501 0.00400179
LI_WILMS_TUMOR_ANAPLASTIC_UP 17 0.88866097 2.45801057 0.00047371 0.00568501 0.00400179
REACTOME_NUCLEAR_EVENTS_MEDIATED_BY_NFE2L2 77 0.61830466 2.39669696 0.00054705 0.00568501 0.00400179
WP_METABOLIC_REPROGRAMMING_IN_COLON_CANCER 41 0.69568686 2.3737988 0.00051256 0.00568501 0.00400179
REACTOME_METABOLISM_OF_POLYAMINES 55 0.65066448 2.37092699 0.00052715 0.00568501 0.00400179
REACTOME_AUF1_HNRNP_D0_BINDS_AND_DESTABILIZES_MRNA 50 0.66120627 2.36300571 0.00051733 0.00568501 0.00400179
REACTOME_NEGATIVE_REGULATION_OF_NOTCH4_SIGNALING 53 0.65207952 2.3537702 0.00052798 0.00568501 0.00400179
ALTEMEIER_RESPONSE_TO_LPS_WITH_MECHANICAL_VENTILATION 105 0.55726592 2.27677516 0.00057737 0.00568501 0.00400179

GSEA, Gene Set Enrichment Analysis; FCHL, familial combined hyperlipemia.
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3.10. Analysis of CIBERSORT immune infiltration based on high and low logistic risk score groupings

The CIBERSORT algorithm was applied to the samples of dataset GSE1010 to determine the infiltration quantity of the 22 immune 
cells between the high and low subgroups within the FCHL group. In addition, a stacked bar chart (boxplot) was used to illustrate the 
infiltration fractional occupancy of the immune cells (Fig. 11A). The results revealed the presence of 17 immune cells (memory B cells, 

Table 5 
GSVA enrichment analysis results of FCHL dataset GSE1010.

id logFC AveExpr t P.Value adj.P.Val B

HALLMARK_CHOLESTEROL_HOMEOSTASIS 0.348116 0.00429 2.654589 0.008194 0.409681 2.91391
HALLMARK_FATTY_ACID_METABOLISM 0.285759 0.000221 2.188363 0.029105 0.470829 3.60394
HALLMARK_COMPLEMENT 0.274637 0.004913 2.092879 0.036863 0.470829 3.72887
HALLMARK_NOTCH_SIGNALING 0.27297 0.042363 2.03664 0.042212 0.470829 3.79985

GSVA, Gene Set Variation Analysis; FCHL, familial combined hyperlipemia.

Fig. 10. GSVA-based enrichment analysis of the high and low logistic risk score groupings. 
A-B. Complex numerical heatmap (A) and group comparison box line plot (B) of the GSVA results in the high/low-risk-score subgroups of dataset 
GSE1010. GSVA, gene set variation analysis. ns, not statistically significant (P ≥ 0.05); *P < 0.05, statistically significant; **P < 0.01, highly 
statistically significant; ***P < 0.001, extremely highly statistically significant.
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naïve B cells, dendritic cells activated, eosinophils, macrophages M0, macrophages M1, macrophages M2, mast cells activated, 
monocytes, neutrophils, NK cells activated, plasma cells, T cells CD4 memory activated, T cells CD8, T cells follicular helper, T cells 
gamma delta, and T cell regulatory [Tregs]), in the samples of the GSE1010 dataset with non-zero infiltration abundance. We also 
analyzed the variations in the percentage of infiltration abundance of the 17 immune cells in the samples between the high and low 
subgroups of the FCHL group from dataset GSE1010 and plotted the subgroups in relation to the results (Fig. 11B).

The Pearson technique was utilized to determine connections between the infiltration abundance of memory B immune cells and 
expression of 14 key genes (HTRA1, NFKBIA, MMP1, DDR2, CBR3, PRL, FGA, SFTPC, ARSB, FOS, SNAI2, SP3, ASXL3, and IARS2). A 
correlation heatmap was generated (Fig. 11C–D), which revealed that in the low-risk group samples, there were no significant 

Fig. 11. Analysis of CIBERSORT immune infiltration based on high and low logistic risk score groupings. 
A. Results of the CIBERSORT immune infiltration study shown as a stacked histogram between the different subgroups of the GSE1010 dataset. B. 
Subgroup comparison plot of immune cells between different subgroups of the GSE1010 dataset. C. Correlation heatmap between immune cells with 
significant differences in the subgroup comparison plot (B) and key genes in the low-risk subgroup of the GSE1010 FCHL samples. D. Correlation 
heatmap between immune cells with significant differences and key genes in the subgroup comparison plot (B) in the FCHL high-risk subgroup 
grouping samples of the GSE1010 dataset. ns represents not statistically significant (P ≥ 0.05); symbols * P < 0.05, statistically significant; symbols 
**P < 0.01, highly statistically significant; and symbols ***P < 0.001, extremely highly statistically significant. FCHL, familial combined 
hyperlipidemia.
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correlations between memory B immune cells and key genes. However, a noteworthy positive correlation was identified in the high- 
risk group, specifically with the key gene FOS (r = 0.90, P < 0.05).

3.11. Analysis of ssGSEA immune infiltration based on high- and low logistic risk score groupings

Utilizing the ssGSEA algorithm, we estimated the infiltration abundance of 28 immune cells in both the high- and low-risk groups 
among the FCHL patient samples. The Mann–Whitney U test was employed to identify infiltration differences, and the findings were 
visually presented through a group comparison plot (Fig. 12A). A statistically significant difference (P < 0.05) was observed in the 
infiltration abundance of immature B cells within the high- and low-risk groups of dataset GSE1010.

Then, we utilized the "pearson" algorithm to separately calculate the correlation between the infiltration abundance of immature B 
cells and the expression levels of the 14 key genes (HTRA1, NFKBIA, MMP1, DDR2, CBR3, PRL, FGA, SFTPC, ARSB, FOS, SNAI2, SP3, 
ASXL3, IARS2) in the FCHL low and high-risk group (low/high) samples within the GSE1010 dataset. The correlation results are 
presented in a heatmap (Fig. 12B–C). In the FCHL low-risk group (low) samples of the GSE1010 dataset, a significant positive cor
relation was observed between immature B cells and the key gene FOS (r = 0.94, p < 0.05). Conversely, in the high-risk group (high) 
samples, a significant positive correlation was observed between immature B cells and the key gene SP3 (r = 0.90, p < 0.05).

3.12. Regulatory network analysis of key genes

To investigate the interactions between the 14 key genes (HTRA1, NFKBIA, MMP1, DDR2, CBR3, PRL, FGA, SFTPC, ARSB, FOS, 

Fig. 12. Analysis of ssGSEA immune infiltration based on high and low logistic risk score groupings. 
A. Subgroup comparison plot presentation of the ssGSEA immune infiltration analysis findings relating to the high- and low-risk subgroups of dataset 
GSE1010. B Heatmap of the correlation between immune cells with significant differences and key genes in the subgroup comparison plot in the 
FCHL low-risk subgroup samples of dataset GSE1010. C. Heatmap of the correlation between immune cells with significant differences in group 
comparison plots and key genes in the FCHL high-risk subgroup samples of the GSE1010 dataset. ns indicates not statistically significant (P ≥ 0.05); 
*P < 0.05, statistically significant; **P < 0.01, highly statistically significant; and ***P < 0.001, extremely highly statistically significant. FCHL, 
familial combined hyperlipidemia.
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Fig. 13. Regulatory network analysis of key genes. 
A. mRNA–miRNA interaction network diagram for key genes: pink oval blocks are mRNAs and orange diamond blocks are miRNAs. B. mRNA–RBP 
interaction network diagram for key genes: pink oval blocks are mRNAs, and blue polygonal blocks are RBPs. C. mRNA–drug interaction network 
diagram for key genes: pink oval blocks are mRNAs, and yellow squares are drugs. D. mRNA–RBP interaction network diagram of key genes: pink 
oval blocks are mRNAs and purple rhombic blocks are TFs. TF, transcription factor; RBP, RNA-binding protein.
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SNAI2, SP3, ASXL3, and IARS2) and other molecules, we initially predicted the miRNAs interacting with the 14 key genes utilizing the 
ENCORI database and screened the mRNA–miRNA interaction pairs using pancancerNum >10 as the screening criterion. The 
mRNA–miRNA interaction network was visualized utilizing Cytoscape software (Fig. 13A). The mRNA–miRNA interaction network 
consisted of 9 mRNAs (ARSB, ASXL3, FOS, HTRA1, IARS2, MMP1, NFKBIA, SNAI2, and SP3) and 46 miRNA molecules, which 
comprise 55 pairs of mRNA–miRNA interaction relationships in total. Table 6 displays the particular mRNA–miRNA interaction 
relationships.

Additionally, using the ENCORI database, we predicted the RBP interactions with the 14 key genes.The mRNA–RBP interaction 
pairs were screened using clusterNum >6 as the screening criterion, and the mRNA–RBP interaction network (Fig. 13B) was visualized 
using the Cytoscape software. The mRNA–RBP interaction network included 10 mRNAs (ARSB, ASXL3, CBR3, DDR2, FGA, HTRA1, 
IARS2, MMP1, NFKBIA, and SP3) and 77 RBPs, with a total of 155 pairs of mRNA–RBP interactions. Table 7 shows the specific 

Table 6 
mRNA-miRNA interaction network nodes.

mRNA miRNA

ARSB hsa-miR-16–5p
ARSB hsa-miR-17–5p
ARSB hsa-miR-20a-5p
ARSB hsa-miR-29a-3p
ARSB hsa-miR-93–5p
ARSB hsa-miR-29b-3p
ARSB hsa-miR-183–5p
ARSB hsa-miR-15b-5p
ARSB hsa-miR-106b-5p
ARSB hsa-miR-29c-3p
ARSB hsa-miR-361–5p
ARSB hsa-miR-324–5p
ARSB hsa-miR-664b-3p
ASXL3 hsa-miR-200c-3p
ASXL3 hsa-miR-584–5p
FOS hsa-miR-128–3p
HTRA1 hsa-miR-15a-5p
HTRA1 hsa-miR-16–5p
HTRA1 hsa-miR-183–5p
HTRA1 hsa-miR-219a-5p
HTRA1 hsa-miR-15b-5p
HTRA1 hsa-miR-185–5p
IARS2 hsa-miR-376b-3p
MMP1 hsa-let-7c-5p
MMP1 hsa-let-7f-5p
MMP1 hsa-miR-181c-5p
MMP1 hsa-let-7g-5p
MMP1 hsa-miR-361–5p
MMP1 hsa-miR-181d-5p
MMP1 hsa-miR-488–3p
NFKBIA hsa-miR-200a-3p
NFKBIA hsa-miR-196b-5p
SNAI2 hsa-miR-30a-5p
SNAI2 hsa-miR-32–5p
SNAI2 hsa-miR-33a-5p
SNAI2 hsa-miR-92a-3p
SNAI2 hsa-miR-30c-5p
SNAI2 hsa-miR-30d-5p
SNAI2 hsa-miR-183–5p
SNAI2 hsa-miR-200b-3p
SNAI2 hsa-miR-30b-5p
SNAI2 hsa-miR-186–5p
SNAI2 hsa-miR-200c-3p
SNAI2 hsa-miR-30e-5p
SNAI2 hsa-miR-429
SNAI2 hsa-miR-92b-3p
SNAI2 hsa-miR-556–3p
SNAI2 hsa-miR-1301–3p
SP3 hsa-miR-33a-5p
SP3 hsa-miR-223–3p
SP3 hsa-miR-186–5p
SP3 hsa-miR-365a-3p
SP3 hsa-miR-338–3p
SP3 hsa-miR-33b-5p
SP3 hsa-miR-664b-3p
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mRNA–RBP interactions.
In addition, the screening criterion for mRNA–drug interaction pairs was set at a "Reference Count" greater than 2. Subsequently, 

the mRNA–drug interaction network was visualized using Cytoscape software, as depicted in Fig. 13C. The mRNAs are shown as pink 
ellipses, and drugs are shown as yellow squares. The network of mRNA–drug interactions included 10 mRNAs (ASXL3, DDR2, FGA, 
FOS, IARS2, MMP1, NFKBIA, PRL, SNAI2, and SP3) and 53 drug molecules, with a total of 79 pairs of mRNA–drug interactions 
(Table 8).

Finally, TFs that bind to the 12 important genes were identified (version 3.0), and the screening criterion was a sample number 
(upstream and downstream) greater than six. The mRNA–TF interaction pairs were screened, and the mRNA–TF interaction network 
was visualized with Cytoscape (Fig. 13D). In the network, pink elliptical blocks symbolize mRNAs and purple diamond blocks sym
bolize TFs. The mRNA–TF interaction network consisted of 12 mRNAs (HTRA1, ARSB, ASXL3 DDR2, FGA, FOS, IARS2, MMP1, 
NFKBIA, PRL, SNAI2, and SP3) and 57 TF molecules. The specific mRNA–TF interactions are shown in Table 9.

4. Discussion

The pathogeneses of abnormalities in human lipid metabolism have not been clarified, although most abnormalities are believed to 
be genetically related. A growing number of transplant physicians have found that TAC is connected to post-transplant hyperlipidemia, 
and studies have revealed the mechanisms by which post-transplant medications and immune status affect lipid levels [43,68–70]. 
MicroRNAs (miRNAs) and their associated circular RNAs (circRNAs) are noncoding RNA species that have emerged as pivotal reg
ulators of genes implicated in lipid metabolism. Despite their significance, the transcriptional activities and functional mechanisms of 
these molecules in tacrolimus-associated dyslipidemia are not well understood. Chenzhi Zhang posits that the circFASN/miR-33a 
regulatory axis plays a crucial role in the dysregulation of lipid homeostasis induced by tacrolimus. MiR-33a may be a risk factor 
for dyslipidemia associated with tacrolimus use, suggesting its potential as a therapeutic target to ameliorate lipid abnormalities 
following liver transplantation [71].Xiao Xu et al. have reported that tacrolimus (TAC) downregulates fibroblast growth factor 21 
(FGF21), consequently exacerbating lipid accumulation through the disruption of the autophagy-lysosome pathway. Consequently, 
the administration of recombinant FGF21 protein has the potential to reverse TAC-induced lipid accumulation and hyper
triglyceridemia by enhancing autophagy [72].

In this research, the examination of the FCHL gene expression profile dataset GSE1010 and TRDEGs retrieved from the GeneCards, 
STITCH, and MSigDB online databases indicated that certain genes serve crucial functional functions in the genesis of hyperlipidemia. 
For the first time, we screened 14 statistically significant key genes (HTRA1, NFKBIA, MMP1, DDR2, CBR3, PRL, FGA, SFTPC, ARSB, 
FOS, SNAI2, SP3, ASXL3, and IARS2) and used these genes to build a more reliable model of the FCHL risk connected to TAC. In the 
future, these genes could be used for predicting the risk of developing hyperlipidemia and may also serve as target genes for the 
treatment of hyperlipidemia. In addition, our findings reveal for the first time that memory and immature B cells in immunosuppressed 
states may play a role in lipid metabolism.

FOS (proto-oncogene, AP-1 transcription factor subunit) is a gene that codes for proteins linked to diseases such as congenital 
extensive lipodystrophy and osteoblastoma, and related pathways include the myd88-dependent cascade initiated by endosomes and 
prolactin signaling. FOS proteins play a pivotal role as regulators influencing cell proliferation, differentiation, and transformation. 
Additionally, in certain instances, the expression of FOS has been correlated with apoptotic cell death. Our study found that among the 
14 key genes, FOS possessed the greatest functional resemblance to other key genes and was positively correlated with immune B-cell 
memory in the immune infiltration analysis (r = 0.90, P < 0.05). Memory B cells revealed significant differences between the high- and 
low-FCHL subgroups. However, the manner in which these two factors influenced each other remains unknown.

NFKBIA, which encodes the protein NFKB inhibitor α, is implicated in various diseases. Conditions associated with NFKBIA include 
ectodermal dysplasia and immunodeficiency 2. The related pathways include the endosomal-initiated MyD88-dependent cascade 
reaction and the TNFR1 pathway. The feasibility of NFKBIA as a biomarker was confirmed in an immunotoxicity study in zebrafish 
[73], in which the expression of NFKBIA had the highest contribution in a multifactorial logistic model (− 10.38), which agrees with 
the findings of Zhou et al. [74]. Thus, NFKBIA could be used as a novel diagnostic biomarker for immune-related diseases and potential 
therapeutic targets [74].

SP3 is a member of the Sp1-related gene family and functions as a transcription factor that modulates gene expression by binding to 
GC-rich elements. Acting in a bifunctional manner, SP3 can either stimulate or repress the transcription of numerous genes. Diseases 
associated with SP3 include tanystomycosis and Coffin-Siris syndrome 1. The associated pathways include SLBP-independent transport 
of mature mRNA and protein metabolism. A significant positive correlation was found between immature B cells and SP3 in the high- 
risk group for FCHL in our immune infiltration analysis (r = 0.90, P < 0.05). For CD4CD25 regulatory T cell development, Foxp3 is 
required, and SP3 inhibits proximal FOXP3 promoter transactivation [75]. However, the function of SP3 in the differentiation of 
immature B cells requires further investigation.

Prolactin is an anterior pituitary hormone that regulates growth in a variety of organs, including immune cells, and it is encoded by 
the PRL gene. PRL’s function in immunomodulation has received increased attention in recent years. PRL regulates the proliferation 
and survival of lymphocytes and myeloid cells and influences T cell pool selection by affecting the thymic microenvironment. Treg 
activity in autoimmune diseases is disrupted by PRL. By reducing the activation threshold of defective B cells, it also has an impact on 
B-cell tolerance [76,77]. The mechanism underlying the association between hyperprolactinemia and cardiovascular disease risk is 
currently controversial, and attention has been focused on the specific consequences of hyperprolactinemia on the regulation of food 
intake, body weight, glucose insulinemia, and lipid levels. These effects have been suggested to be directly related to PRL and 
hypogonadotropic hypogonadism, although it has also been suggested that these clinical manifestations may be related to dopamine 
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Table 7 
mRNA-RBP interaction network nodes.

mRNA RBP

ARSB CTCF
ARSB ELAVL1
ARSB FAM120A
ARSB HNRNPC
ARSB HNRNPK
ARSB HNRNPL
ARSB HNRNPM
ARSB HNRNPU
ARSB IGF2BP1
ARSB IGF2BP2
ARSB IGF2BP3
ARSB LIN28B
ARSB MATR3
ARSB MTDH
ARSB PCBP2
ARSB PRPF8
ARSB RBFOX2
ARSB TAF15
ARSB TARDBP
ARSB U2AF1
ARSB U2AF2
ASXL3 CSTF2T
ASXL3 ELAVL1
ASXL3 FUS
ASXL3 PTBP1
ASXL3 TARDBP
ASXL3 U2AF1
CBR3 IGF2BP2
DDR2 ALYREF
DDR2 CSTF2T
DDR2 CTCF
DDR2 ELAVL1
DDR2 FUS
DDR2 G3BP1
DDR2 HDLBP
DDR2 HNRNPA2B1
DDR2 IGF2BP2
DDR2 IGF2BP3
DDR2 MOV10
DDR2 NUDT16L1
DDR2 NXF1
DDR2 RBM7
DDR2 RNPS1
DDR2 TARDBP
DDR2 U2AF1
DDR2 U2AF2
DDR2 WDR4
FGA G3BP1
FGA IGF2BP1
FGA LIN28B
FGA MTDH
FGA RPS3
FGA SND1
FGA U2AF2
HTRA1 FUS
HTRA1 HDLBP
HTRA1 IGF2BP2
IARS2 ALYREF
IARS2 CPSF7
IARS2 CSTF2T
IARS2 CTCF
IARS2 DDX3X
IARS2 DHX36
IARS2 EIF4A3
IARS2 ELAVL1
IARS2 EWSR1
IARS2 FIP1L1
IARS2 FMR1

(continued on next page)
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Table 7 (continued )

mRNA RBP

IARS2 FUS
IARS2 FXR1
IARS2 FXR2
IARS2 G3BP1
IARS2 HDLBP
IARS2 HNRNPA2B1
IARS2 HNRNPC
IARS2 IGF2BP1
IARS2 LIN28A
IARS2 LIN28B
IARS2 MTA1
IARS2 MTDH
IARS2 PRPF8
IARS2 RBM15
IARS2 RBM15B
IARS2 RBMX
IARS2 RNPS1
IARS2 SCAF4
IARS2 SCAF8
IARS2 SOX2
IARS2 TARDBP
IARS2 U2AF1
IARS2 U2AF2
IARS2 YBX1
IARS2 YTHDC1
IARS2 YTHDF1
IARS2 YTHDF3
IARS2 ZC3H7B
MMP1 RBM47
NFKBIA PRPF8
NFKBIA RNPS1
SP3 ALYREF
SP3 CHTOP
SP3 CPSF6
SP3 CPSF7
SP3 CSTF2
SP3 CSTF2T
SP3 CTCF
SP3 DDX3X
SP3 DDX54
SP3 EIF3A
SP3 EIF4A3
SP3 ELAVL1
SP3 EWSR1
SP3 FMR1
SP3 FUBP1
SP3 FUS
SP3 G3BP1
SP3 HNRNPA2B1
SP3 HNRNPC
SP3 IGF2BP1
SP3 IGF2BP2
SP3 IGF2BP3
SP3 ILF3
SP3 KHDRBS2
SP3 KHSRP
SP3 MOV10
SP3 MTDH
SP3 NUDT21
SP3 PCBP2
SP3 PRPF8
SP3 PTBP1
SP3 RBFOX2
SP3 RBM10
SP3 RBM15
SP3 RBM15B
SP3 RBM20
SP3 RBM47
SP3 RBMX

(continued on next page)
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agonist therapy [78]. Therefore, the specific role of PRL in the immune system and lipid metabolism should be studied in depth in renal 
transplant patients taking immunosuppressants such as TAC over long periods.

Recombinant Activation 2 (RAG2) is a gene that codes for proteins linked to Omenn’s syndrome and granulomatous combined 
cellular and humoral immunodeficiency. The pathways involved include cytokine signaling in the immune system and the RAF/MAP 
kinase cascade. Innate immunodeficiencies, which include more than 480 disorders, are primarily caused by pathogenic variants of the 
RAG gene involved in immune function [79]. The utilization of CRISPR-Cas9 technology to engineer the RAG2 locus, involving the 
complete replacement of the coding sequence, presents a potential therapeutic avenue for the in vitro manipulation of hematopoietic 
stem and progenitor cells derived from the patient. This innovative approach is a viable alternative to allogeneic hematopoietic stem 
cell transplantation [80]. It has also been observed that immunodeficient PFP/Rag2 mice have higher adipose tissue mass and hepatic 
lipid accumulation with age compared to wild-type C57BL/6N mice [81]. As an important recombinase-activating gene, RAG1/RAG2 
recombination is limited and controlled by complex motifs, various TFs, and cell cycle protein-dependent kinases. However, whether 
RAG2 is a key gene was not determined in our study. Immature B lymphocytes may play a role in lipid metabolism based on the KEGG 
FoxO signaling pathway and primary immunodeficiency pathways. However, further validation is required. In forthcoming research, 
we intend to utilize human hepatocytes and immune cell lines to perform overexpression and knockdown experiments of the RAG2 
gene, thereby assessing its impact on lipid metabolism indicators. Additionally, we will develop in vivo mouse models featuring RAG2 
gene knockout or overexpression and induce hyperlipidemia through a high-fat diet to investigate RAG2’s specific role in this con
dition. This will be accompanied by histological assessments and molecular biological analyses. Furthermore, we aim to employ 
bioinformatics tools to construct maps of RAG2-related signaling pathways. We anticipate that these studies will elucidate RAG2’s 
precise functions in lipid metabolism and immune regulation, potentially offering novel targets and therapeutic strategies for 
hyperlipidemia diagnosis and management.

In addition, to understand the effect of immunosuppressive status on hyperlipidemia, we computed the infiltration abundance of 
immune cells between the high and low subgroups of FCHL and identified two types of immune cells associated with FCHL: memory B 
cells and immature B cells. A significant positive correlation was observed between memory B cells and the key gene FOS in the high- 
risk group (r = 0.90, P < 0.05), between immature B cells and the key gene FOS in the low-risk group (r = 0.94, P < 0.05), and between 
immature B cells and the key gene SP3 in the high-risk group (high) (r = 0.90, P < 0.05). These findings imply that the functional state 
of immune cells may be influenced by lipid metabolism and that the correlation between the two may be regulated by some key genes. 
Research has demonstrated a significant interplay between the immune system and lipid metabolism. Melissa D. Lempicki and col
leagues propose that B cell-activating factor (BAFF), a cytokine within the TNF family, plays a pivotal role in governing the ho
meostasis and peripheral tolerance of B2 cells. Their studies indicate that in white adipose tissue (WAT) of mice with neutralized BAFF, 
both B cell activation and phagocytosis pathways are compromised [82].T-lymphocyte are crucial in mediating inflammation within 
adipose tissue (AT). Studies have shown that obesity is correlated with an increased presence of activated CD20+ T cells [83]. 
Additionally, adipose stem cells regulate the infiltration of T cells into adipose tissue under obese conditions, underscoring their pivotal 
role in modulating adaptive immunity and mitigating adipose inflammation associated with obesity [84].These studies underscore the 
pivotal role of immune cells in metabolic regulation and the development of hyperlipidemia.

However, the particular functions of these key genes in immune regulation and lipid metabolism require further investigation.
To reveal the potential functional mechanisms of FCHL and TRDEGs, we analyzed two pathways that were statistically significant 

(P < 0.05) in the GSVA: cholesterol homeostasis, and complementation. Finally, we predicted the molecular functional role re
lationships of the 14 key genes according to mRNA, RBPs, small-molecule compounds/drugs, and TFs using different types of 
databases.

Cholesterol homeostasis is a crucial parameter that influences lipid metabolism within the human body. Despite its paramount 
importance, the specific chemical reaction network responsible for regulating cellular cholesterol homeostasis remains elusive [85]. 

Table 7 (continued )

mRNA RBP

SP3 RNPS1
SP3 SCAF4
SP3 SCAF8
SP3 SOX2
SP3 SRSF1
SP3 SRSF7
SP3 TARDBP
SP3 TIA1
SP3 U2AF1
SP3 U2AF2
SP3 WDR33
SP3 WDR4
SP3 YTHDC1
SP3 YTHDF1
SP3 YTHDF2
SP3 YTHDF3
SP3 ZC3H7B
SP3 ZCCHC14

RBP, RNA binding protein.
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Table 8 
mRNA-drugs interaction network nodes.

mRNA Drug

ASXL3 Valproic Acid
DDR2 Valproic Acid
FGA Benzo(a)pyrene
FGA Cyclosporine
FGA Ethinyl Estradiol
FGA ethinyl estradiol-desogestrel combination
FGA Gestodene
FGA Tetrachlorodibenzodioxin
FGA Valproic Acid
FOS afimoxifene
FOS Arachidonic Acid
FOS Arsenic Trioxide
FOS Asbestos, Crocidolite
FOS Benzo(a)pyrene
FOS bisphenol A
FOS Cadmium
FOS Cadmium Chloride
FOS Cyclosporine
FOS Estradiol
FOS Formaldehyde
FOS Fulvestrant
FOS (+)-JQ1 compound
FOS Oxygen
FOS Particulate Matter
FOS Quercetin
FOS Resveratrol
FOS sodium arsenite
FOS Tetrachlorodibenzodioxin
FOS Tetradecanoylphorbol Acetate
FOS Tobacco Smoke Pollution
FOS Valproic Acid
IARS2 Acetaminophen
MMP1 Benzo(a)pyrene
MMP1 Glucosamine
MMP1 (+)-JQ1 compound
MMP1 Lipopolysaccharides
MMP1 Particulate Matter
MMP1 Quercetin
MMP1 Silicon Dioxide
MMP1 Smoke
MMP1 sodium arsenite
MMP1 Tetrachlorodibenzodioxin
MMP1 Tetradecanoylphorbol Acetate
MMP1 Tobacco Smoke Pollution
MMP1 Vehicle Emissions
NFKBIA Asbestos, Crocidolite
NFKBIA Calcimycin
NFKBIA Curcumin
NFKBIA Cycloheximide
NFKBIA Dexamethasone
NFKBIA Doxorubicin
NFKBIA Hydrogen Peroxide
NFKBIA Lipopolysaccharides
NFKBIA Melitten
NFKBIA nickel chloride
NFKBIA Resveratrol
NFKBIA Tetrachlorodibenzodioxin
NFKBIA Tetradecanoylphorbol Acetate
NFKBIA Tobacco Smoke Pollution
NFKBIA Valproic Acid
NFKBIA vanadyl sulfate
PRL 8-Bromo Cyclic Adenosine Monophosphate
PRL Amisulpride
PRL Aripiprazole
PRL Bromocriptine
PRL Contraceptives, Oral
PRL Fenfluramine
PRL Haloperidol

(continued on next page)
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The maintenance of cholesterol homeostasis hinges on intricate processes, such as biosynthesis, uptake, efflux, transport, storage, 
utilization, and/or excretion of cholesterol [86]. The SREBP transcription factor family is implicated in orchestrating the transcription 
of critical rate-limiting cholesterogenic and lipogenic proteins, thereby governing cholesterol production. Immune cells undergo 
activation, differentiation, and proliferation in response to danger signals. This intricate process is crucial for eliminating threats and 
involves metabolic reprogramming of both catabolic and anabolic pathways, thereby generating metabolites pivotal in regulating the 
immune response [87]. Additionally, transintestinal cholesterol excretion, a non-biliary pathway, facilitates the elimination of excess 
cholesterol from the body through feces [88]. Targeting this pathway holds promise for stimulating cholesterol elimination and 
mitigating the risk of cardiovascular diseases [89].

The complement protein C1q regulates changes in the lipid metabolism of cholesterol and TGs: C1q regulates the expression of 
genes connected to Janus kinase and JAK-STAT signaling, PPAR signaling, and TLR signaling, contributing favorably to the inflam
matory response during early atherosclerotic lipoproteins [90]. Cholesterol crystals are identified by the complement system’s clas
sical pathways and lectin, which cause inflammatory mediators to be released and C3 and C5 to become activated, which has also been 
of interest [91]. In patients with the HNF1A variant, the dominant-negative HNF1α mutant promotes hepatic steatosis through 
regulation of hepatic complement factor D and inflammation [92]. Pathway analyses revealed that the complement and coagulation 
pathways are the primary biological processes connected to changes in omega-3 polyunsaturated fatty acids [93]. Our study also 
provides new evidence of the possible role of the complement system in lipid metabolism.

This study has several strengths. First, In our manuscript, we utilized data from the GSE1010 dataset, which was derived from a 
study on familial combined hyperlipidemia (FCHL). Metabolic disorders triggered by FCHL and tacrolimus (TAC) exhibit analogous 
disruptions in lipid metabolic pathways, with hypertriglyceridemia (HTG) emerging as a characteristic feature of both conditions. 
Although the GSE1010 dataset is centered on FCHL, uncovering the gene expression patterns and regulatory mechanisms associated 
with lipid metabolism in this context can inform and extend our understanding to TAC-related metabolic research. By harnessing the 
extensive capabilities of bioinformatics analysis, we can elucidate the underlying mechanisms of TAC-induced lipid metabolic dis
orders using FCHL data as a reference. This approach may facilitate the identification of potential therapeutic targets for intervention. 
Second, Our research plays a significant role in pinpointing key genes that are implicated in both tacrolimus metabolism and lipid 
metabolism. This work is instrumental in facilitating the early detection of risk genes associated with hypertriglyceridemia in organ 
transplant recipients. By leveraging these findings, we aim to rationally tailor lipid-lowering drug therapies for patients identified at 
risk for hypertriglycerides, thereby enhancing their long-term outcomes and overall quality of life. Finally, tour multi-tiered molecular 
network analysis offers profound insights into the underlying molecular mechanisms of hypertriglyceridemia. This comprehensive 
understanding paves the way for the development of innovative lipid-lowering therapeutics and identifies potential targets for gene 
therapy approaches.

However, this study also has some shortcomings. First, the lack of specificity of the sequencing data due to the analysis of different 
database sources may have introduced sample bias. To mitigate the issue of sample bias stemming from the lack of specificity in 
sequencing data, we employed the pROC package to optimize the specificity, thereby minimizing this bias.Second, in vitro and in vivo 
experiments to validate the potential functional roles of the target genes on HTG are lacking, and further validation of the mechanistic 
roles of the 14 target genes on lipid metabolism under the influence of TAC must be performed in the future. The absence of exper
imental validation in transplanted animal models has constrained our capacity to elucidate the precise mechanisms underlying 
tacrolimus (TAC)-induced lipid metabolism disorders and to ascertain the actual functions of key genes within living systems.

Finally, direct evidence is lacking on the influence of TAC on lipid metabolism in patients with solid organ transplants. The 
expression of the 14 target genes should be verified using a hyperlipidemic mouse model, and whether the target genes under the 
immunosuppressed state undergo changes in immune cell function and lipid metabolism through both cholesterol homeostatic and 
complementary pathways should be determined. Such work will help confirm the role of these genes. In the future, we may be able to 
provide better interventions for the immune cell infiltration state and lipid metabolism abnormalities in humans.

5. Conclusion

The development of HTG may be functionally regulated by genes or associated with the application of immunosuppressive drugs 
and immune cell dysfunction. In addition, some genes have been suggested as potential targets for clinical therapies. Still, additional 

Table 8 (continued )

mRNA Drug

PRL Metoclopramide
PRL Olanzapine
PRL Progesterone
PRL Risperidone
PRL Sulpiride
PRL Testosterone
SNAI2 Arsenic Trioxide
SNAI2 Estradiol
SNAI2 Tetrachlorodibenzodioxin
SNAI2 Valproic Acid
SP3 Valproic Acid
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Table 9 
mRNA-TF interaction network nodes.

mRNA TF

HTRA1 BRD3
HTRA1 EGR1
HTRA1 FOXA2
HTRA1 GATA1
HTRA1 HNF4A
HTRA1 NRF1
HTRA1 SPI1
HTRA1 USF1
HTRA1 USF2
ARSB BRD3
ARSB EGR1
ARSB FOXA2
ARSB GATA1
ARSB HNF4A
ARSB NRF1
ARSB SPI1
ARSB USF1
ARSB USF2
ASXL3 TEAD4
DDR2 FOS
DDR2 GATA2
DDR2 EP300
FGA CEBPA
FGA CEBPB
FGA ESR1
FGA FOXA1
FGA FOXA2
FGA GATA4
FGA GATA6
FGA HNF4A
FGA JUN
FOS EP300
IARS2 EGR1
IARS2 ERG
IARS2 FOXA1
IARS2 SP1
MMP1 CEBPB
MMP1 CTCF
MMP1 ERG
MMP1 FOS
MMP1 FOXA1
MMP1 FOXA2
MMP1 JUND
MMP1 RAD21
MMP1 SMC3
MMP1 STAG1
MMP1 STAT3
MMP1 TAL1
NFKBIA AR
NFKBIA CEBPA
NFKBIA CEBPB
NFKBIA CTCF
NFKBIA EGR1
NFKBIA EP300
NFKBIA ERG
NFKBIA FLI1
NFKBIA FOS
NFKBIA FOXA1
NFKBIA FOXA2
NFKBIA GRHL2
NFKBIA HNF4A
NFKBIA HOXB13
NFKBIA MAX
NFKBIA MYC
NFKBIA NFKB1
NFKBIA NRF1
NFKBIA POLR2A
NFKBIA RAD21

(continued on next page)
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Table 9 (continued )

mRNA TF

NFKBIA RELA
NFKBIA RUNX1
NFKBIA SMARCA4
NFKBIA SMC1A
NFKBIA SMC3
NFKBIA SPI1
NFKBIA STAG1
NFKBIA STAT3
NFKBIA TEAD4
NFKBIA USF1
NFKBIA YY1
NFKBIA ZEB1
NFKBIA ZNF384
PRL TEAD4
PRL AR
PRL EP300
PRL ESR1
PRL FOS
PRL FOSL2
PRL GATA2
PRL GATA3
PRL NR3C1
PRL SMARCA4
SNAI2 EP300
SNAI2 ERG
SNAI2 ETS1
SNAI2 FOS
SNAI2 GATA2
SNAI2 GATA3
SNAI2 JUND
SNAI2 MAFK
SNAI2 MAX
SNAI2 MED1
SNAI2 MYC
SNAI2 NR3C1
SNAI2 POLR2A
SNAI2 RAD21
SNAI2 RELA
SNAI2 RUNX1
SNAI2 SMARCA4
SNAI2 SMC3
SNAI2 SPI1
SNAI2 SS18
SNAI2 STAG1
SNAI2 TCF12
SNAI2 TP63
SNAI2 AR
SNAI2 CEBPA
SNAI2 CEBPB
SNAI2 CTCF
SP3 ELF1
SP3 ERG
SP3 ESR1
SP3 ETS1
SP3 FOS
SP3 FOXA1
SP3 FOXA2
SP3 GABPA
SP3 HOXB13
SP3 POLR2A
SP3 SP1
SP3 STAT3
SP3 CEBPA
SP3 TBP
SP3 CEBPB
SP3 TP53

TF: Transcription factors.
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investigations are required to elucidate the potential routes that profoundly influence HTG development. Through our study, we 
screened 14 key genes with statistically significant FHCL family genes and DRGs; these 14 key genes were employed in the creation of a 
risk model for the development of hyperlipidemia. We identified two types of immune cells associated with FCHL, namely, memory B 
cells and immature B cells, and two pathways related to the potential function of FCHL and TRDEGs, namely, cholesterol homeostasis, 
and complementation. This study is poised to enhance our comprehension of the roles played by familial combined hyperlipidemia 
(FCHL) and tacrolimus-associated genes in lipid metabolism. It will also offer guidance for future research aimed at elucidating the 
functions of these pivotal genes. Notably, the predictive model we have developed lays the groundwork for assessing the pivotal roles 
of key genes in hyperlipidemia, potentially identifying them as promising therapeutic targets for the treatment of hypertriglyceridemia 
in the future.
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AUC Area under curve
BP Biological processes
CC Cellular components
CTD Comparative Toxicogenomics Database
DCA Decision Curve Analysis
DEG Differentially expressed genes
FCHL Familial combined hyperlipidemia
GO Gene Ontology
GSEA Gene set enrichment analysis
GSVA Gene Set Variation Analysis
HTG Hypertriglyceridemia
KEGG Kyoto Encyclopedia of Genes and Genomes
LASSO Least Absolute Shrinkage and Selection Operator
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LDL Low-density lipoprotein
LPL Lipoprotein lipase
MF Molecular functions
MSigDB Molecular Signatures Database
RBP RNA-binding proteins
ROC Receiver operating characteristic
SsGSEA Single-sample gene set enrichment analysis
TAC Tacrolimus
TF Transcription factors
TRDEG Tacrolimus-related differentially expressed genes
VLDL Very-low-density lipoprotein
WGCNA Weighted gene co-expression network analysis
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