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Cervical ossification of the posterior longitudinal ligament (OPLL) is a contributing factor to spinal 
cord injury or trauma-induced myelopathy in the elderly. To reduce the incidence of these traumas, it 
is essential to diagnose OPLL at an early stage and to educate patients how to prevent falls. We thus 
evaluated the ability of our convolutional neural network (CNN) to differentially diagnose cervical 
spondylosis and cervical OPLL. We enrolled 250 patients with cervical spondylosis, 250 patients with 
cervical OPLL, and 180 radiographically normal controls. We evaluated the ability of our CNN model 
to distinguish cervical spondylosis, cervical OPLL, and controls, and the diagnostic accuracy was 
compared to that of 5 board-certified spine surgeons. The accuracy, average recall, precision, and 
F1 score of the CNN for classification of lateral cervical spine radiographs were 0.86, 0.86, 0.87, and 
0.87, respectively. The accuracy was higher for CNN compared to any expert spine surgeon, and was 
statistically equal to 4 of the 5 experts and significantly higher than that of 1 expert. We demonstrated 
that the performance of the CNN was equal or superior to that of spine surgeons.

Ossification of the posterior longitudinal ligament (OPLL) is characterized by ectopic bone formation within the 
posterior longitudinal ligament of the spine. The prevalence of OPLL in Japan has been reported to be 1.9–4.3% 
for people over the age of 30, 1.0–3.0% in Asian countries such as China and South Korea, and 0.1–1.7% in con-
tinental Europe and North  America1–3. OPLL of the cervical spine is a contributing factor to spinal cord injury 
and trauma-induced myelopathy in the elderly, and there is a need to educate patients with OPLL to prevent 
 falls4–7. Therefore, early detection of OPLL is crucial to avoid spinal cord injury or trauma-induced myelopathy 
due to OPLL. Although the widespread use of computed tomography (CT) revealed that the diagnostic accuracy 
of a simple cervical radiograph was  inadequate8, radiographs are still a mainstay for screening cervical spine 
pathology.

Convolutional neural network (CNN) has been developed to mimic the central nervous system in human 
image recognition, and it automatically and adaptively learns features from data using multiple building  blocks9. 
Notably, CNN is an artificial intelligence technique that is useful in the field of image recognition, including for 
medical imaging. To date, however, artificial intelligence has had only limited applications in spinal diseases.

The purpose of this study is to determine whether it is possible to make a differential diagnosis of cervical 
spondylosis and cervical OPLL using a CNN. We also compare the diagnostic accuracy of the CNN with that of 
expert spine surgeons to verify whether the CNN can serve as a screening tool for OPLL.
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Results
Patient characteristics. The characteristics of the patients enrolled in this study are shown in Table 1. 
Patients with no abnormal radiographic findings consisted mostly of individuals with whiplash and neck pain. 
The group of patients with cervical spondylosis included 236 cases of cervical spondylotic myelopathy and 14 
cases of cervical spondylotic radiculopathy. Among the test dataset of the OPLL patients, the distribution of the 
OPLL type was 6 patients with the continuous type, 18 with the segmental type, 22 with the mixed type, and 4 
with the localized type.

Performance of the CNN and spine surgeons. The results and confusion matrix of 150 cases of the 
CNN are shown in Table 2. The accuracy, average recall, precision, and F1 score of the CNN and spine surgeons 
for classification of lateral cervical spine radiographs are presented in Table 3. The accuracy was higher for CNN 
compared to any expert spine surgeon, and was statistically equal to 4 of the 5 experts and significantly higher 
than that of 1 expert. The recall (sensitivity) of the CNN and spine surgeon for each OPLL type is presented in 
Table 4. The recall scores for segmental and localized types were lower compared to continuous and mixed types 
for both the CNN and spine surgeon groups. For reference, Fig. 1 shows representative lateral cervical spine 

Table 1.  Baseline patient characteristics. JOA Japanese Orthopaedic Association, OPLL ossification of 
posterior longitudinal ligament.

Cervical spondylosis OPLL Normal

n (patients) 250 250 180

Age 65.6 ± 12.2 64.0 ± 11.0 24.0 ± 5.4

Sex (M/F) 174/76 183/67 95/85

JOA score 8.8 ± 3.6
(n = 240)

11.5 ± 4.0
(n = 233) –

Table 2.  Confusion matrix of the CNN model. CNN convolutional neural network, OPLL ossification of 
posterior longitudinal ligament.

Prediction by the CNN

TotalCervical spondylosis OPLL Normal

Ground truth

Cervical spondylosis 46 1 3 50

OPLL 11 39 0 50

Normal 4 2 44 50

Table 3.  Performance metrics of the CNN and spine surgeons of diagnoses made using lateral cervical spine 
radiographs. CNN convolutional neural network.

Accuracy P value (compared with CNN) Average recall Average precision Average F1 score

CNN 0.86 – 0.86 0.87 0.87

Spine surgeon 1 0.83 0.50 0.83 0.82 0.83

Spine surgeon 2 0.83 0.43 0.83 0.83 0.83

Spine surgeon 3 0.81 0.22 0.81 0.81 0.81

Spine surgeon 4 0.81 0.20 0.81 0.84 0.83

Spine surgeon 5 0.76 0.018 0.76 0.76 0.76

Table 4.  The recall (sensitivity) of the CNN and spine surgeon for each OPLL type.

OPLL type
Recall for the 
CNN (%) Average recall for spine surgeons (%)

Continuous 83 (5/6) 81

Segmental 72 (13/18) 63

Mixed 87 (19/22) 94

Localized 50 (2/4) 63
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Figure 1.  Representative radiographs used in the test dataset and their corresponding computed tomography 
(CT) images, for the reference of ossification of the posterior longitudinal ligament (OPLL). (A) Lateral 
radiograph of a patient with OPLL, which all spine surgeons misdiagnosed as cervical spondylosis, but the 
convolutional neural network (CNN) diagnosed correctly. (B) A CT scan of the same patient from panel A 
showing segmental OPLL in C5 and C6. (C) Lateral radiograph of a patient with OPLL, which all spine surgeons 
and the CNN misdiagnosed as cervical spondylosis. (D) A CT scan of the same patient from panel (C) showing 
segmental OPLL in C5 and C6. (E) Lateral radiograph of a patient with OPLL, which the CNN misdiagnosed as 
cervical spondylosis, but all spine surgeons diagnosed correctly. (F) A CT scan of the same patient from panel 
(E) showing a mixed type of OPLL in C2–C6.
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radiographs and their corresponding CTs of OPLL, which the CNN and spine surgeons either diagnosed cor-
rectly or misdiagnosed.

Discussion
This study showed that the ability of a CNN to distinguish between cervical spondylosis, OPLL, and control lateral 
cervical radiographs was equal or superior to that of expert spine surgeons. Segmental and localized OPLL types 
were difficult to diagnose by plain radiograph alone for both the CNN and the expert spine surgeons. Overall, 
this study demonstrated that CNN performance is promising and supports the possibility of an automated 
screening tool for OPLL.

Our CNN model successfully differentiated patients with OPLL from patients with cervical spondylosis 
and normal controls. This is the first study to evaluate the OPLL diagnostic ability of a CNN. Although there is 
consensus regarding the accuracy of detecting OPLL by CT, the reliability of plain radiographs to detect OPLL is 
inadequate compared to  CT6,8,10,11. CT scans would improve the accuracy of diagnosis of OPLL, however, it is not 
feasible or reasonable to use CT in screening a large sample  cohort6. The use of cervical radiographs as a screen-
ing tool is recommended in the nontraumatic setting for patients with local signs or symptoms such as motor or 
sensory deficits consistent with cervical root level  distribution12. CT scans are also useful in determining OPLL 
type classification. Chang et al. investigated inter- and intra-observer agreement of Tsuyama’s cervical OPLL type 
 classification13 on lateral plain radiographs and reconstructed CT  images8. Inter- and intra-observer kappa values 
were only 0.51 and 0.67 for the lateral plain radiograph and 0.76 and 0.86 for 3D CT images, respectively. Kang 
et al. examined the diagnostic accuracy of cervical OPLL on lateral plain radiograph and magnetic resonance 
imaging (MRI) compared to CT scan. The diagnostic accuracy of lateral cervical radiograph and that of MRI were 
52.2% and 58.7%,  respectively14. In patients with a segmental or localized type of OPLL, the diagnostic accuracy 
of spine surgeons dropped to 27.3% and 20.0% respectively. They reported that in lateral cervical radiographs, 
localized and segmental types of OPLL were obscured by osteophytes, facets, and pedicles. Kudo et al. investi-
gated the inter- and intra-observer reliability of the classification of OPLL types and diagnosis for OPLL using 
radiographs and CT  images10. Inter- and intra-observer kappa values of the classification of OPLL type were 0.528 
and 0.477 for the lateral radiograph and 0.633 and 0.605 for both radiographs and CT images,  respectively10. 
Inter- and intra-observer kappa values of the diagnosis of OPLL were 0.743 and 0.613 for the lateral radiograph 
and 0.833 and 0.802 for both radiographs and CT images,  respectively10. The diagnostic accuracy of the CNN 
was higher than reported in Kang et al., although a fair comparison is not  feasible14. The present study also found 
it difficult to radiographically detect segmental and localized types of OPLL for both CNN and spine surgeons.

This study demonstrated that CNN is a promising screening tool for OPLL. Early diagnosis of OPLL, educat-
ing patients to avoid falls or trauma, and continued careful observation could lead to prevention of spinal cord 
injury and trauma-induced  myelopathy7. Trauma in the neck can result in cervical spinal cord injury in patients 
with cervical  OPLL15,16. It has been reported that 34% of traumatic cervical spinal cord injuries without bone 
injury were associated with cervical  OPLL5. In 13% of OPLL patients who presented with myelopathy, trauma 
triggered the onset of  myelopathy7. Nearly half of the patients who underwent surgery due to cervical myelopathy 
had fallen in the year before  surgery17. Moreover, 37% of those who fell experienced worsening of motor deficits 
related to the fall, which were related to poor neurological  outcomes17. Therefore, it is essential to diagnose OPLL 
at an early stage, educate patients to avoid trauma, and continue careful  observation7.

There are several limitations to the present study. First, The validation dataset consists of an equal distribu-
tion of cervical spondylosis, OPLL, and normal controls and does not represent the prevalence of spondylosis 
and OPLL in the real world. However, the number of normal control images is limited because CT or MRI was 
required to confirm the absence of OPLL. Second, the present study did not include a class activation heatmap 
such as Grad-CAM as a visual explanation of the  model18. Third, the CNN had a relatively small number of 
images. To conquer this problem, we applied transfer learning and data augmentation  methods19. Although it 
was rare, the CNN missed obvious OPLL diagnoses as shown in Fig. 1E. Further investigations in larger cohorts 
are needed to improve the diagnostic accuracy of cervical spine OPLL. Finally, plain lateral cervical radiographs 
were acquired over the past 18 years and the image conditions were heterogeneous; however, since the accuracy 
of the CNN is thought to be improved by learning under various conditions, this may be a strength rather than 
a  limitation20.

In sum, we showed that the ability of the CNN to differentiate between cervical spondylosis, OPLL, and 
normal cases using lateral cervical radiographs was equal or superior to that of spine surgeons. An artificial 
intelligence-based diagnostic model of lateral cervical spine radiographs could help non-experts diagnose cervi-
cal spine OPLL and also help determine whether further imaging is needed.

Materials and methods
Patients. The study was approved by the Institutional Review Board of the  Chiba University Graduate 
School of Medicine and the requirement for consent was waived because of the retrospective analysis. (refer-
ence number 3329) All procedures involving human participants were in accordance with the 1964 Declaration 
of Helsinki and its later amendments. A retrospective review of the medical records of all patients who visited 
Chiba University Hospital between January 2003 and May 2020 was performed. Patients with cervical spondylo-
sis, patients with OPLL, and patients with normal radiographic findings were enrolled. The cervical spondylosis 
group included patients who had been operated on in our hospital for cervical spondylotic myelopathy or cervi-
cal spondylotic radiculopathy. Cervical spondylosis refers to non-inflammatory disc degeneration, such as nar-
rowing of disc height, vertebral body marginal hardening, osteophyte formation, Luschka joint deformity, and 
osteosclerosis of the facet joint  surface21. Two orthopedic spine surgeons (MM, 7 years of experience and SM, 
14 years of experience) confirmed the diagnosis of cervical spondylosis using both CT multiplanar reconstruc-
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tion images and MRI. The OPLL group included patients who had been operated on in our hospital and patients 
who were followed up for observation after the diagnosis of OPLL was confirmed. OPLL was confirmed when 
two spine surgeons agreed on the diagnosis of OPLL based on CT scans. Most CT scans were acquired for surgi-
cal planning or for a definitive diagnosis of OPLL. Patients with normal radiographic findings were confirmed to 
have an absence of cervical spondylosis and OPLL using MRI or CT scans and were between 15 and 40 years of 
 age21–23. In addition to radiographs, patients from this control group also received MRI or CT scans for exami-
nation of whiplash injury or neck pain, or for preoperative cervical spine screening for peripheral entrapment 
neuropathies such as cubital tunnel syndrome and carpal tunnel syndrome. Patients with cervical spondylotic 
myelopathy and patients with OPLL were evaluated for the Japanese Orthopaedic Association (JOA) scores at 
the time of lateral  radiographs24. There were 250 patients with cervical spondylosis, 250 patients with OPLL, and 
180 patients with normal radiographs. Exclusion criteria were cases with severe kyphotic deformity, atlantoaxial 
subluxation, previous cervical spine surgery, foreign body interference, obviously fused vertebrae, and cases with 
invisible C6 and C7 vertebrae.

Radiological dataset. The dataset used in this study included lateral cervical spine radiographs in the 
neutral position of 311 cervical spondylosis cases, 269 OPLL cases, and 180 controls. We excluded 6 cases with-
out CT, 5 cases with severe kyphosis, 2 cases with atlantoaxial subluxation, 45 postoperative cases, 2 cases with 
foreign body interference, 10 obviously fused vertebrae cases, and 1 case where both C6 and C7 were invisible. 
Moreover, 9 of the cases were excluded because both experts judged that OPLL and CS were difficult to distin-
guish even by CT due to disc calcification and osteophyte presence. Finally, a total of 80 cases, 61 cervical spon-
dylosis and 19 OPLL, were excluded from the total patients list.

Image preprocessing. Plain lateral cervical spine radiographs were exported as a JPEG from digital imag-
ing and communications in medicine (DICOM) files and the picture archiving and communication systems 
(PACS) in our hospital. An orthopedic surgeon (MM, 7 years of experience) used Paint 3D (Microsoft Corp, 
Redmond, WA, USA) to generate images for CNN training by cropping the smallest region with an aspect ratio 
of 2:3 containing C1–C7 of each lateral cervical spine radiograph (Fig. 2).

Model construction and training of the CNN. The CNN architecture was built using Python Program-
ming Language version 3.6.7 and Keras, version 2.1.6 with TensorFlow, version 1.12.0 (https:// www. tenso rflow. 
org) at the backend. In this study, we used the EfficientNetB4 architectural model, which had been previously 
trained using images with  ImageNet25. The input images were scaled down to 380 × 380 pixels. EfficientNets is 
a group of image classification models developed based on AutoML and combined scaling. In EfficientNets, a 
simple, but highly effective composite scaling program is presented to enhance mobile-sized baseline networks 
to improve performance while maintaining efficiency. EfficientNet has fewer model parameters and is more 
accurate and efficient than existing convolutional networks. An EfficientNetB4 CNN with a single, fully con-
nected 3-class classification layer was used. Then, we applied transfer learning to the model using the dataset of 
radiographs of cervical spondylosis, OPLL, and controls. The network was trained for 100 epochs with a learning 
rate of 0.1, and the learning rate decreased if no improvement was observed. Model training convergence was 

Figure 2.  Image preprocessing for the convolutional neural network model training and validation. We 
cropped the smallest region with an aspect ratio of 2:3 (white box) containing vertebral bodies and spinous 
processes of C1–C7 in lateral cervical spine radiographs.

https://www.tensorflow.org
https://www.tensorflow.org
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observed using cross-entropy loss. All images in the training dataset were augmented randomly using Image-
DataGenerator (https:// keras. io/ prepr ocess ing/ image/) by a rotation angle range of 20°, width shift range of 0.2, 
height shift range of 0.2, and brightness range of 0.3–1.0. The CNN was trained and validated using a computer 
with a GeForce RTX 2060 graphics processing unit (NVIDIA, Santa Clara, CA), a Core™ i7-9750 central process-
ing unit (Intel, Santa Clara, CA), and 16 GB of random-access memory.

Performance evaluation. We evaluated the ability of the CNN model to distinguish cervical spondylosis, 
OPLL, and normal controls using a validation dataset that was not included in the training dataset. We trained 
the CNN model using 200 cervical spondylosis cases, 200 OPLL cases, and 130 normal cases. Then, we further 
validated the performance of CNN in an additional 150 cases using 50 cases in each group. For the 50 patients 
with OPLL in the test dataset, the type of the  OPLL13 was also recorded. The same 150 test cases (50 cases in 
each group) were examined by 5 board-certified spine surgeons (KM, KM, HT, MM, and GI, 11, 11, 17, 17 and 
21 years of experience, respectively) and their diagnostic accuracy was compared to that of the CNN. The spine 
surgeons were blinded to clinical information, such as patient age and sex.

Statistical and data analysis. All statistical analyses were carried out using JMP Pro (version 14.2.0; 
SAS Institute Inc., Chicago, IL). We calculated the true positive (TP), true negative (TN), false positive (TP), 
and false negative (FN) rates based on the predictions of the CNN and spine surgeons. To assess performance, 
the mean values of accuracy, recall, precision, and F1 scores were calculated. Accuracy, recall, precision, and 
F1 scores were calculated by the following numerical formula; accuracy = (TP + TN)/(TP + FP + FP + FN + TN); 
recall = TP/(TP + FN); precision = TP/(TP + FP); F1 score = 2 × recall × precision/(recall + precision). Accuracy is 
a percentage of the correct predictions out of the total prediction made. Recall is a measure of the number of 
correct positive predictions from all positives in a dataset, also known as sensitivity. Precision is a measure for 
the correctness of a positive prediction and is also known as positive prediction value. F1 Score is the weighted 
average of precision and recall. Differences in the accuracy of diagnostic performance between CNN and spine 
surgeons were compared using the McNemar test.

Data availability
The datasets analyzed during the current study are not publicly available due to their containing information 
that could compromise the privacy of research participants.
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