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As plants produce an enormous diversity of metabolites to help them adapt to the environment, the study
of plant metabolism is of utmost importance to understand different plant phenotypes. Omics data have
been generated at an unprecedented rate for several organisms, including plants, and are widely used to
study the central dogma of molecular biology, connecting the genome to phenotypes. Constraint-based
modelling (CBM) methods, working over genome-scale metabolic models (GSMMs), have been crucial
for organising and analysing omics data by integrating them with biochemical knowledge. In 2009, the
first plant GSMM was reconstructed and, since then, several advances have been made, including the cre-
ation of context- and multi-tissue models that have supported the study of plant metabolism.
Nevertheless, plant metabolic modelling remains very challenging. In parallel, as omics datasets are com-
plex and heterogeneous, machine learning (ML) models have been applied in their interpretation to foster
knowledge discovery. Recently, the first studies combining both CBM and ML approaches have emerged
and have shown promising results. Here, we present the major advances in plant metabolic modelling
and review the main CBM-ML hybrid studies. Finally, we discuss the application of machine learning
to address the unique challenges of plant metabolic modelling.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Plants are multicellular eukaryotic photosynthetic organisms
indispensable for human life. They are the ultimate food source
for almost all animals, including humans (legumes, fruits, cereals,
among others), maintain the atmosphere balance by consuming
carbon dioxide and releasing oxygen, and provide many materials
for human use such as wood, fibres for clothing, drugs, pesticides,
oils, and fuels [1]. Plants are sessile organisms, unable to escape
from environmental stresses or pathogens. Consequently, plants
face a wide range of adverse environmental conditions and interact
with several pathogenic or beneficial organisms. As a result, plants
have the most complex metabolic networks that produce an enor-
mous diversity of metabolites to help them grow, adapt to the
environment, and defend against pathogens [2]. Since plants’
growth and survival are intrinsically linked to metabolism, its
study is essential for understanding the mechanisms of fruit pro-
duction and metabolic responses to different environmental
stresses.

Metabolism has been studied by Systems Biology approaches,
like Constraint-based Modelling (CBM), which use computational
and mathematical models to analyse biological systems as a whole,
modelling the inner components and their respective interactions
[3]. The rise of next-generation technologies enabled the sequenc-
ing of complete genomes and later the reconstruction of Genome-
Scale Metabolic Models (GSMMs), which are in silicometabolic flux
models derived from genome annotation, representing all meta-
bolic reactions taking place within an organism. These models
allow performing in silico simulations of metabolic phenotypes
under different environmental or genetic conditions [3]. Although
GSMMs have been reconstructed mainly for unicellular organisms,
several models are available for plants [4]. These models have a
wide range of applications, such as understanding photosynthesis
and analysing metabolic behaviour under different conditions. In
addition to providing a better understanding of cellular pheno-
types, GSMMs can also help design new strategies to improve the
production of relevant metabolites. Currently, the reconstruction
of plant GSMMs is still very challenging and time-consuming due
to the large diversity of metabolites and extensive compartmental-
isation of plant cells [5,6].

Recently, vast amounts of omics data have been generated from
high-throughput technologies, leading to the development of sev-
eral methods for integrating context-specific omics data as con-
straints in metabolic models, which are especially valuable for
complex organisms like plants [7–12]. Omics data have been
widely used in molecular biology to understand the underlying
mechanisms leading to an organism’s phenotype, bridging the
gap between genotype and phenotype.

Although genome-scale metabolic modelling has been crucial
for organising and analysing omics data, integrating different
omics (genomics, transcriptomics, proteomics, metabolomics) is
hitherto an inefficient task [13]. Omics datasets are large, complex,
and heterogeneous; hence, Machine Learning (ML) has been exten-
sively used to process, analyse, and integrate different types of
omics and extract biological knowledge from data [14]. CBM and
ML have been mainly used independently in molecular biology,
but integrating these approaches has improved predictions’ accu-
racy and increased the interpretability of the results. Recently, sev-
eral reviews of CBM-ML hybrid studies have been published,
suggesting the growth potential of this area [13,15–19].

In this article, we review the state of the art in plant metabolic
modelling and the recent studies integrating CBM and ML. First, we
introduce the data resources used to reconstruct and improve
GSMMs and describe existing plant GSMMs and their application
in the study of plant phenotypes, highlighting these models’ major
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advances and limitations. Then, we describe the main studies com-
bining ML and CBM approaches, including their strengths and con-
clusions to elucidate how these studies can be applied or adapted
to tackle the unique features of plant metabolism. We address this
subject with a different perspective from existing reviews [13,15–
19], focusing on the systematic application of ML to solve unique
problems of plant metabolic modelling, and therefore conclude
our review by underlining the main challenges and benefits of
combining these approaches.

2. Plant metabolic modelling

During the reconstruction of GSMMs, different biochemical
databases allow obtaining up-to-date information on the organism,
which support the development and refinement of the metabolic
network, namely genome annotations, biochemical data of meta-
bolic reactions, and functional information on enzymes [20].
Table 1 describes the most important databases containing plant
metabolic data. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) [21] and MetaCyc [22] are the most used generic databases
for the analysis of metabolic pathways. The National Center for
Biotechnology Information (NCBI) [23], Universal Protein Resource
(UniProt) [24], BRaunschweig Enzyme Database (BRENDA) [25],
Transporter Classification Database (TCDB) [26] and PubChem
[27] are generic databases used for extracting detailed information
on genomes, proteins, enzymes, transporters, and chemical com-
pounds, respectively. PlantCyc [28], Plant Reactome [29] and Meta-
Crop [30] are databases with metabolic data for several plants
species, whereas SolCyc [31] only includes information for the
Solanaceae family and The Arabidopsis Information Resource
(TAIR) [32] is specific for A. thaliana. Species-specific plant data-
bases have been created from MetaCyc and are available at the
Plant Metabolic Network (PMN) resource [28].

The assembled metabolic network is then converted to a math-
ematical representation, involving the formulation of the biomass
equation and definition of organism-specific constraints. There-
fore, the model consists of a set of ordinary differential equations,
representing the changes in metabolites’ concentrations over time.
Usually, a pseudo-steady state assumption is applied to simplify
the model to linear equations, assuming that the metabolite’s con-
centration is constant throughout time. Equation (1) represents
this steady-state’s mass balancing, where S is the stoichiometric
matrix and v is the flux vector. In S, rows represent metabolites
and columns represent reactions. Sij is the stoichiometric coeffi-
cient of metabolite i in reaction j [20].

S:v ¼ 0 ð1Þ
After reconstruction, the GSMMs can be simulated with

constraint-based approaches, like Flux Balance Analysis (FBA)
[34], to predict the metabolic phenotypes of an organism under
different conditions. These methods require the definition of a rel-
evant objective function, representing the metabolic goal of the
organism, which can be defined as the maximisation or minimisa-
tion of a metabolic flux during the simulation, usually biomass
maximisation. Another constraint-based method is Flux Variability
Analysis (FVA), which calculates each reaction’s minimum and
maximum flux for a defined set of constraints [35]. The FBA
approach was extended to Dynamic Flux Balance Analysis (dFBA)
[36], which assumes that intreacellular metabolites are at steady
state, but exchange metabolites and total biomass are constrained
with dynamic equations, representing the rates of uptake or
excretion.

Other methods have been developed to improve flux predic-
tions through the integration of context-specific omics data,
mainly transcriptomics, within metabolic models [7–12]. Omics



Table 1
Description of the most relevant databases of plant metabolic data.

Database Ref. Description Data

KEGG [21] Generic database resource that comprises genomes, metabolic pathways, chemical compounds, diseases, and
drugs.

Metabolic data

Metacyc [22] Comprehensive database of extensively curated metabolic pathways, containing information on reactions,
enzymes, genes, and compounds for several organisms.

Curated metabolic data

BioCyc [22] Collection of organism-specific pathway genome databases (PGDBs), each containing the complete genome
and predicted metabolic network of an organism.

Organism-specific predicted
metabolic data

NCBI [23] Online repository containing several databases for genomics and biomedical information and tools for
extracting and analysing the data.

Reviewed and unreviewed
sequence data

UNIPROT [24] Resource for protein sequence and related information, including manually reviewed data (Swiss-Prot) and
automatic, non-reviewed protein annotations (TrEMBL).

Curated and predicted protein
data

BRENDA [25] Main database of manually annotated enzyme functional data, which uses the Enzyme Commission (EC)
classification system.

Curated enzyme data

TCDB [26] Curated database containing information on transport systems from several organisms, including sequence,
structure, and function, and uses the Transport Classification (TC) system to classify transport proteins.

Curated transport data

PubChem [27] The largest database of chemical information, including molecular structure, physical properties, and
biological activities of compounds.

Unreviewed chemical data

PlantCyc and
PMN

[28] PlantCyc contains more than 1000 curated metabolic pathways, for at least 350 plant species. This database
is the centre of PMN, a resource of plant metabolic databases, and is used as reference to create plant-specific
PGDBs. The current version of PMN (15.0) comprises 126 plant-specific metabolic databases, including
curated and predicted databases.

Curated and predicted plant
metabolic data

PlantReactome [29] Manually curated and comparative pathway database for plants, being part of the Gramene, which is a
resource for comparative functional genomics [33]. Plant Reactome used O. sativa as a reference species to
manually curate metabolic and regulatory pathway data for 97 plant species, also providing a suite of tools
for the analysis of large-scale omics datasets.

Curated plant metabolic data

MetaCrop [30] Repository of detailed and manually curated metabolic information for six major crop plants with agronomic
importance. It allows to export the data automatically for the creation of metabolic models.

Curated plant metabolic data

SolCyc [31] Collection of PGDBs for Solanaceae species, including databases for S. lycopersicum (tomato), Solanum
tuberosum (potato), Nicotiana tabacum (tobacco), Capsicum annuum (pepper), and Petunia � hybrida
(petunia).

Curated metabolic data of
Solanaceae species

TAIR [32] Database of genetic and molecular data for A. thaliana, including genome sequence and gene structures,
products, and expression datasets as well as tools for data visualisation and analysis.

Curated genetic and metabolic
data of A. thaliana

Table 2
Description of the most relevant databases of plant omics data.

Database Ref. Description Data

SRA [39] Archive for next-generation raw sequence data. Sequences
GenBank [40] Comprehensive collection of all publicly available DNA sequences and respective annotations. Sequences
RefSeq [41] A comprehensive, curated, and non-redundant collection of sequences, including genomes, transcripts, and

proteins.
Sequences

Nucleotide [42] A collection of sequences from different sources including GenBank and RefSeq. Sequences
GEO [45] Repository of functional genomics data, including raw and processed data with descriptive metadata. Genomics and

transcriptomics
DDBJ [43] Public database of nucleotide sequences at National Institute of Genetics. Sequences
ENA [44] A comprehensive nucleotide sequence resource, including raw sequencing data, assembly information and

functional annotations.
Sequences

ArrayExpress [46] Database of functional genomics data and respective metadata. Genomics and
transcriptomics

Expression Atlas [47] A resource for gene and protein expression data for multiple organisms and across different biological conditions. Transcriptomics
PODC [48] Database of mRNA-sequencing expression data for plants. Transcriptomics
PlantExpress [49] Database of gene expression data from microarrays for O. sativa and A. thaliana. Transcriptomics
ProteomicsDB [50] Database for quantitative Mass Spectrometry (MS)-based proteomics data. Currently, it also includes RNA-Seq

expression datasets, drug-target interactions, and protein turnover data.
Proteomics

PRIDE [51] Repository of MS-based proteomics data, including protein identification and quantification, post-translational
modifications, analysed mass spectra and technical metadata.

Proteomics

Peptide Atlas [52] Database of peptides identified in MS proteomics experiments. It provides tools for processing and analysing raw
MS output data.

Proteomics

GPMDB [53] Database for analysis, validation, and storage of MS proteomics data. Proteomics
Massive [54] Community resource for raw MS data, including proteomics datasets. Proteomics

PPDB [55] Database for integrating MS-based proteomics data of Z. mays and A. thaliana. Proteomics

MetaboLights [56] Repository for metabolomics data and associated metadata, covering metabolite structures, reference spectra,
concentrations, and functions.

Metabolomics

MetabolomeExpress [57] Online server for processing, interpreting, and storing MS metabolomics data Metabolomics
Metabolomics

Workbench
[58] Repository for metabolomics data and associated metadata from MS and nuclear magnetic resonance studies. Metabolomics

GDM [59] Collection of reference mass spectra and retention times for metabolites. Metabolomics

M. Sampaio, M. Rocha and O. Dias Computational and Structural Biotechnology Journal 20 (2022) 1885–1900
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Fig. 1. Timeline of the most relevant plant metabolic model reconstructions.
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data have allowed the study of the central dogma by detecting and
quantifying genes, transcripts, proteins, and metabolites in biolog-
ical samples. Hence, omics data offer insights into the metabolism,
allowing the detection and analysis of differential expression pat-
terns across varied environmental conditions [37,38].

The most popular databases of omics data are presented in
Table 2. The main databases of sequence data and annotations
include Sequence Read Archive (SRA) [39], GenBank [40], Refer-
ence Sequence Database (RefSeq) [41], and Nucleotide [42] from
NCBI, DNA DataBank of Japan (DDBJ) [43] and European Nucleotide
Archive (ENA) [44]. Gene Expression Omnibus (GEO) [45] and
ArrayExpress [46] contain functional genomics data and respective
metadata and Expression Atlas database [47] holds gene expres-
sion data. Other databases, such as the Plant Omics Data Center
(PODC) [48] and Plant Express [49] only contain transcriptomics
data for plants. Proteomics data can be retrieved from sources like
ProteomicsDB [50], PRoteomics IDEntifications (PRIDE) [51], Pep-
tideAtlas [52], Global Proteome Machine Database (GPMDB) [53],
Mass Spectrometry Interactive Virtual Environment (MassIVE)
[54] and Plant Proteomics Database (PPDB) [55]. Metabolomics
data can be found at MetaboLights [56], MetabolomeExpress
[57], Metabolomics WorkBench [58] and Golm Metabolome Data-
base (GDM) [59].

The integration of omics in metabolic models is especially
important in higher organisms, like plants and mammals, as they
are complex organisms composed of different cells and tissues.
Therefore, generic models may lead to wrong interpretations, as
certain reactions or pathways are only active in specific tissues
or conditions. This is even more challenging in the case of non-
model organisms, whose metabolism is poorly characterised.

Additionally, the metabolic behaviour of higher organisms
involves interactions between multiple cells or tissues. Hence,
multi-tissue models have been reconstructed to understand such
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complex behaviour [60–68]. A multi-tissue model is usually com-
posed of several copies of a GSMM, connected by inter-tissue
exchange reactions. Moreover, tissue-specific omics can define
the constraints for each tissue model to improve the flux predic-
tions [69,70].

In 2009, Poolman published the first plant GSMM for Arabidop-
sis thaliana [71]. Several models have been developed since, not
just for model plants like A. thaliana, but also for more complex
plants [72], such as Zea mays (maize) [73–75] and Oryza sativa
(rice) [76–79]. Fig. 1 summarises the plant GSMMs published to
date. Generally, these models have proven to be robust and accu-
rately predict specific aspects of central carbon metabolism [72].
The existing plant GSMMs are described below, grouped by organ-
ism, and ordered by publication date.

2.1. Arabidopsis thaliana

Poolman et al. [71] reconstructed the first plant GSMM for A.
thaliana heterotrophic cell suspension culture. This model was
mainly derived from the AraCyc database (version 4.5) [80] and
produces biomass components in the proportion observed experi-
mentally in heterotrophic suspension cultures. In 2013, Cheung
et al. [81] extended this model to include the subcellular localisa-
tion of central metabolic reactions across five compartments (cy-
tosol, plastid, mitochondrion, peroxisome, and vacuole) and to
account for growth, transport, and cell maintenance energy costs,
including ATP and reductive costs. They simulated the model
under different environmental conditions and discovered that
accounting for energy costs of transport and maintenance substan-
tially improves flux predictions, regardless of the objective func-
tion used in the simulation.

AraGEM [82] was the first plant GSMM to represent the meta-
bolism of a compartmentalised photosynthetic cell (same five
compartments as in Cheung’s model [81]), describing photosyn-
thesis, photorespiration and respiration while identifying meta-
bolic changes between them. This model was updated by Saha
et al. [73] and later by Chung et al. [83] to include terpenoid biosyn-
thesis reactions. Recently, Siriwach et al. [84] have combined the
AraGEM model with time-series gene expression data, creating
condition-specific models of A. thaliana under drought and control
conditions to gain insights for the development of tolerant plants.

Mintz-Oron et al. [85] have reconstructed the fully compart-
mentalised GSMM for A. thaliana, which encompasses the subcellu-
lar localisation of all reactions, across the five compartments of the
AraGEM model, plus the Golgi Complex and Endoplastmatic Retic-
ulum. They extracted ten tissue-specific models from this generic
GSMM by integrating protein expression data of eight tissues and
cell cultures in light and dark conditions. The authors then used
the seed-specific model to predict the genetic knockouts that result
in vitamin E overproduction. Töpfer et al. [86,87] have combined
this generic model with time-resolved transcriptomics data from
different temperature and light conditions to understand the meta-
bolic acclimation of A. thaliana to stressful environments.

An evidence-based model for A. thaliana was reconstructed by
Seaver et al. [88] from the generic model available on PlantSEED
[89], including the seven compartments mentioned plus the nucle-
ous and the cell wall, and combined with transcriptomics and
metabolomics data to extract specific models for eight root tissues
at different developmental stages [63]. The tissue-specific models
were used to build a multi-tissue model of the root for analysing
the flux distribution of hormones indole-3- acetate and trans-
Zeatin through the root.

A more complex model of A. thaliana was developed to repre-
sent the leaf metabolism over a day-night cycle [90]. This diel
model was reconstructed by duplicating the previous model [81]
into two modules, day, and night, and manually adding the trans-



Fig. 2. Schematic representation of the dynamic multi-tissue model of A. thaliana, including the leaf and root tissues and the common pool in both light and dark phases [62].
Each tissue module includes five compartments: cytoplasm, mitochondria, vacuole, plastid, and peroxisome. Starch, glucose, sucrose, fructose, malate, fumarate, citrate, and
nitrate can accumulate in the light and dark phases of leaf and root (dashed rectangle between phases). Amino acids can be stored in the light and used in the dark phase.
Exchange of amino acids, sucrose, sulphate, nitrate, and phosphate (Pi) were allowed between leaf and root through a common pool using proton pumps. Photon uptake was
allowed through leaf in the light phase while mineral nutrients, such as nitrate, sulphate, and Pi, were allowed through the root in both phases. Exchanges of carbon dioxide
and oxygen were allowed through leaf and root in both phases.
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porters between these two phases. The authors simulated both
phases in a single optimisation problem by applying specific con-
straints specifying that photon influx is allowed in the day (pho-
toautotrophic metabolism) and is set to zero at night
(heterotrophic metabolism). This model simulates and clarifies
the interactions between the two phases by allowing storage
metabolites synthesised during the day to be used at night and
vice-versa.

More recently, multi-tissue models for A. thaliana were recon-
structed to represent different tissues and their interactions. Dal’-
Molin et al. [61] have developed a framework to create a multi-
tissue model comprising leaf, stem, and root of A. thaliana across
the diurnal cycle. In this approach, the tissues exchange metabo-
lites through a shared compartment (common pool) rather than
directly transported between two tissues, which can reduce redun-
dancy when more than two tissues are interconnected. Addition-
ally, a storage pool manages storage and retrieval of metabolites.
Therefore, in this framework, a multi-tissue model is defined by
a stoichiometric matrix representing the internal reactions and
three matrices for the exchange reactions with the environment,
the transport reactions through the common pool and the accumu-
lation of metabolites in the storage pool. The multi-tissue model
consisted of three replicates of the AraGEM model (representing
root, stem, and leaf) and two common pools, one for exchanges
between leaf and stem and another for exchanges between stem
and root. To simulate the diurnal cycle, the multi-tissue model
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was duplicated to represent each state (light and dark) and a stor-
age pool was created, with starch being the only stored metabolite.
The model was used to study carbon and nitrogen translocation
between tissues.

Following this strategy, the diel model was used to build a
dynamic multi-tissue diel model (Fig. 2) to study metabolic
changes across multiple growth stages under different nutrients
availability [62]. All reactions of the diel GSMM were replicated
to represent the leaf and root model, and the transport between
root and leaf was performed through a common pool representing
the phloem. This multi-tissue model was simulated by dFBA [36] to
explore carbon and nitrogen partitioning between root and leaf
over different developmental stages.

A different approach has followed by Schroeder et al. [65] to
study the evolution of metabolism across the lifecycle of A. thali-
ana. While previous studies have only considered metabolism at
a single point (growth or a single diurnal cycle), this optimisation
framework takes a series of ‘‘snapshots” of core-carbon metabo-
lism. These snapshots comprise the plant mass, growth rate, and
fluxes at one-hour intervals across 61 days of growth, including
the stages of seed germination, leaf development, flower produc-
tion and silique ripening. In this study, a core multi-tissue meta-
bolic model (referred to as p-ath780) comprising leaf, root, seed,
and stem tissues was reconstructed. The core model only includes
the central metabolic pathways of A. thaliana. The tissue-specific
models were built based on the available literature and experimen-
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tal studies and then merged by OptCom, a framework for mod-
elling microbial communities [91]. The novelty of this method is
to simultaneously consider the diurnal cycle, carbohydrate storage,
maintenance and senescence costs, and changes in tissue and
whole-plant mass during growth, according to experimental data.
2.2. Zea mays

Dal’Molin et al. [92] made the first efforts towards reconstruct-
ing a Z. mays GSMM, combining biochemical information of Sor-
ghum bicolor (sorghum), Z. mays and Saccharum officinarum to
build the C4GEMmodel. This model represents the two leaf tissues,
mesophyll (M) and bundle sheath (BS) cells, where photosynthesis
of C4 plants takes place, and the interactions between them. It also
includes the main five compartments (cytosol, plastid, mitochon-
drion, peroxisome, and vacuole).

Since then, three more GSMMs were reconstructed for Z. mays
leaf. The first model, referred to as iRS1563 [73], was based on Ara-
GEM (with the same five compartments) and Z. mays genome and
was used to predict metabolic phenotypes for two natural brown
midribs’ (bm) mutants with defective lignin biosynthesis.

Another Z. mays leaf model was reconstructed by Simons et al.
[74], with a significant increase in the number of genes and reac-
tions, representing secondary metabolism. It comprises the two
tissues of leaf, M and BS cells, and gene expression data was used
to identify the active reactions in each tissue. Regarding the com-
partments, it includes the five of C4GEM plus the plasmatic, thy-
lakoid, and inner mithocondrial membranes. This model was
used to assess the assimilation of nitrogen within the leaf under
different nitrogen conditions and later was constrained by incorpo-
rating enzyme activity data to detect metabolic differences
between nineteen Z. mays lines [93].

Seaver et al. [88] have also reconstructed an evidence-based
model for Z. mays, with the same compartments as the A. thaliana
model [88], and it was used to extract tissue-specific models for
leaf, embryo, and endosperm of Z. mays by integrating gene expres-
sion data within the model.

The most recent Z. mays leaf GSMM (iRB5204) was developed
by Bogart et al. [75], based on the CornCyc database (version 4.0)
[94] and previous models. They reconstructed a high-confidence
model named iRB2140, including curated reactions only and the
same compartments of Simons’ model [74], except for the plas-
matic membrane. Then, the authors created a two-tissue model
to represent M and BS cells of the leaf by duplicating the
iRB2140 model and adding transport reactions between the two
Fig. 3. Schematic overview of the two-tissue model of Z. mays, representing the M an
chloroplast, peroxisome and mitochondrion, and small molecules are directly exchanged
and oxygen with the intercellular air space while BS cells exchange sucrose, glutathione a
type of model representation is used to understand the photosynthesis in C4 plants, ma

1890
tissues (Fig. 3). They incorporated known nonlinear kinetic con-
straints and transcriptomics data frommore and less differentiated
cells to reconstruct a whole-leaf model identified as iEB2140x2x15,
representing 15 developmental stages of the maize leaf.

2.3. Oryza sativa

The first GSMM was reconstructed from the RiceCyc database
[95] by Poolman et al. [76] and included three compartments: cyto-
sol, chloroplast and mithocondrion. It was analysed to identify
metabolic responses to different light intensities. This model was
curated and extended by Chatterjee et al. [77] to encompass the
peroxisome compartment and reactions involved in chlorophyll
synthesis.

Another O. sativa leaf model named iOS2164 was developed by
Lakshmanan et al. [78] by adding the vacuole, the endoplasmic
reticulum and the thylakoid as compartments, and all electron-
transport reactions. The authors have integrated transcriptomics
data within this model to evaluate the metabolic responses to dif-
ferent light conditions. Later, this model was combined with gene
expression data of different tissues at different developmental
stages to generate tissue-specific models and highlight the meta-
bolic differences between tissues [96].

All these rice models describing the metabolism of O. sativa
japonica were reviewed in [97]. Chatterjee et al. [79] reconstructed
a GSMM for O. sativa indica, which included cytosol, mitochon-
drion, peroxisome and chloroplast compartments, and used this
model to characterise the metabolic responses to variations in
RubisCO activity and light intensity and under different enzymatic
costs constraints.

2.4. Other organisms

Other organisms, like Solanum lycopersicum (tomato), Solanum
tuberosum (potato), Medicago truncatula (barrelclover), Glycine
max (soybean), Setaria viridis (green foxtail) and Quercus suber
(Cork oak), only have one GSMM available. For Hordeum vulgare
(barley), a dynamic multi-tissue model was created, and stoichio-
metric multi-tissue models were also created from the GSMMs of
M. truncatula, G. max, S. viridis and Q. suber.

� Hordeum vulgare. A framework for analysing metabolic
dynamics of H. vulgare on a whole-plant scale was developed
by integrating a steady-state multi-organ model with dynamic
constraints from a functional plant model [60]. Organ-specific
d BS leaf cells of C4 plants [75]. Each cell includes 4 compartments: cytoplasm,
between the two tissues by transport reactions. The M cells exchange carbon dioxide
nd glycine with phloem and import water and inorganic nutrients from xylem. This
inly the interactions between M and BS cells.
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models for leaf, stem and seed were reconstructed by collecting
primary metabolism data from literature and databases and
combined into one multi-organ model. Next, dFBA was applied
and exchange fluxes predicted by the functional plant model
were used to constrain FBA at each time interval. This frame-
work allowed studying metabolic interactions between source
and sink organs of H. vulgare, accounting for temporal and envi-
ronmental changes.

� Solanum lycopersicum. The only model of S. lycopersicum,
referred to as iHY3410, represents the leaf and enables the anal-
ysis of metabolic flux distributions on photorespiration path-
ways under drought stress [98].

� Solanum tuberosum. Botero et al. [99] reconstructed a GSMM of
S. tuberosum late blight to study the effect of this disease on the
leaf metabolism, suggesting the suppression of photosynthesis.
This model encompasses the metabolic pathways of the leaf and
the interaction between the plant and Phytophthora infestans
through the integration of gene expression data of infected S.
tuberosum.

� Medicago truncatula. A fully compartmentalised model for M.
truncatula was developed by Pfau et al. [64] and allowed the
analysis of their rhizobial symbiosis for nitrogen fixation by
connecting the plant model to a model of its symbiont and eval-
uating the effects of the symbiosis in plant growth. Then, a
multi-tissue model representing the root and shoot of M. trun-
catula was reconstructed by integrating tissue-specific gene
expression data and connecting the resulting root- and shoot-
specific models with a combined biomass reaction and inter-
tissue transporters derived from literature.

� Glycine max. Moreira et al. [66] reconstructed a GSMM of G.
max and duplicated this model to create a multi-tissue model
representing two tissues of G. max seedlings: the cotyledons
and hypocotyl/root axis (HRA). The multi-tissue model was con-
strained with the biomass compositions observed experimen-
tally over four days of seedling growth to simulate the
mobilisation of seed reserves during this period and detect
metabolic differences between the two tissues, as well as inter-
actions between them.

� Setaria viridis. Similarly, a model of S. viridis [67] was recon-
structed and used to create a multi-tissue model representing
the C4 leaf (including both M and BS cell types) and stem. These
models have identified implications of proton balancing on flux
distributions during photosynthesis of C4 leaves and reactions
involved in the biosynthesis of cellulose, hemicellulose, and lig-
nin in the stem.

Quercus suber. Recently, a reconciled GSMM for Q. suber was
semi-automatically reconstructed by Cunha et al. [68] using merlin
[100] and performing extensive manual curation. merlin is a user-
friendly framework developed for reconstructing draft GSMMs
automatically and assisting manual curation efforts in these tasks.
This is the first model reconstructed for a woody tree. Transcrip-
tomics data was integrated with the model to obtain tissue-
specific models for the leaf, inner bark and phellogen, which were
merged into a diel multi-tissue model to predict interactions
among tissues at light and dark phases and study the synthesis
of suberin monomers. In the future, this model can be extended
and used to explore the metabolic patterns associated with high-
quality cork, which is economically relevant for Portugal.

Overall, the most significant advances in plant metabolic mod-
elling were made first for A. thaliana. AraGEM [82] is the most used
plant model and was the first to allow the simulation of photosyn-
thesis and photorespiration metabolic processes, including com-
partmentalization. Next, a relevant advance was the diel model
of Cheung et al. [90], which allows simulating the leaf metabolism
over the diurnal cycle in a single problem. Then, the creation of the
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multi-tissue model by Dal’Molin et al. [61] represented a signifi-
cant improvement of these models. This model allows to analyse
the metabolism across different tissues (leaf, steam, and root)
and also the different tissues’ metabolic interactions. Although
the multi-tissue model of Shaw et al. [62] only comprises two tis-
sues, leaf and root, its novelty was to include dynamic constraints
for the exchange metabolites.

Finally, it is important to highlight the integration of omics into
models to create tissue- or condition-specific models to originate
more realistic flux predictions. Although, transcriptomics data are
usually used to reconstruct specific models [63,84,86,87], Mintz-
Oron et al. have constrained the models with proteomics [85].
Regarding Z. mays, the models were helpful for studying the photo-
synthesis of C4 plants, which occurs between the two leaf tissues,
M and BS. Of these models, the one from Simons et al. [74] stands
out as it includes more secondary metabolism reactions, more
compartments, and constraints based on gene expression. Like-
wise, iOS2164 [78] is the most complete model for O. sativa, as it
contains more compartments and transcriptomics-based con-
straints. Meanwhile, the advances made for A. thaliana were
applied in the reconstruction of complex multi-tissue models for
other organisms, such as M. truncatula [64], G. max [66], S. viridis
[67], and a woody tree, Q. suber [68].
3. Major challenges and limitations

Although several plant GSMMs and studies that successfully use
them to understand plant metabolic processes are available, the
existing approaches still have limitations as plant metabolic mod-
elling is very challenging [72]. Annotation of plant genomes is
incomplete, and database information on plant enzymatic reac-
tions and metabolites is limited, especially for secondary metabo-
lism, resulting in an inaccurate model with network gaps, requiring
extensive and time-consuming validation. Most plant metabolic
models have been validated to predict changes in plant central car-
bon metabolism, though generally neglecting secondary metabo-
lism. Therefore, these models cannot correctly predict plant
adaptation to the environment and interactions with pathogens
[6]. An exception is the Z. mays model [74], which presents exten-
sive coverage of the secondary metabolism.

Another challenge in plant modelling is to place reactions in the
correct compartment. Plant cells are composed of multiple com-
partments, and little is known about the subcellular localisation
of reactions and metabolites. Most enzymes of the central metabo-
lism are known to be present in more than one compartment,
which makes the modelling process even more difficult. Adding
compartments to models raises other problems, such as the lack
of information about transport reactions, substrate specificity,
and energetic costs [5]. The assignment of reactions to compart-
ments in plant models is typically performed by searching data-
bases and using subcellular localisation prediction tools.

As plants are exposed and adapted to several environmental
stresses, their cellular objectives are surely much more complex
than maximising cell growth. For instance, during environmental
changes or pathogen interactions, the fluxes are redirected from
the primary metabolism to secondary metabolic pathways to pro-
duce the metabolites for the plant’s adaptation and defence [6,72].
The most used CBM’s objective functions working over plant mod-
els are minimising the total flux, minimising the photon uptake,
and maximising biomass. Although these objective functions have
been successfully applied for simulating the metabolism of plant
tissues at specific developmental stages or under certain environ-
mental conditions, they do not apply to all possible scenarios
[72]. Therefore, defining an appropriate objective function in plant
models remains exceptionally challenging.



Table 3
Description of the supervised and unsupervised ML algorithms used in combination with CBM methods.

ML method Type Description

Principal Component Analysis
(PCA)

Unsupervised Linearly transforms the variable space into uncorrelated variables, named principal components, which capture
most data variability.

Clustering Unsupervised Analyses the underlying data structure and groups data observations with similar features into clusters.
Autoencoder Unsupervised Unsupervised artificial neural network that compresses and encodes the input data and then learns how to

reconstruct the compressed data by minimising the differences with the original data.
Support Vector Machine (SVM) Supervised Prediction algorithm that aims to find a hyperplane that separates data observations into two classes, while

maximising the distance between data points of both classes.
Artificial Neural Network (ANN)

and Deep Learning
Supervised Inspired by the biological neural networks, an ANN comprises a collection of connected units named neurons that

receive a set of weighted inputs and perform a weighted sum of these inputs, which is filtered by an activation
function to generate the neural output signal.
Deep Learning networks are complex ANNs, with more layers and neurons capable of reaching higher accuracy.

Regression algorithms Supervised Estimate the functional relationship between the output and the input features. Linear regression is used when
the output variable is continuous, while logistic regression predicts the discrete output. Regressions are often
combined with regularisation algorithms, such as the least absolute shrinkage and selection operator (LASSO) and
elastic nets.

K-nearest neighbours (KNN) Supervised Instance-based method that compares new observations with the previously trained examples that have been
stored in memory.

Decision Trees Supervised Build a tree-like model of decisions, wherein nodes denote the attributes, branches represent attribute values, and
leaf nodes hold the class labels. The paths from the root to leaf represent classification rules.

Random Forests (RF) Supervised Ensemble of decision trees in which the subset of features is selected randomly.
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Another challenge in plant modelling is the definition of
constraints affecting plants. Most plant models use the biomass
synthesis at a defined growth rate as constraint when the objective
function is the minimisation of total reaction fluxes
[64,66,71,79,90,98]. However, this may not be enough to correctly
predict the fluxes, as net biomass synthesis uses only a fraction of
the cell’s total energy [72]. Indeed, Cheung et al. [81] proved that
accounting for transport and maintenance energy costs increases
phenotype predictions’ accuracy, showing that the definition of
appropriate constraints is essential for obtaining realistic meta-
bolic predictions. Moreover, plants’ photosynthesis, photorespira-
tion and respiration add complexity to their metabolic networks
and complicate the modelling process [6]. Other factors affecting
plant metabolism include complex interactions with symbionts
and pathogens, competition mechanisms, and changes in available
nutrients.

Finally, one of the main problems of plant modelling is that
most models are generic and include all reactions known to take
place in that plant, regardless of cell type or environmental condi-
tions. As plants contain a wide variety of cell types, each with its
specific active metabolism, generic models may lead to wrong
interpretations as certain reactions or pathways are inactive in a
specific cell type, even though being strongly active in others. Sim-
ilarly, environmental conditions may influence the expression of
metabolic genes; thus, enzymes may be active in specific condi-
tions while inactive in others. Therefore, the reconstruction of
context-specific models is crucial to obtain more realistic meta-
bolic flux predictions. Several studies have integrated transcrip-
tomics data with generic plant GSMMs to improve flux
predictions and create plant tissue- and condition-specific models
[78,84–88,93,96]. However, as gene expression levels generally do
not strongly correlate with reaction fluxes [8], the use of omics to
improve the GSMMs is still challenging and inaccurate.

Tissue-specific models can be merged to form a multi-tissue
model that simulates metabolic interactions between tissues
[69,70]. However, reconstructing multi-tissue models raises the
challenge of defining the metabolites transported between tissues,
highlighting the lack of information regarding this topic. As
depicted above, there are already several multi-tissue models of
plants [60–68]. In most models, the different tissues replicate the
original model, with few metabolic differences, and are connected
by inter-tissue reactions or a common compartment. Light avail-
ability is a common constraint to differentiate context-specific
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models, for instance, leaves and roots, or diurnal and nocturnal
leaves. The huge advantage of these multi-tissue models is that
they simulate metabolic interactions between different tissues
and organs, providing insights into complex resource allocation
processes occurring in plants [101].

Despite the several challenges of plant metabolic modelling,
significant advances have been made in the last years, which have
allowed the reconstruction of more accurate plant generic,
context-specific and multi-tissue metabolic models. These have
been successfully applied for simulating phototrophic and hetero-
trophic metabolism, improving the production of metabolites of
interest, and understanding metabolic phenotypes under different
environmental conditions or at different developmental stages.
Therefore, metabolic modelling approaches have proven to be a
relevant tool for understanding plant metabolism, and through
the integration of omics data, the fluxes predicted by these models
became more accurate and adjusted to environmental conditions.

An improvement to the current studies with plant GSMMs
would be integrating more than one type of omics data to increase
the accuracy of the simulations and contribute to a better under-
standing of complex biological processes across the whole plant.
However, the challenge remains on how to integrate multiple
heterogeneous data into predictive multi-scale models [15].
4. Machine learning and constraint-based modelling

In the last decades, the development of high-throughput tech-
nologies has led to the generation of large amounts of omics data
that are complex and heterogeneous, making their analysis and
the extraction of knowledge very challenging. Hence, the process-
ing and interpretation of omics data require the use of appropriate
tools, such as ML algorithms, which can identify patterns, select
relevant features, and make inferences from the observed data
without defining biological assumptions [15,16].

ML has been defined as the study of algorithms that can auto-
matically learn and improve by experience and adapt to new data
input without being explicitly programmed [102]. ML algorithms
have been applied in interpreting large metabolic datasets and
developing tools to study cellular metabolism [13,103,104].

An important distinction in ML is between ‘‘supervised” and
‘‘unsupervised” learning methods. In supervised learning, the
model learns from a training dataset with both inputs and desired
outputs, so it can later make predictions on the output of unseen



Fig. 4. Types of analyses combining CBM and ML. Fluxomics analysis consists of applying ML to the fluxomics data predicted by metabolic models’ simulations. In multi-
omics analysis, omics data can be integrated within metabolic models to generate context-specific fluxomics data, which ML can analyse in combination with omics data from
high-throughput technologies. In alternative, ML can be trained with omics datasets to produce or improve metabolic models or fluxomics data.
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observations. In contrast, unsupervised models are trained with
unlabelled data to identify the underlying structure, patterns, or
data distribution [102]. Principal Component Analysis (PCA) and
clustering are the most used unsupervised methods for dimension-
ality reduction and identifying sub-groups in the datasets. Some of
the most used supervised and unsupervised algorithms are
described in Table 3.

Despite the many benefits of applying ML methods to omics
data, this task is still challenging. Omics datasets are scattered
and noisy, with missing values and technical errors, making it dif-
ficult for the model to differentiate between true data patterns and
error profiles. In addition, as the process for data acquisition is
intricate and expensive, omics datasets usually have few samples
and show class imbalance, where the class representing the control
group generally has more instances than the other. Together with
the high number of features, which is characteristic of omics data-
sets, these issues lead to the development of complex, overffited
ML models and poor generalisation. Furthermore, as omics data
are very heterogenous and have many applications, there is no
ML algorithm or pipeline suitable for all problems. Hence, choosing
the best ML algorithm, model parameters, and feature selection
method requires deep knowledge of ML methods and the area of
application. Also, this knowledge is essential for the proper inter-
pretation of results generated by the models, which can be difficult
to analyse. Therefore, sharing large-scale high-quality omics data-
set is crucial for developing good predictive models [105–107].

Recenly, the first studies combining ML and CBM approaches
have emerged and were previously reviewed in [13,15–19]. The
integration of ML and CBM comprises three main cases: fluxomics
analysis, multi-omics analysis and generation of constraint-based
models and fluxomics (Fig. 4). In fluxomics analysis, the flux distri-
bution predicted by CBM methods is analysed by ML methods. In
multi-omics analysis, omics data can be included as GSMMs’ con-
straints to create context-specific models and generate more accu-
rate flux predictions. The predicted fluxes can be integrated with
experimental omics to be jointly analysed by ML methods. In the
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third case, ML is trained with experimental omics data to predict
metabolic models and fluxomics data. All the three cases can apply
supervised or unsupervised ML methods. Thus far, these studies
were mainly applied to bacteria, yeast, and human cells, but not
to plants. In the following sections we review the representative
studies of the field and summarise them in Table 4.
4.1. Fluxomics analysis

In the following examples, fluxomics data is generated by CBM
methods and analysed by ML.

Although PCA has been widely applied to simplify and identify
patterns in metabolic data, its results are complex and difficult to
interpret biologically. Therefore, two approaches, named Principal
Elementary mode Analysis (PEMA) [108] and Principal Metabolic
Flux Mode Analysis (PFMA) [109], have combined PCA and CBM
to identify the flux modes that explained most flux variance and
have minimum deviations from a steady-state condition. The
PEMA approach was extended to dynamic conditions using super-
vised ML (dynEMR-DA) in a subsequent work [110]. Here, dynamic
EFMs were defined as partially activated EFMs at each time point of
the simulation. A small kinetic model of S. cerevisiaewas simulated
under different conditions. The non-steady-state flux distributions
were decomposed into a set of dynamic EFMs, which were exam-
ined by discriminant analysis to identify the pathways that best
differentiated between conditions.

Hierarchical clustering was used by Magnusdottir et al. [111] to
predict ecological interactions between human gut bacteria. The
models were simulated alone and paired with every other model
to represent co-growth under different fibre diets and oxygen con-
ditions. The relative fitness was calculated for each pair of organ-
isms and used to define the type of interaction. Lastly, the ratio
of pairwise interaction types was clustered per condition and per
taxonomy, which has resulted in three main clusters comprising
microbes with different carbohydrate fermentation capabilities,



Table 4
Hybrid studies combining ML and CBM approaches, including the CBM and ML components and the application.

First Author CBM ML Task

Fluxomics analysis
Folch-Fortuny

2016 [108]
EFMs PCA (21–26 samples) Identify metabolic patterns

Bhadra 2018
[109]

EFMs PCA (12–28 samples) Identify responsive pathways

Folch-Fortuny
2018 [110]

Dynamic EFMs Discriminant analysis (64 samples) Identify distinguishing metabolic patterns
between conditions

Magnusdottir
2017 [111]

FBA Hierarchical clustering (298378 samples) Explore ecological interactions

DiMucci 2018
[112]

dFBA RF (9900 samples) Predict microbial interactions

Shaked 2016
[113]

FVA, gene knockouts Ensemble of SVMs (190–426 samples) Predict drug side effects

Oyetunde 2019
[114]

FBA PCA, SVM, elastic net, RF, kNN, ANN, ensemble (1200 samples) Estimate titer, production rate and yield of
microbial factories

Czajka 2021
[115]

FBA, gene knockouts, gene
overexpression

RF, elastic net, kNN, gaussian process regression, support vector
regressors (2915 samples)

Predict Yarrowia lipolytica bioproduction

Schinn 2021 [116] Flux sampling Linear regressions (80 samples) Predict amino acid concentrations in CHO cell
cultures

Multiomics analysis
Plaimas 2008

[119]
FBA, gene KO SVM (1356 samples) Predict essential reactions

Nandi 2017
[118]

Flux Coupled Analysis SVM-RFE (768 samples) Predict essential genes

Li 2010 [120] Condition-specific models Kernel kNN (260 samples) Predict new drug targets
Kim 2016 [121] Condition-specific models RNN, LASSO regression, ensemble (649 samples) Predict cross-omics states in E. coli
Culley 2020

[122]
Strain-specific models Support Vector Regressor, RF, ANNs, BEMKL, MMANN, ensemble

(1143 samples)
Estimate yeast growth rate

Magazzù 2021
[123]

Strain-specific models Regularised linear models, ANNs, MMANN (1143 samples) Estimate yeast growth rate

Lewis 2021
[124]

Patient-specific models Ensemble of gradient boosting machines (915 samples) Identify biomarkers of radiation resistance

Guebila 2019
[125]

Drug-specific models SVMs, clustering (605 samples) Predict gastrointestinal drug effects

Vijayakumar
2020
[126]

Condition-specific models PCA, k-means clustering, LASSO regularization (24 samples) Improve phenotypic prediction in
cyanobacteria

Kavvas 2021
[127]

MAC MAC (375 samples) Predict allele-specific antimicrobial
resistance in M. tuberculosis.

Guo 2017
[128]

FBA, gene KO Deep ANN (30000 samples) Predict phenotypes (Deep Metabolism)

Generation of CBM models and fluxomics
Wu 2016 [129] Stoichiometry SVM, kNN, decision trees (450 samples) Estimate metabolic fluxes
Brunk 2016 [130] FBA PCA (126 samples) Characterise strain variation
Bordbar 2017

[131]
Random sampling PCA, linear regression (22 samples) Estimate metabolic fluxes in dynamic

conditions
Nagaraja 2019

[132]
ANNs (121 samples) Predict fluxes for the upper part of glycolysis
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suggesting that this capability may define the types of interactions
between microbes.

Interactions of human gut bacteria were also predicted by
DiMucci et al. [112] but using supervised ML and dFBA. Single
and pairwise simulations were performed using dFBA, and the rel-
ative final biomass was used to classify the interactions as negative
or nonnegative. A random forest (RF) classifier was trained with
vectors representing the presence or absence of exchange reactions
in each organism to predicted potential interactions between two
microbes and identify relevant fluxes for the prediction.

Another example is the study of Shaked et al. [113] that has
used ensemble learning to predict drug side effects. A human
GSMM was used to calculate the flux bounds of the reactions
through FVA after knocking out the genes that represent drug tar-
gets. These reaction bounds were used as features to an ensemble
of Support Vector Machines (SVMs), where each model repre-
sented a side effect, resulting in a list of all potential side effects
of the metabolically acting drug.

Other studies have trained ML models with fluxomics data
obtained by CBM methods to predict microbial production rate
under different bioprocess settings [114,115]. Recently, this strat-
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egy was used to predict amino acids concentrations in a fed-
batch Chinese hamster ovary (CHO) cell culture. The metabolic
model was constrained with experimental measurements and pre-
dicted the initial amino acid consumption rates. Then, the flux pre-
dictions were refined and extended by linear regressions to a time-
course profile [116].

Another study tried to clarify the glycosylation process by train-
ing Artificial Neural Networks (ANNs) with the fluxes of the reac-
tions involved in nucleotide sugar donor synthesis, which were
calculated by a stoichiometric model of CHO cells, to predict the
glycan distribution of the antibodies produced [117].

4.2. Multiomics analysis

Multiomics analysis involves the integration of predicted flux-
omics with experimental data using ML. For instance, this
approach was used to predict essential genes [118] and reactions
[119] and yielded better results than using only CBM methods.

Li et al. [120] have created condition-specific models by inte-
grating gene expression data of cancer cell lines under different
environments within a human GSMM. These models were simu-
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lated through FBA, and a K-nearest neighbours (KNN) model used
the resulting fluxes to predict new targets for cancer drugs.

Following a two-stage data integration strategy, Kim et al. [121]
have developed a normalised, well-annotated multi-omics data-
base for E. coli to provide high-quality data for data-driven predic-
tive analysis. Hence, ML models were trained with experimental
data, including transcriptomics, proteomics, metabolomics, and
growth rates, and with fluxomics data obtained by condition-
specific models, which resulted from the integration of proteomics
and transcriptomics with a GSMM. This work was the first to inte-
grate a comprehensive set of omics to train an ML model.

Recently, Culley et al. [122] have integrated transcriptomics and
fluxomics data of different S. cerevisiae mutants to predict growth,
using three different strategies: early, intermediate, and late inte-
gration. The strain-specific fluxomics data were obtained by simu-
lating the models constrained with the transcriptomics data. Gene
expression and fluxomics were analysed separately and as a single
dataset by ML models and feature selection was applied to reduce
dimensionality for the early integration. In the intermediate inte-
gration, two multi-view methods were applied: Bayesian Efficient
Multiple-Kernel Learning (BEMKL), which creates and combines
different kernel matrices for each dataset, and a multimodal artifi-
cial neural network (MMANN), that contains a layer for each data-
set fused via additional layers. Finally, RFs trained with each
dataset independently were combined in an ensemble model for
the late integration. The authors concluded that adding fluxomics
to gene expression make the results more accurate and biologically
interpretable. This study was extended by Magazzù et al. [123]
who showed that regularised linear models could outperformed
MMANN in multi-omics analyses and highlighted the relevance
of using fluxomics for better understanding the interactions among
genes and phenotypes.

Lewis et al. [124] has integrated predicted fluxomics with
experimental omics to overcome the lack of metabolomics in can-
cer datasets and created a ML classifier to identify biomarkers for
radiation resistance. Context-specific models were generated by
integrating transcriptomics and mutation data from radiation-
resistant and non-resistant tumours. The FBA-predicted fluxomics
were integrated with experimental omics using the late integration
approach: multiple classifiers were trained on an individual data-
set and combined in a meta classifier that calculates the final prob-
ability of radiation resistance.

Regarding drug side effects, Guebila et al. [125] have integrated
drug-induced gene expression data within a metabolic model of
the small intestine epithelial cells to generate drug-specific flux-
omics data. Gene expression and the predicted fluxomics were
trained by a multilabel SVM to predict gastrointestinal drug effects
and the drugs were clustered according to their metabolic and
transcriptomic profiles which give new insights into the adverse
reactions in the gut.

In another study, Vijayakumar et al. [126] proposed a pipeline
that applies FBA and ML to improve phenotypic prediction in
cyanobacteria. Condition-specific models were constrained by
transcriptomics data and simulated using multi-objective FBA with
three goals: biomass, photosystems I & II, and ATP maintenance
reactions. Then, ML was trained with transcriptomics and pre-
dicted fluxomics and allowed the identification of key genes and
reactions related to each condition. This pipeline clarified the
mechanisms used by cyanobacteria to deal with variations in light
intensity and salinity that could not be detected using transcrip-
tomics alone.

Kavvas et al. [127] presented the Metabolic Allele Classifier
(MAC), a metabolic model-based ML classifier that uses FBA to pre-
dict allele-specific antimicrobial resistance. MAC was formulated
within the FBA structure but using allele-specific flux capacity con-
straints and antibiotic-specific objective functions. This method
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takes the genome sequence of a Mycobacterium tuberculosis strain
as input and classifies the strain as either resistant or susceptible
to a specific antibiotic by optimising the antibiotic-specific objec-
tive function. Thus, MAC uses linear programming that acts as an
ML classifier, in which the predicted flux state corresponds to each
class, elucidating the biochemical processes leading to antibiotic
resistance.

Lastly, a deep-learning approach, entitled DeepMetabolism, was
developed to predict E. coli phenotypes, using CBM, biological
knowledge and gene expression data to define the neural network
structure [128]. The first step is unsupervised pre-training and
consists of an autoencoder with five layers: the first three repre-
sent gene expressions, protein abundances and phenotypes,
respectively, while the fourth and fifth layers are decoders repre-
senting reconstructed protein and gene layers, respectively. The
layers were connected using biological knowledge: gene-protein
rules (GPRs) from the GSMM connected the first and second layers,
and GSMM’s simulations identified essential reactions for each
phenotype to connect the second and third layers. The second step
consists of supervised training, using the same autoencoder model,
though only with the first three layers trained to predict
phenotypes.
4.3. Generation of constraint-based models and fluxomics

Instead of using ML to analyse fluxomics data, ML models can
be trained with experimental data, and the results can be used to
create models or improve flux predictions [129–132].

For instance, a web-based platform called Mflux was developed
to predict the central bacterial metabolism fluxes using ML models
[129]. The models, namely SVM, KNN and decision trees, were
trained with experimental fluxomics data under different condi-
tions to predict the flux of the central metabolism reactions and
associate metabolic fluxes with the conditions. As the fluxes pre-
dicted by ML may not follow the stoichiometry of metabolic net-
works, quadratic programming was applied to adjust the
predicted fluxes to satisfy the stoichiometric constraints.

ML can also be used to pre-process omics data and define addi-
tional constraints for CBM. For instance, Brunk et al. [130] pre-
sented a workflow that combines ML, metabolomics and a GSMM
to characterise E. coli strain variation. PCA is applied to reduce the
dimensionality of metabolomics data and identify key metabolites
driving strain variation. Then, the pre-processed metabolomics
data were used to adjust the flux bounds of the GSMM of E. coli
to achieve a better characterisation of the flux network of each
strain.

Another example is the unsteady-state flux balance analysis
(uFBA) workflow for integrating time-course metabolomics to pre-
dict metabolic fluxes in dynamic conditions [131]. The first step is
to discretise nonlinear metabolomics data into time intervals of
linear metabolic states using PCA. Then, the authors perform a lin-
ear regression to estimate the change rate for each metabolite for a
specific state, using a 95% confidence interval of the rate as reac-
tion flux bounds in a constraint-based model. As metabolomics
data can be incomplete due to experimental errors, uFBA also
implements a relaxation algorithm to determine the minimum
number of unmeasured metabolites whose concentration needs
to variate for the model to be feasible.

Finally, another study has trained ANNmodels with experimen-
tal enzyme concentrations to predict the fluxes for the NADH con-
sumption by glycerol-3-phosphate dehydrogenase in the upper
part of glycolysis. In this case, no kinetic parameters or stoichio-
metric constraints were considered but a large and diverse dataset
of enzyme concentrations is needed to obtain accurate flux predic-
tions [132].
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4.4. Other applications

ML has also been indirectly applied to other steps of GSMM
reconstruction, namely genome annotation and gap-filling [16].
For instance, an approach used several multiclassification ML mod-
els to classify enzymatic reactions using a dataset of hydrolysis and
redox reactions. The ML models predicted whether oxidoreduc-
tases or hydrolases catalysed specific reactions and the subclasses
for each type [133]. Another method named DeepAnnotator
applies deep learning models trained with DNA embeddings to
identify genes and annotate prokaryotic genome sequences [134].
Regarding gap-filling, a set of ML models predicted the pathways
present in an organism [135]. The models were trained with
curated information on which pathways are present and absent
in six organisms, achieving performance similar to other pathway
prediction algorithms. Another approach uses association rule
mining trained with UniProt entries to predict metabolic pathways
in prokaryotes [136].

As mentioned above, using datasets with a large number of
samples is crucial to obtain good ML models. The studies cited in
Table 4 show that the number of samples used varies greatly
depending on the type of ML and the application, ranging from a
few dozens to thousands of samples. Generally, unsupervised stud-
ies use datasets with fewer samples, except for the study of Mag-
nusdottir et al. [111], which includes over 200,000 samples.
Furthermore, the studies for bacteria and yeast usually have more
samples than those using human data, which is expected as data
acquisition is cheaper and more accessible for smaller organisms.
The study of Lewis et al. was the human study that used the most
extensive dataset, including data for 915 patient tumours.

The problem of having datasets with few samples is even more
evident for plants due to the lack of efforts to collect, integrate and
standardise plant omics datasets and experimental conditions.
Usually, some procedures are adopted to deal with small datasets.
First, its common to choose simpler models with few parameters,
such as logistic regression, to avoid overfitting. In addition, the
use of regularization techniques and the creation of ensemble
models enhances the power of generalisation. Second, it is also
important to remove outlier observations and to select the relevant
features to decrease the bias in the dataset. Another strategy that
can improve the results is to extend the dataset by creating syn-
thetic observations or integrating data from other sources, which
is still very challenging. If the dataset is unbalanced, one solution
is to perform an oversampling, which consists of increasing the
number of observations of the minority class [137]. Finally, choos-
ing the method for model validation is also important to get real-
istic performance metrics. For instance, the Nested Cross
Validation approach was proven to make an unbiased performance
evaluation [138]. Furthermore, other strategies have been devel-
oped to overcome the low-quality data problem in diverse applica-
tions, such as decomposition methods to generate extra data
samples and impute missing features [139].
5. Perspective: Machine learning and plant metabolic modelling

Although several CBM-ML hybrid studies have emerged in the
last few years, these are still limited, and more work is required
to understand the best ways to combine CBM and ML effectively
[15]. Nevertheless, combining these two techniques for studying
complex biological processes and interactions occurring in plants
seems auspicious. On the one hand, ML is crucial for condensing
and interpreting large and heterogeneous omics datasets to extract
biological knowledge. On the other hand, CBM allows the analysis
of metabolic fluxes associated with specific states, conditions, or
tissues, which may involve integrating omics data within models.
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As integrating regulatory networks in GSMMs is still very challeng-
ing, ML models trained with transcriptomics data allow detecting
and rectifying systematic errors associated with the GSMMs’ flux
predictions [16].

Multi-omics analyses seem to be the most promising applica-
tion of combining ML and CBM, as it involves integrating tradi-
tional omics with fluxomics data predicted by CBM methods,
which can provide meaningful insights about complex biological
processes. Rana et al. [16] proposed an iterative scheme to combine
these approaches. In such an approach, ML is initially used to anal-
yse the data that will define the input constraints in a GSMM and
later to analyse the predicted fluxes combined with experimental
omics data. This process iteratively refines a GSMM until reaching
consistency between CBM simulations, ML predictions and exper-
imental data.

The integration of omics from high-throughput technologies
with fluxomics data provided by GSMMs is advantageous, as it
seeks to overcome the specific limitations of each data type
[13,15]. Firstly, experimental omics data covers several areas, such
as genomics, transcriptomics, proteomics, or metabolomics, while
CBM is usually limited to fluxomics. Secondly, generating omics
data does not require prior knowledge of the underlying networks,
whereas GSMMs are based on extensive prior knowledge of meta-
bolic networks, making their reconstruction time-consuming.
Thirdly, although omics can be obtained promptly, these may con-
tain intrinsic noise and experimental errors, requiring pre-
processing and potentially leading to ambiguous interpretations.
In contrast, GSMMs are curated and have straightforward interpre-
tation, though relying on strong assumptions and the accuracy of
flux predictions limited by the model quality and available knowl-
edge [15]. Therefore, integrating omics data with metabolic models
or the predicted fluxomics data can reduce ambiguity, generate
accurate predictions, and provide more comprehensive analyses.
Challenges remain in combining heterogeneous omics datasets
with GSMMs. In the future, the increase in the number of omics
layers will lead to the development of new multi-view algorithms.
Hence, their combination with CBM is expected to grow as well
[13,15].

As plants are very complex, the studies of plant metabolism and
physiology will significantly benefit from multi-omics analysis and
the combination of ML and CBM approaches. Plant growth,
responses to biotic and abiotic stresses, fruit composition, and
emerging phenotypes involve complex mechanisms and multiple
interactions between system components; thus, they must be
studied as a system, comprising information of all levels.

Currently, no work combining ML and CBM methods to study
plant metabolism is available. However, several studies have inte-
grated omics data with plant metabolic models and built context-
specific and multi-tissue models. In addition, ML models have
already been used to analyse plants’ omics data, but most plant
multi-omics’ studies analyse the different omics types separately
[140]. Given the large amount of plant omics data generated, ML
models can combine plant multi-omics and integrate them into
CBM models. The resulting fluxomics data and experimental omics
can then be jointly interpreted with ML models to identify, for
instance, key genes or reactions associated with specific
phenotypes.

If enough data is available, part of the hybrid studies described
in the previous section can be applied to analyse plant metabolism.
For instance, the study of Vijayakumar et al. [126] can be used to
identify key genes or reactions that best differentiate between con-
ditions, elucidating the mechanisms of plants to adapt to different
environmental conditions, such as variations in water and salt
levels, and light intensities. Also, using multi-objective FBA for
simulating the condition-specific models can be suitable for plants
as their cellular objectives are complex and might differ between
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conditions. Similarly, the work of Lewis et al. [124] can be applied
to identify biomarkers for plant tolerance to adverse environmen-
tal conditions, such as drought- or salt-tolerance, or diseases. Both
examples can be applied to analyse the metabolic differences
between plant varieties.

Another possible application of ML to CBM is predicting interac-
tions between plants and microbes, pathogens or symbionts. In the
first case, the goal is to understand the mechanisms leading to dis-
ease and disease resistance and identify new drug targets. The lat-
ter aims to predict the plant-symbiont interaction network and
analyse the effect of symbionts in metabolites or fruits production.
For instance, the previous hybrid studies that predict interactions
between human gut bacteria [111,112] could be adapted to predict
interactions between plants and microbes. This will rely on pheno-
type predictions from metabolic models of both plant and
microbes, creating models encompassing both organisms and their
metabolic interactions. The plant-pathogen models can also be
used to predict drug side effects on plants, using approaches sim-
ilar to the studies [113,125].

In addition, as plant GSMMs present extensive metabolic gaps,
ML models can be used for gap-filling and for predicting interac-
tions between different tissues to generate better multi-tissue
models, which will allow studying complex mechanisms related
to plant responses to the environment and fruit quality. As
depicted above, one of the challenges in plant metabolic modelling
is the definition of constraints. Based on the outputs of ML models
trained with experimental omics, approaches like uFBA [131] and
the work of Nagaraja et al. [132] can be adapted to define the
appropriate constraints for specific metabolic processes, such as
photosynthesis and photorespiration. Also, the best objective func-
tions for describing a particular condition could be inferred from
the context-specific omics data available.

Hence, we believe that most CBM-ML hybrid approaches can be
applied to plants, including supervised and unsupervised methods.
One main challenge will be collecting suitable plant omics data for
the analysis of interest. Although large amounts of plant omics
datasets have been generated, most of these are scattered and
non-standardised, which hampers their analysis. Choosing the best
ML method to use will depend on the available data and the pur-
pose of each analysis. For unsupervised learning, studies like the
ones of Folch-Fortuny et al. [108], Bhadra et al. [109], Magnusdottir
et al. [111], and Brunk et al. [130] were developed to explore data
variation, identify metabolic groups and characterise metabolic
patterns, using PCA or clustering methods and unlabelled data.
The other studies have used supervised learning models, such as
SVMs, ANNs, LASSO regressions and RFs, and created predictors
that can be applied to new data. The applications of supervised
models included the prediction of drug effects and essential genes,
the identification of biomarks and novel drug targets and the esti-
mation of microbial growth rate. The use of deep learning models
with CBM is very limited, as omics datasets usually contain few
samples, which is even more evident in plant omics. The number
of samples in plant omics datasets is still low for traditional ML
methods, hampering the development of good predictive models.

Therefore, ML complements CBMmethods by defining the input
constraints to metabolic models and improving interpretation of
the results. Given the complexity of plant metabolic networks,
CBM-ML hybrid studies will give a more comprehensive and accu-
rate view of the metabolic processes and variations in plants.
6. Conclusion

In this article, we described the main developments in plant
metabolic modelling, underlining the current challenges and limi-
tations hindering the study of plant metabolism. Although there is
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little knowledge about the metabolic pathways of plants, many
advances have been made in this field, including the reconstruction
of complex, context-specific, and multi-tissue models that gener-
ate more realistic predictions. Even so, challenges remain in defin-
ing constraints affecting plants, choosing appropriate objective
functions, and characterising the metabolic differences across dif-
ferent tissues and conditions.

With the rapid generation of large amounts of omics datasets,
the use of ML in systems biology will continue to increase. ML is
a valuable tool for reducing the dimensionality of omics datasets
and extracting knowledge from data. Here, we have also described
the main hybrid studies combining CBM and ML developed for
other organisms showing promising results for several applica-
tions, such as predicting essential genes and reactions, phenotypes
of interest, genetic and microbial interactions, and new drug tar-
gets. Although these studies were mainly applied to microbes
and human cells, some can be adapted to plants, for instance, to
predict plant-symbiont interactions and identify key molecules to
characterise each phenotype.

Therefore, we believe that using ML in plant metabolic mod-
elling will fill the gaps in plant biochemical knowledge with
insights retrieved from the experimental omics analysis. The inte-
gration of fluxomics with experimental omics will allow to better
understand complex biological processes and interactions occur-
ring in plants.
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