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Abstract: The aim of the following paper is to discuss a newly developed approach for the identifi-
cation of vibration mode shapes of multilayer composite structures. To overcome the limitations of
the approaches based on image analysis (two-dimensional structures, high spatial resolution of mode
shapes description), convolutional neural networks (CNNs) are applied to create a three-dimensional
mode shapes identification algorithm with a significantly reduced number of mode shape vector
coordinates. The CNN-based procedure is accurate, effective, and robust to noisy input data. The
appearance of local damage is not an obstacle. The change of the material and the occurrence of
local material degradation do not affect the accuracy of the method. Moreover, the application of the
proposed identification method allows identifying the material degradation occurrence.

Keywords: shell; layered composites; mode shapes; identification; machine learning

1. Introduction

The design of composite structures requires the selection of appropriate values of certain
control parameters that describe both the structure itself and the material that it is made
from [1,2]. The number of composite layers and their stacking sequence are, among others,
frequently used for tuning selected properties of composite structures [3] (e.g., desired vibra-
tion frequency spectrum [4,5], buckling behavior [6], or structure’s stiffness [7]). The values of
the parameters that give the expected results are often determined through the optimization
process [8], namely through repeated calculation of the so-called objective function, which is
minimized in the space of varying parameters (e.g., lamination angles).

As shown by Ruiz et al. in [9] and Bunting et al. in [10], in the process of optimization
of dynamics features, some problems with the nondifferentiable objective function may
arise. They are often caused by swapping the vibration mode shapes for different values
of control parameters governing the optimization process (see Figure 1) or the occurrence
of double (repeated) natural frequencies and corresponding mode shapes. As a result,
ambiguity in the solution of the optimization problem may be encountered.

Figure 1 explains this phenomenon, where the sequence of natural frequencies corre-
sponding to particular mode shapes is amended due to changes in the structure’s parame-
ters and the discontinuity of the derivative of the objective function appears. The solution
to these problems is known as natural frequency tracking in the domain of the optimization
parameters; it eliminates the problems of nondifferentiability of the objective function.
Natural frequency tracking requires permanent identification of the mode shapes cor-
responding to natural frequencies for each point in the control parameter space of the
objective function.

In dynamic analysis, the objective function requires an eigenproblem solution giving
natural frequencies and corresponding mode shapes without identifying the type (class) of
the mode shape. This makes it impossible to track natural frequencies and to capture the
phenomenon of modes crossing, i.e., the changes in the sequence of natural frequencies cor-
responding to particular mode shapes. The application of mode shape identification, that is,
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the designation of the natural frequency and the corresponding vibration mode shape with
a suitable “mode shape identifier”, is important not only in first-order (gradient-based)
optimization. It also improves the convergence of the solution in zero-order optimization
(using, e.g., evolutionary algorithms) and gives more accurate results [6,11]. In [6,11], Miller
and Ziemiański applied a mode shape identification procedure based on analytical “search”
of mode shape nodes and antinodes along with the axial and circumferential directions
of a composite cylinder. The procedure is hereafter called the “analytic” identification
procedure and is sensitive to inaccuracies, errors, noise, and changes of parameters. In
the analyzed task, it proved its effectiveness only within a limited range of variation of
parameters describing the investigated model.
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Figure 1. An example of natural frequencies crossing; three-layer composite cylinder with stacking
sequence [λ, 0, λ].

The mode shapes identification is also advisable in the process of updating compu-
tational models [12,13] and in structural health monitoring (SHM) [14]; therefore, many
researchers have been working on this problem using different approaches: Zernike mo-
ment (ZM) descriptors [12], radial Tchebichef moment (RTM) descriptors [13], and Fourier
descriptors [15]. The geometrical descriptors for mode shapes identification use the concept
of image analysis, introduced in [16] and based on the theory of two-dimensional moment
invariants for planar geometric figures. ZM descriptors are advisable in the analysis of
circular and spherical images, but in the case of structures of other shapes (e.g., rectangular),
a coordinate transformation (mapping into a unit circle) is necessary. The RTM descriptor,
as stated in [13], is superior to the ZM descriptor in terms of mode shapes identification
but is still intended to analyze circular images. Fourier descriptor does not only aim at
analyzing circular images but still operates on plain areas. The aforementioned descriptors
also have the mode shape to be acquired using fine spatial resolution. To overcome this
difficulty, other image processing approaches [17] supported by machine learning [18]
and using the geometry description capabilities known as NURBS (nonuniform rational
B-spline) [19] are used. While the NURBS-based approach operates directly on curves and
areas and can be applied to describe also 3D geometry, mapping to a unit primitive and
fine spatial resolution is still necessary.

La et al. applied principal component analysis and support vector machines in the
identification of mode shapes [20]. However, he only considered only flat structures;
the obtained accuracy of two-dimensional mode shape identification was at the level of
approximately 98%.

In the case of three-dimensional structures, the above-mentioned methods require
an advanced preprocessing of mode shapes to map them to plain areas. Moreover, the
investigation of displacements in directions other than perpendicular to the plain area
the investigated region is mapped to can prove problematic since only out-of-plain dis-
placements can be captured through these approaches. Another important feature of these
methods is their need for an accurate representation of the mode shape, which makes them
sensitive to discretization errors [13].
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Recently, there has been tremendous growth in the applications of Convolutional
Neural Networks (CNNs) in engineering, particularly in areas such as computer vision and
pattern recognition, object detection, speech recognition, biomedical systems, and natural
language processing. This was possible through the use of new learning algorithms based
on the deep learning technique [21–23]. Unlike classical neural networks (currently often
referred to as shallow networks), a CNN is built from neurons ordered in three directions:
width, height, and depth, which allows for feature detection in the image as well as in
time series [24,25]. CNN processing capabilities have been used repeatedly in applications
related to computational mechanics [26], vibration analysis [27], and SHM [28–30]. In [31],
a new network (named TICNN) was proposed for feature extraction and classification of
models with external disturbances.

In the following paper, a successfully developed new approach for the identification
of vibration mode shapes of multilayer composite structures is discussed. To overcome
the limitations of the above-described approaches (2D analysis, high spatial resolution of
mode shapes description), CNNs are applied to create a three-dimensional mode shapes
identification algorithm with a significantly reduced number of mode shape vector coor-
dinates. The CNN-based procedure is accurate, effective, and robust to noisy input data
and the appearance of local damage is not an obstacle either. The change of the material
or the occurrence of local material degradation do not affect the accuracy of the method.
Moreover, the application of the proposed identification method allows identifying the
material degradation occurrence.

The proposed approach is based on the vibration shapes that can be obtained from
experimental measurements. Currently, equipment and modern, efficient computational
algorithms (such as digital image correlation (DIC) [32,33] and scanning laser Doppler
vibrometry [34]) allow the measurement and the analysis of mode shapes as full-field data,
not limited to a few, selected degrees of freedom.

The paper is organized as follows: Section 2 contains the formulation of the problem.
Section 3, the main section of the article, discusses the CNN-based identification of mode
shapes. Section 4 presents the identification of the occurrence of material degradation.
Section 5 contains the discussion of the results. The conclusions and future research
directions are reported in Section 6.

2. Formulation of the Problem
2.1. Solution of the Vibration Problem

The dynamic behavior of a structure (or, more precisely, of its numerical model) is
governed by the generalized equation of motion [35]:

Mẍ + Cẋ + Kx = P , (1)

where M is a mass matrix, C is a damping matrix, K is a stiffness matrix, x is a vector of
nodal displacements, and ẋ and ẍ are the first and the second derivatives of x with respect
to time t, respectively; P is an external force vector.

Equation (1), for the free vibration analysis, is simplified to:

Mẍ + Kx = 0 , (2)

where P and C are neglected (i.e., excitation does not occur and the damping is ignored).
This leads to the generalized eigenproblem [36]:

KΦ = MΦΩ2, (3)
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where Φ matrix is built from the eigenvectors φi describing the mode shapes corresponding
to angular frequencies contained in the diagonal matrix Ω. Each of the angular frequencies
after dividing by 2π gives an ordinary frequency:

fi =
ωi
2π

, (4)

called the natural frequency fi here.
Each of the φi mode shapes (also called natural vibration shapes or resonant shapes)

describes the maximal deformation of the structure when it vibrates harmonically with a
corresponding fi natural (resonant) frequency. The set of mode shapes is treated here as a
main source of information on the investigated structure.

2.2. Investigated Structure and Its Finite Element Model

The structure under study is a cylinder with radius R = 0.6103 m and length l = 6.0 m.
The shell of the cylinder is a multilayer composite; each of the n layers of composite
material has the same thickness with the total thickness of the shell—regardless of the
number of layers of the composite—being constant at t = 0.016 m. The angles of the
reinforcement fibers can be different for each layer. The composite material constants, based
on [37], correspond to graphite-epoxy composite material: E1 = 141.9 GPa, E2 = 9.78 GPa,
ν12 = 0.42, G12 = 6.13 GPa, and ρ = 1445 kg/m3.

A regular finite element (FE) mesh (see Figure 2) was used in the FE model, with
the number of FEs along the cylinder axis equal to 80 and circumferentially equal to 120.
In total, this leads to a model with 9680 nodes and 58,000 degrees of freedom. A four-node
multilayer shell FE (first-order shear theory) was applied; in the Adina FE code ([38], used
in all FE calculations) it is called MITC4. The FEM model was built using the experience
gained by the authors in previous research (see [6,11,39,40]), where FE convergence was
verified and the results from different FEM systems were compared.

6.0 m

610.3 mm

(a) (b)

Figure 2. The finite element (FE) model (a) and an example of C32 mode shape (b).

The cylinder is built in at one end by blocking the displacements of all nodes located
at the selected end of the cylinder.

2.3. Convolutional Neural Networks

The convolutional neural network is a specialized kind of neural network designed for
advanced data processing, with a gridlike topology [41]. Examples of the data that CNN
was created to analyze include, e.g., images (treated as a two-dimensional grid of pixels),
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time series data [27] (one-dimensional grid of data sampled from an observed signal at
regular time intervals), and multidimensional data. Convolutional networks are used with
great success in numerous practical applications and have thus become the standard for
recognition systems and image or video processing [27]. In recent years, CNNs have also
been readily used in SHM systems, mainly for vibration analysis [14,28–30].

The main difference between a classical neural network (now called a shallow neural
network) and a convolutional network is the fact that a shallow network uses—as the
main operator—general multiplication, whereas a CNN uses convolution (i.e., an operation
on two functions that produces a third function). In convolutional network terminology,
arguments to the convolution are often referred to as the input and the kernel whereas the
output is referred to as the feature map.

CNN can be treated as a grid made up of segments (layers), such as: the convolution
layers (for feature extraction), pooling layers (dimension reduction), batch normalization
layers (enabling independent learning of selected network parts), and activation layers
(here, rectified linear units, ReLU).

In the paper, CNN is used as a classifier applied to identify a “class” of vibration mode
shape of a composite cylinder using a three-dimensional matrix of nodal displacements as a
source of input data. CNNs are trained using the RMSProp algorithm [41]. The architecture
of CNNs applied here is summarized in Table 1 and shown in Figure 3. Neural network’s
hyperparameters are determined by trial and error procedure.

Table 1. The applied convolutional neural network (CNN) architecture (25 classes case).

Layer Input Kernel Kernel Dimension Activation
Number Type Number Size of Data Function

1 Convolution 33 {2,5} 33 × 2 × 16
2 Batch normalization 33 × 2 × 16
3 Activation 33 × 2 × 16 ReLU
4 Convolution 66 {2,5} 66 × 1 × 12
5 Batch normalization 66 × 1 × 12
6 Activation 66 × 1 × 12 ReLU
7 Convolution 33 {1,3} 33 × 1 × 10
8 Batch normalization 33 × 1 × 10
9 Activation 33 × 1 × 10 ReLU
10 Pooling {1,2} 33 × 1 × 5
11 Flatten 165
12 MLP 75
13 MLP 25
14 SoftMax 25 Softmax

Output “class”
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Figure 3. An example of convolutional neural network (CNN) architecture.

All simulations using CNNs were performed in the commercial code Mathematica
(V12.0, Wolfram Research Inc., Champaign, IL, USA) environment [42].
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3. Mode Shapes Identification
3.1. The Analytical Approach

The identification of mode shapes significantly improves the results of the optimization
of stacking sequence in composite structures (see [6,11]); therefore, it is analyzed in detail
in this paper.

The initial FE model is biaxially symmetric. The mode shapes of natural vibrations
can be divided into Axial (A0m, m = 1, 2, 3, . . . ), Torsional (T0m, m = 1, 2, 3, . . . ), Bending
(B1m, m = 1, 2, 3, . . . ), and Circumferential ones (Cwm, w = 2, 3, 4, . . . , m = 1, 2, 3, . . . ).

The mode shape code, Xwm, shows that the mode shape family (X is replaced by A for
axial, T for torsional, B for bending, and C for circumferential mode shape), circumferential
wave w, and axial mode x. As a rule, different mode shapes correspond to unique natural
frequencies; for axisymmetric FE models, close values of the natural frequencies of adjacent
vibration modes can be observed (e.g., f1 ≈ f2).

Mode shapes identification and assigning them to appropriate classes simplifies the
analysis and allows building simple and effective tools for the optimization and diagnosis of
the structure under study [6,11]. For the initial model (see Figure 2), with no defects and/or
material degradation, it is possible to create an analytical procedure for the identification of
mode shapes (see [11]). The procedure in the form described in [11] relies on the analysis
of the movement of the FE model node with the highest displacement magnitude. This
approach, which is fast and effective for biaxially symmetric structure, is not reliable enough
for the structure with local material degradation and/or geometric uncertainties, which
in turn leads to the loss of symmetry (especially for large areas of material degradation).
In what follows an automatic, neural network-based, identification of mode shapes is
presented. However, the analytical method is still applied in the new approach; the
learning and testing patterns were built using the results of the identification performed by
the analytical procedure.

3.2. Neural Network Based Mode Shapes Identification

The range of the analyzed natural frequencies was limited here with the value 100 Hz,
which seems to be a reasonable restriction from the point of view of the civil engineering
analysis. The mode shapes corresponding to the natural frequencies lower than 100 Hz are
the following ones: A01 (one axial mode), B11 and B12 (two bending modes), C21, C22,
C23, C31, C32, C33, C41 and C42 (eight circumferential modes), and T01 (one torsional
mode). The majority of them are—for biaxially symmetric structures—double mode shapes
(i.e., two corresponding natural frequencies are almost equal and the corresponding mode
shapes differ only in rotation about the structure axis of symmetry), and the overall number
of the analyzed frequencies thus reaches 22 (10 of 12 considered modes are double ones).

To identify the above-listed mode, CNNs are applied. Although CNNs are particularly
suited to image analysis, they can also efficiently analyze numerical sets. The training of
CNN is performed using a set of examples (called patterns); here, each of the examples
(patterns) consists of a 240-element input matrix (3× 20× 4) describing the analyzed mode
shape (three mode shape components—displacements along three Cartesian coordinate
system axes—in 20 nodes of four cross-sections of the FE model (see Figure 4)), and one-
element desired output showing the mode shape name (obtained from the analytical
identification procedure). The CNN output may be presented using either the usual
classification approach (the name of the identified mode shape) or a vector, where each
of the vector elements shows the level of similarity to one of the considered mode shapes.
The output vector contains the values from the range (0, 1), and the identified mode shape
is chosen as the one corresponding to the maximal element of the output vector.

To reduce the dimensions of the input matrix, the description of each mode shape is
reduced, as mentioned above, to 3× 20× 4 matrix. The selected 20 nodes in each of the
selected four cross-sections are chosen as every fourth node in each of the cross-sections
A, B, C, and D in Figure 4; the cross-sections are located 6.0 m, 4.5 m, 3.0 m or 1.5 m away
from the fixed end of the cylinder.
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cutting plane 1

cutting pl. 2

cutting pl. 3

cutting pl. 4

A

B

C

D

Figure 4. Selection of four FE model cross-sections for mode shape description.

To verify the accuracy of the proposed identification method, four different numbers
of layers of composite material were considered: n = 4, 8, 16, 32. For each value of n (with
the shell thickness constant for all the considered cases), 2000 random lamination angles
sets were generated, and in each case, 12 mode shapes were considered (as described above:
one axial mode, two bending modes, eight circumferential modes, and one torsional mode).
Only axial and torsional modes are single modes; however, in the case of double modes,
the corresponding mode shapes are not identical; they are rotated around the axis of the
cylinder. The inclusion of both double mode shapes increases the accuracy of the procedure.
The overall number of considered modes reached 24 (2× 12) for each of the models since
axial and torsional modes (single ones) were also repeated. Altogether, 192,000 patterns
were obtained (one model generated 24 patterns; the number of models was equal to 2000
for each number of n).

The patterns were divided into learning and testing sets: all the cases generated for
n = 4 and n = 16 composite layers were used as learning patterns while the cases with
n = 8 and n = 32 layers were used at the testing stage. The number of learning patterns
was the same as the number of testing patterns—in both cases, 96,000. However, the
analytical identification procedure—used as the reference procedure—failed to identify
A01 mode shape in some of the considered cases, and the number of corresponding patterns
was slightly smaller (see Figure 5).

The results of learning and testing of CNN network (called in what follows CNN-O)
are shown in Figure 5. The figure shows the confusion matrix, where the vertical axis
presents the target mode shape (identified using the analytical reference procedure) and
the horizontal axis shows the CNN-identified (predicted) mode shape. The numbers on
the right-hand side or below the plot show the overall number of cases in a particular row
(the proper number of cases representing a particular mode shape) or column (the number
of cases predicted as a particular mode shape).

In case of faultless identification of all mode shapes, there should be no cases outside
the diagonal of the confusion matrix and the number of cases in the corresponding row and
column should be equal. There are a few errors in the results shown in Figure 5; however,
their number is negligible. The level of accuracy of the identification of testing mode shapes
reaches almost 100%.
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Figure 5. The results of CNN-O mode shapes identification: (a) learning, (b) testing.

It has to be noted that in some selected cases, a result classified as incorrect in compar-
ison with the reference analytical procedure may be in fact correct, because the analytical
procedure also may incorrectly identify the mode shape in question. However, such cases
are few and do not affect the accuracy of the CNN procedure.

The trained CNN-O was also verified using mode shapes obtained from the same FE
model with some material constants altered; the values of Young’s moduli were changed
to E1 = 113.52 GPa and E2 = 10.73 GPa (while the original moduli were E1 = 141.9 GPa,
E2 = 9.78 GPa). The results of mode shapes identification are shown in Figure 6; the
number of models with altered material constants equals 800 (200 different lamination
angles cases for each n). The results shown in Figure 6 prove that the CNN trained on a
model with constant shell thickness and material properties is able to properly predict
mode shapes for a structure made of a different material.
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Figure 6. The results of CNN-O mode shapes identification for different material.

Further verification of the robustness of the proposed mode shapes identification
procedure involves artificial, random disturbing of mode shapes obtained from numerical
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simulations. Random noise can emulate some measurements errors, inevitable during real
experiments. The mode shapes obtained from numerical simulations were processed in
three consecutive steps:

1. each of the four cross-sections was shifted by a random vector (the same for the whole
cross-section),

2. each node on each of the four cross-sections was shifted by a random vector (unique
for each node),

3. the accuracy of each mode shape element was truncated to l significant digits.

In each case, the considered random noise was of a Gaussian distribution. The above
described three steps can be described using simple formulas. The random shift of each
mode shape cross-section is governed by the Equation:

P1 = P0 + Gs(0, σ1) (5)

where P0 is the original location of the considered cross-section (i.e., P0 contains in-plane
coordinates of each of the 20 points of a particular cross-section), and Gs(0, σ1) is a random
shift vector (its coordinated are generated using Gaussian distribution with mean equal to
0 and σ1 standard deviation),

P2 = P1 × Gn(1, σ2) (6)

where P1 are the randomly shifted (see Equation (5)) coordinates of each of mode shape
nodes and Gn(0, σ2) is the random coordinate multiplayer, unique for each mode-shape
node (Gaussian distribution with mean equal to 1 and σ2 standard deviation),

P3 = N (P2, l) (7)

where N (·, l) is an operator of truncation to l significant digits.
The network trained and tested on noisy data is called in what follows CNN-N . Dif-

ferent values of σ1, σ2 and l were considered; for each of them, the proposed identification
method is robust and guarantees a high identification accuracy. Figure 7 shows the identifi-
cation results obtained for σ1 = 0.0005 and σ2 = 0.25. The value of l, while it is not lower
than 4, has negligible influence on the results.
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Figure 7. The results of CNN-N mode shapes identification using noisy data (σ1 = 0.0005 and σ2 = 0.25): (a) learning,
(b) testing.
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In Table 2, we present the number of wrong identification cases obtained during
learning and testing for all of the above-described cases. As can be seen, the percentage
of errors is small (the values in the parenthesis show the overall number of mode shapes
being identified in a particular case).

Table 2. Number of wrong CNN identification cases (among all considered cases).

Learning Testing

CNN-O mode shapes identification (Figure 5) 7 (96,000) 3 (96,000)
Testing for a different material (Figure 6) — 0 (19,200)

Noised mode shapes, σ1 = 0.00005 and σ2 = 0.05 8 (96,000) 6 (96,000)
Noised mode shapes, σ1 = 0.0001 and σ2 = 0.10 9 (96,000) 16 (96,000)
Noised mode shapes, σ1 = 0.0005 and σ2 = 0.25 (Figure 7) 12 (96,000) 20 (96,000)

It should be noted that the analytical reference procedure properly identifies the mode
shape family (axial, bending, circumferential, and torsional) only for noised mode shapes
with standard deviations not higher than σ1 = 0.00005 and σ2 = 0.005 (σ2 ten times smaller
than the smallest one considered for CNN identification procedure), but the circumferential
waves are already misidentified. For σ1 = 0.00005 and σ2 = 0.05 (the smallest level
of noise considered for CNN identification), the analytical identification is wrong in all
cases considered, including the misidentification of the mode shape family. Although the
analytical procedure can be improved and better results can certainly be obtained, the
experience gained by the authors shows that the results will not be comparable to the CNN
results. The analytical procedure is not robust to a larger error, even in just one coordinate
among the considered three.

In addition to CNNs, the usefulness of deep learning feedforward neural networks
(FFNNs) was also verified. The results are gathered in Table 3, and although the mode
shapes identification is rather precise, the advantage of CNNs over FFNNs is clearly visible.
The reason for the higher accuracy of CNNs may be related to a different processing
method. Moreover, as it is shown in Tables 2 and 3, the number of patterns in learning sets
reaches 96, 000; CNNs are well suited to analyze such multielement learning sets.

Table 3. Number of wrong feedforward neural network (FFNN) identification cases (among all
considered cases).

Learning Testing

FFNN mode shapes identification 62 (96,000) 17 (96,000)
Noised mode shapes, σ1 = 0.0005 and σ2 = 0.25 164 (96,000) 162 (96,000)

3.3. Identification of Mode Shapes Obtained from the Model with Material Degradation

To verify the ability of the proposed CNN-O network to identify mode shapes ob-
tained from a model with some changes and damages, possibly causing mode shapes
changes and/or the lack of model axial symmetry, some local changes were introduced
to the model. In a randomly selected area of the model, the material constants of half
of the shell layers were reduced, namely, Young’s moduli are in these layers as follows:
E1 = 14.18 GPa, E2 = 0.978 GPa (instead of original values E1 = 141.8 GPa, E2 = 9.78 GPa).
The area with material constants degradation consisted of r rows and c columns of finite
elements; in all the cases, r = c, so the degradation area was—for simplicity—considered to
be “square” (in fact, it is a section of the cylindrical shell). The location of this square area
was selected at random without any limitations over the entire shell; the size was limited
up to 144 elements (r× s, for r = s ≤ 12) so its biggest size was as high as approximately
1.5% of the whole area of the shell (see Figure 8) while the smallest size (2× 2 elements)
was as small as 0.04% of the whole area of the shell.

Accordingly, all the cases with n = 4 and n = 16 composite layers were used as
learning patterns, whereas the cases with n = 8 and n = 32 layers were used at the testing
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stage. The number of learning patterns was the same as the number of testing patterns;
in both cases, it was equal to 144,000 (96,000 patterns obtained from the models without
damage and 48,000 patterns obtained from the models with material degradation). The
patterns were FEM-generated for the model with random lamination angles and material
degradation zone location and size following the previously described assumptions.

r

c

(a) (b)

Figure 8. The highest (a) and smallest (b) areas with a degradation of material model parameters in
half of the composite layers.

Figure 9a shows the results of mode shapes identification performed using CNN-O
described in the previous subsection (learned using only data from models without mate-
rial degradation). The overall accuracy of mode shapes identification is equal to 96.01%;
the CNN-O network is rather precise also for the models with material degradation.
The mistakes are mainly related to the identification of bending shapes (B11, B12) and
circumferential shapes with fourth circumferential wave (C41, C42); the reason for these
errors may be the limited number of considered cross-sections (only four). The number
of examples in each of the identified classes differs from 8000 because the reference ana-
lytical procedure fails to identify some mode shapes obtained from models with material
degradation.

To improve the results for models with material degradation, the identification CNNs
were created again using a few different approaches. The task of the CNN was to identify:

• 24 classes: both the mode shape and the state of the structure (with or without material
degradation); the number of mode shapes classes being identified was equal to 24, the
additional ones were A01d, B11d, B12d, C21d, C22d, C23d, C31d, C32d, C33d, C41d,
C42d and T01d (where d stands for material degradation),

• 25 classes: both the mode shape and the state of the structure (with or without
material degradation) with an additional 25th class for unrecognized mode shapes;
the additional class corresponds to cases where the analytical procedure failed to
recognize the mode shape,

• 25 classes (two stage CNN learning): stage I: learning on patterns without material
degradation, stage II: additional learning on patterns with material degradation; such
approach is suggested for this kind of networks [41], the obtained network is called
CNN-D in what follows.

The results are gathered in Table 4; the relative accuracy is related to 24 classes (the
classes (·) and (·)d, e.g., C21 and C21d, were treated as separate ones).
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Figure 9. Identification of mode shapes obtained from models with material degradation using: (a) CNN-O learned on
mode shapes obtained from models without material degradation (see Figure 5), (b) CNN-D learned using patterns with
and without material degradation.

Table 4. The results of identification of mode shapes with and without local material degradation.

Learning Testing
n = 4 n = 16 n = 8 n = 32

24 classes

Patterns with no material degradation 95.4% 98.2% 94.3% 96.8%
Resultant accuracy 96.8% 95.6%

Patterns with material degradation 80.9% 84.7% 75.6% 80.0%
Resultant accuracy 82.8% 77.8%

Overall accuracy, with and without material degradation 91.6% 89.0%

25 classes

Patterns with no material degradation 95.5% 97.2% 93.0% 97.1%
Resultant accuracy 96.4% 95.1%

Patterns with material degradation 87.9% 89.2% 80.1% 80.7%
Resultant accuracy 88.6% 80.4%

Overall accuracy, with and without material degradation 93.3% 89.7%

5 classes, two stage learning; CNN-D

Patterns with no material degradation 97.2% 98.2% 93.8% 95.9%
Resultant accuracy 97.7% 94.9%

Patterns with material degradation 92.2% 93.3% 81.4% 85.8%
Resultant accuracy 92.8% 83.6%

Overall accuracy, with and without material degradation 95.9% 90.7%

In order to compare the results with the ones presented in Figure 9a, the results
obtained from the 25-classes approach were transformed into 12 classes, where the informa-
tion about material model degradation was neglected (the classes (·) and (·)d, e.g., C21 and
C21d, were treated as one), see Figures 9b and 10 (an algorithm). The accuracy of the mode
shape identification, neglecting the information concerning the model state, reaches 98.11%
(this value is higher than the accuracy presented in Table 4 since it ignores the differences
between (·) and (·)d classes).
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Testing patterns
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CNN-𝓞 CNN-𝓓
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D
FE model with
material degradation

Learning patterns
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Figure 9bFigure 9a

Figure 10. An algorithm applied to identify mode shapes (information about material model degradation neglected); for
the results, see Figure 9.

4. Identification of Models with Material Degradation

The identification procedure described in the previous section was also used to iden-
tify the state of the entire model, namely to determine whether material degradation
(see Figure 8) took place or not. According to the assumptions described in previous
sections, the mode shapes are identified in two states of the entire model ((·) and (·)d).
The previously created CNN-D (see above) thus produces the output analyzed in one of
two ways:

• For each of 24 classes (12 mode shapes with (·) and (·)d states), with the 25th class
ignored, for each model, 22 first mode shapes are calculated and cases are counted
when the identified mode shape belongs to a group of degradated modes ((·)d state),
when the number of identified degradated modes is equal or higher than 12 the whole
model is considered as a model with material degradation; this approach is called in
what follows the counting approach (CA); see Figure 11a;

• As it was mentioned earlier, apart from the name of the identified mode shape,
CNNs can also return a more elaborate response in the form of a vector composed
of probabilities that the analyzed mode shape belongs to considered classes; the
probabilities corresponding to degradated modes are summed and divided by the
sum of all probabilities when the obtained value is higher than 0.5. The whole model
is considered as a model with material degradation; this approach is called in what
follows the probability approach (PA) (see Figure 11b).

The results of both approaches are shown in Figures 12 and 13a,b. The appearance of
material degradation is indicated with the letter D (as Degradation), the original state is
indicated with the letters ND (No material Degradation); the values on the main diagonal
show the proper identification of D or ND state of the model (true positives, TP, and
true negatives, TN, respectively), whereas the values outside the diagonal show the cases
when the ND state is identified as D (false positives) or the D state is identified as ND
(false negatives).

The results are precise; in the case of PA, there are no FP results, and the number of
FN results equals 9 (0.225% of all the D cases), learning and testing together.

The probability approach was also verified using mode shapes obtained from the
same FE model with some material constants altered; specifically, the values of Young’s
moduli were changed to E1 = 113.52 GPa and E2 = 10.73 GPa (while the original moduli
were E1 = 141.9 GPa, E2 = 9.78 GPa). The results of model degradation identification are
shown in Figure 13c.
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Figure 11. Identification of models with material degradation: (a) counting approach (CA), (b) probability approach (PA).
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Figure 12. The results of CA model identification: (a) patterns used for CNN learning, 4 and 16 composite layers, (b) testing,
8 and 32 composite layers.
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Figure 13. The results of PA model identification (22 mode shapes involved): (a) patterns used for CNN learning, 4 and
16 composite layers, (b) testing, 8 and 32 composite layers, (c) testing of PA procedure for different material.
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Since the obtained results were precise, the analysis of the number of mode shapes
involved in the identification procedure was performed. Figure 14 shows the relation of
the number of FPs and FNs versus the number of mode shapes involved. The initial sharp
drop in the number of FPs and FNs is set almost constant at the level of 10 mode shapes.
It can also be observed that the number of FPs is usually about 10 times smaller than the
number of FNs.
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Figure 14. Different number of considered mode shapes in PA and CA: (a) false negatives, (b) false positives.

The results obtained for only 8 mode shapes involved in the procedure are shown in
Figure 15a, while Figure 15b shows the number of FN depending on the size of the area
(represented by the number of columns c and rows r = c of finite elements) with material
constants degradation, with 22 or 8 mode shapes involved in the procedure. The accuracy
of the identification of the models with material constants degradation exceeds 95%, even
in the case of the smallest area of degradation (only 4 FEs, 0.04% of the whole area of the
cylinder) for 8 mode shapes approach and 98% for 22 mode shapes approach. It should be
noted here that for all areas apart from the smallest one, no errors of the procedure based
on 22 frequencies were observed.
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Figure 15. (a) The results of PA model identification (testing, 8 mode shapes involved), (b) false negatives for different sizes
of area with material constants degradation.
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5. Discussion of Results

In the statistical analysis of classification problems, whether two-class or multiclass,
the most frequently used measures are macroprecision, macrorecall, macro-F1, and accu-
racy, which are defined in Equations (8) through (11) [29]:

Macroprecision =
1
n

n

∑
i=1

TPi
TPi + FPi

(8)

Macrorecall =
1
n

n

∑
i=1

TPi
TPi + FNi

(9)

Macro-F1 =
2×Macro-Precision×Macro-Recall

Macro-Precison + Macro-Recall
(10)

Accuracy =
TP + TN

TP + FP + FN + TN
(11)

where summation is after the identified classes, i denotes the class number, and n the
number of considered classes. Table 5 shows the values of the statistical measures for the
mode shape identification examples discussed earlier in the paper.

Table 5. Statistical measures describing the accuracy of vibration mode shapes identification.

Models without Material Degradation With Degradation
CNN-O CNN-O CNN-N CNN-O CNN-D

Learn Test New Material Learn Test Figure 9a Figure 9b

Macro-Precision 0.9999 0.9999 1.0000 0.9998 0.9997 0.8453 0.8985
Macro-Recall 0.9999 0.9998 1.0000 0.9996 0.9998 0.8006 0.9149

Macro-F1 0.9997 0.9998 1.0000 0.9997 0.9997 0.8223 0.9066
Accuracy 0.9999 1.0000 1.0000 0.9996 0.9998 0.9601 0.9811

The proposed method for mode shapes identification gives precise results; its testing
accuracy reaching 100% (see Figure 5 and Table 5) means that errors occur rarely enough to
consider the proposed approach as error-free. The verification of mode shapes identifica-
tion, performed on models with different materials (see Figure 6), confirms the accuracy
and robustness of the method. This seems to indicate that the application of this method
in SHM tasks and numerical models updating can significantly improve their accuracy
and reliability.

The network CNN-O can correctly identify mode shapes of the model with varying
number of composite layers and different materials. The sensitivity of the proposed method
to the variation of other parameters, such as selected topological parameters like shell
thickness, should be now verified.

The network CNN-N handles noised input data well (see Figure 7; the testing ac-
curacy of mode shapes identification—even for the highest considered level of noise—is
still close to 100%. This feature is extremely important from the point of view of the
application of the method for identification of mode shapes obtained from experimental
measurements; the method is based on a highly reduced description of the identified mode
shape (only 1/242 of FEM-generated mode shape data is taken into consideration during
the identification process).

The proposed method—namely CNN-D—can also be used in cases where the an-
alyzed structure is exposed to local material degradation (caused, e.g., by corrosion or
delamination). The material constants degradation localized in a selected zone affects
the identification accuracy (see Figure 9a). However, the accuracy is still high and can be
further improved by the application of the two-stage network learning, where the first
stage of learning only uses as learning patterns the mode shapes obtained from the model
without the local material degradation, and in the second stage of learning the patterns
obtained from the model with the local material degradation are taken into account (see
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Figure 10). The obtained accuracy of mode shape identification exceeds 98% (see Figure 9b)
when the network task is to assess only the class of mode shape, and 90% (see Table 4)
in the case of a simultaneous identification involving also the state of the model (with or
without local material degradation).

Finally, the method allows not only to identify the mode shapes; based on the iden-
tification results, it is possible to identify the state of the whole model. Depending on
the approach applied (PA or CA), the accuracy of identification of the occurrence of local
degradation of the model is close to 100% (CA approach; see Figure 12b) or even almost
perfect (PA approach; see Figure 13b). Verification performed on the model with a different
material than considered during network learning (see Figure 13c) proves again that the
procedure is not sensitive to material change. Moreover, the results are precise even when
the input data is significantly reduced: the reduction of the number of considered first
mode shapes from 22 to 8 does not cause a significant decrease of the identification accuracy
(see Figure 14), the procedure can still identify the appearance of even very small areas
with material degradation (see Figure 15b).

It has to be firmly stated that the knowledge of the natural frequencies is not needed
to identify a state of the model (with or without local material degradation). Moreover,
the model studied, unlike many examples available in the relevant literature, is a three-
dimensional model; therefore, the application of shape descriptors widely applied in the
analysis of two-dimensional cases is not directly possible.

The main drawback of the proposed procedure is that it requires an analytical proce-
dure for identifying the vibration mode shapes when preparing the patterns for network
learning. However, the learning patterns can be, as shown above, only prepared for an
intact model so that the analytical procedure must be fine-tuned to this particular case.
This limitation should be taken into account when using the proposed approach.

6. Conclusions

The aim of the paper was to discuss a newly developed approach for the identification
of vibration mode shapes of multilayer composite structures. The procedure based on
convolutional networks has proved its effectiveness and robustness to noisy input data
and can be thus applied applied in optimization and SHM problems.

The proposed method can successfully identify mode shapes of the composite cylinder;
the change of the material or even occurrence of local material degradation do not affect the
accuracy of the method. Moreover, the application of the proposed identification method
allows identifying the material degradation occurrence.

Further research should be carried out; among others, the following problems should
be addressed:

• application of graphical images to represent mode shapes rather than numerical data,
• application of the proposed method of mode shape identification in optimization tasks,
• identification of the location of the area of local material degradation.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
FFNN Feedforward neural network
FE Finite element
FEM Finite element method
PA Probability approach
CA Counting approach
TP True positives
TN True negatives
FP False positives
FN False negatives
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