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The diagnosis of plasma cell neoplasms requires accurate, and ideally precise, percentages. This plasma cell percentage
is often determined by visual estimation of CD138-stained bonemarrow biopsies and clot sections. While not necessar-
ily inaccurate, estimates are by definition imprecise. For this study, we hypothesized that deep learning can be used to
improve precision. We trained a semantic segmentation-based convolutional neural network (CNN) using annotations
of CD138+ and CD138- cells provided by one pathologist on small image patches of bone marrow and validated the
CNN on an independent test set of image patches using annotations from two pathologists and a non-deep learning
commercial software. On validation, we found that the intraclass correlation coefficients for plasma cell percentages
between the CNN and pathologist #1, a non-deep learning commercial software and pathologist #1, and pathologists
#1 and #2 were 0.975, 0.892, and 0.994, respectively. The overall results show that CNN labels were almost as accu-
rate as pathologist labels at a cell-by-cell level. Once satisfied with performance, we scaled-up the CNN to evaluate
whole slide images (WSIs), and deployed the system as a workflow friendly web application to measure plasma cell
percentages using snapshots taken from microscope cameras.
Background

Plasma cell percentage in the bone marrow is calculated by dividing the
number of plasma cells by the total number of nucleated cells in a sample.
Accurate percentages are critical for the diagnoses of plasma cell
neoplasms,1 and for disease follow-up posttreatment. Pathologists routinely
obtain these percentages by examining CD138-stained slides using one of
twomethods. The first is visual estimation across entire bone marrow spec-
imens at low magnification. The second is to count cells one at a time in
small selected patches of marrow at higher magnification.

Several factors challenge the accuracy and precision of human-based
percentages. These include variable sizes and non-random distributions of
neoplastic plasma cells. As expected, visual estimates are by definition im-
precise. However, some studies have shown that pathologists may also
overestimate plasma cell percentages at low magnifications when com-
pared to corresponding cell-by-cell counts at higher magnifications—sug-
gesting that these estimates can also be inaccurate.2 While cell-by-cell
counts are accurate and precise for small selected patches, it is difficult to
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be certain if these small samples are faithful representations of the much
larger bone marrow specimens.

Imprecision and inaccuracy are most problematic when the true per-
centages of clonal plasma cells are close to an important diagnostic cutoff.
In a hypothetical example, if the true percentage is 11%, many pathologists
would have a difficult time determining if this is above or below the 10%
threshold1 used to separate monoclonal gammopathy of undetermined sig-
nificance (<10%, a precancerous lesion) from plasma cell myeloma
(≥10%, an often aggressive cancer).

In theory, accurate and efficient computational enumeration of
CD138+ and CD138- cells across an entire slide offers a potential solution.
A review of published literature, however, identified a number of limita-
tions in existing implementations.3–8 First, most computational studies
used visual estimates as reference standards. Per Aeffner et al.,9 this creates
a “gold-standard paradox” where algorithms are trained and optimized
using potentially unreliable references, subject to visual biases, which com-
putational methods were supposed to avoid. As a result of the focus on
whole slide estimates, most studies also did not report on concordance
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between algorithms and humans at a cell-by-cell level. Finally, most studies
relied on older area-based and cell- or nuclear-segmentation-based
methods, and until very recently,10 did not employ deep learning.

Accordingly, our solutionwas to start at the cell-by-cell level using small
patches of marrow. In principle, this addresses issues such as non-random
distributions and variable sizes of tumor plasma cells that plague visual es-
timates, and avoids the “gold-standard paradox.” Specifically, we trained a
convolutional neural network (CNN) using raw pixel data and labels of
CD138+ and CD138- cells provided by one pathologist, without reference
to prior cell- and nuclear-segmentation. Once trained, the CNN was
benchmarked against a commercially available “classical computer vision”
(non-deep learning) software and a second pathologist on an independent
set of small image patches, using new labels from the original pathologist
as reference. Once satisfied with the performance of the CNN, we
scaled up our system to whole slide images (WSIs), and deployed it as a
workflow-friendly web application.

Methods

Case collection, CD138 Immunohistochemistry, Pathology Report Data, and
Ethics Statement

16 cases with bone marrow biopsies and/or clot sections were selected
from the archives of the Department of Pathology at the University Health
Network (Toronto, Ontario, Canada). These include cases of plasma cell
neoplasms (n=7), myeloid neoplasms with reactive plasma cells (n=1),
and normal bone marrows with reactive plasma cells (n=8).
Anti-CD138 antibody was used for detection of plasma cells by immunohis-
tochemistry (MI15 clone; Agilent Dako, Santa Clara, CA) at 1:25–1:50 dilu-
tion range.

Plasma cell percentages for 10 clinical pathology reports were obtained
from institutional pathology laboratory information management system.
For plasma cell percentages with range estimates, middle values were
used for analyses (e.g., 5–10% was recorded as 7.5%). Plasma cell percent-
ages reported as “normal,” “not increased,” or “less than 5%” were re-
corded as 2.5% (middle value of 0–5%) for analyses.

The study is authorized by the UHN Research Ethics Board (CAPCR 18-
5069).

Patch Selection and Annotation

Slides were scanned at 40× magnification (0.25 μm/pixel resolution)
using an Aperio AT2 scanner (Leica Biosystems, Wetzlar, Germany) and
imported into the open-source digital pathology platform QuPath11 for
image patch selection and annotation. In each WSI, tissue was separated
from background and the resulting tissue area was divided into 512 by
512 pixel tiles. From each slide, representative tiles were selected for anno-
tation. Within the selected tile, one pathologist labeled the center of each
nucleated cell marking it as CD138+ or CD138-. Anucleate red blood
cells, megakaryocytes, endothelial, and stromal cells were not labeled. If a
cell was only partially within the tile but its center was not within the tile
boundaries, the pathologist was instructed to ignore it. A customized script
was used to export these tiles with an additional 32 pixels of padding on
each side which is retained for context (resulting in a final size of 576 x
576 pixels). Similarly, a set of encoded “label” images were exported as
8-bit images of equal size in which pixels corresponding to negative or pos-
itive cell annotationswere assigned numeric values of 1 or 2, for negative or
positive cell annotations respectively, and otherwise 0 for background.

101 tiles (each consisting of an image and labels) from the biopsy sec-
tions of 5 subjects constituted the training (80%) and validation (20%)
datasets used for model tuning and selection. Another 20 tiles from 10 ad-
ditional subjects constituted a held-out test set which was solely used for
evaluation on the final model. These test set slides were also scanned at a
separate microscopy facility in order to better assess generalizability across
scanning equipment.
2

Deep Learning-Based Analysis and Model Training

This deep learning approach utilizes a CNN in a encoder–decoder or U-
Net-like configuration.12 Briefly, this network architecture involves a series
of “encoder” layers whichmaps input images into high-dimensional feature
vectors, and a subsequent series of “decoder” layers which maps these fea-
ture vectors back into pixel-wise classifications, allowing the network to be
used for semantic segmentation (the classification of individual pixels of an
image). Here, the encoder network used is VGG-based13with batch normal-
ization layers. To avoid needing to learn basic features from scratch and to
reduce training time, transfer learning was employed by initializing the en-
coder network with pretrained weights from ImageNet. For the decoder
network, upsampling is performed using bilinear interpolation combined
with convolutional layers. Note that as this network has a fully
convolutional architecture,14 inference is only limited by the size of avail-
able VRAM, allowing for images of various sizes to be evaluated.

Input images were normalized and labels were also preprocessed
using a grayscale dilation operation to provide additional context sur-
rounding the annotated points. The training dataset was also aug-
mented by employing random transformations such as flips, rotations
(with subsequent reflect padding to avoid blank image regions), and
brightness adjustments in order to increase the size of the dataset and
improve generalizability.

Training was conducted on the training samples using stochastic gradi-
ent descent on the categorical cross-entropy loss function on individual
hyperparameter configurations for up to 200 epochs. Hyperparameters in-
cluded learning rate and class weighting (i.e., relative importance of nega-
tive cells, positive cells, and background), which were optimized using a
grid search approach.

A 2D softmax function was used to convert the model outputs into two
pseudoprobability heatmaps (one for CD138- cells and one for CD138+
cells). These heatmaps were post-processed using 3 x 3 median and Gauss-
ian filters and a final peak detection filter was used with a minimum dis-
tance constraint of 10 pixels to identify the centroids of CD138- and
CD138+ cells. A linear sum assignment algorithm was used to match
these point detections against the ground truth labels based on their prox-
imities so that each detection could be placed in the three-class
(CD138+, CD138-, and background) confusion matrix. Pairs were consid-
ered matching if they were within a distance threshold of 15px (3.75
μm), similar to other approaches.15,16

The final model that was selected was the one that attained the best
macro-averaged F1-score17 on the validation set, computed based on the
confusion matrix during training. We found that incorporating padding
around tiles during the evaluation improved the network’s performance
by giving it additional context from outside of the annotated region (e.g.,
if a nucleus was split in half at the border). Macro-averaged F1-score (a bal-
anced metric) was used because it treats the detection of positive and neg-
ative classes equally, which is important as the diagnostic criteria employs a
ratio of CD138-positive and CD138-negative cell counts.

Model training and inference was carried out on an NVIDIA Titan Xp
with 12GB of VRAM. The networkwas implemented in Python 3.7, notably
using the PyTorch18 (version 1.2.0) to implement the neural network and
for pretrained VGG weights, and scikit-image (version 0.15.0)19 for
postprocessing.

Analysis with Commercial Digital Pathology Platform

To have as a basis for comparison, a proprietary algorithm from the dig-
ital pathology software Definiens TissueStudio (version 4.4.2) was em-
ployed, which uses either area-based and cell segmentation-based
analysis in a similar general manner to previous literature reports for com-
putational plasma cell counting. In both cases, staining parameters were
configured to detect DAB membrane staining.

The “nucleus detection” and “membranes and cells” algorithms were
used to perform cell-based segmentations, which use color deconvolution
to separate hematoxylin and DAB staining to identify nuclei and
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membranes, respectively. The parameter values and thresholds for these al-
gorithms were fine-tuned by visual inspection amongst patches from spe-
cific images in the training set. The centroids of the CD138+ and CD138-
cell segmentations were then extracted as detections for counting. Compar-
ison against ground-truth labels was performed using the samematching al-
gorithm as described for the CNN.

Whole Slide Inference

Once the CNN model was trained, it could be applied to analyze WSIs.
At full resolution, WSIs are typically on the order of gigapixel images and
are too large to pass through the model, requiring specialized handling.
Here, a “shift-and-stitch” approach20 was employed, where a whole slide
Aperio SVS file was loaded in patches using the VIPS library21 by running
a sliding window (2048 x 2048 pixels) over the full image and analyzing
each patch sequentially. These patches were “padded” on each side by an
additional 32 pixels to retain context at edges, resulting in a 2112 x 2112
pixel tile. At the edges of each WSI, where padding outside of the image
was required, reflection padding was used. Optionally, a tissue mask anno-
tation image created using QuPath could be supplied, which reduced com-
putational burden by ignoring unmasked regions from being processed by
the model pipeline. Finally, for easy visualization of the results on WSIs,
the final point detections were outputted into a QuPath-compatible text
file which could be loaded into QuPath as point annotations back onto
the original WSIs.

Statistical Methods

To report performance across the entire testing dataset, F1-score (men-
tioned previously for evaluating performance on the validation set) and
intraclass correlation coefficient (ICC) were used. F1-score was derived
from the resulting confusionmatrices across all predicted detections and ac-
tual annotations from applying the model to the test dataset. ICC measures
the agreement across groups. ICC22 was calculated using the irr package in
R (version 3.6.2), specifying a two-way model and absolute agreement.
Both methods can be applied to make comparisons between two “raters”
(either a human annotator or a model-based detection).

Results

Plasma Cell Percentage Determination Using Commercially Available Software

Before expending resources to develop a CNN, we first explored quanti-
fication of CD138+ and CD138- cells using a non-deep learning commer-
cial software: Definiens Tissue Studio. We found that the “nucleus
detection” and “membranes and cells” algorithms from the software cor-
rectly labeled the majority of plasma cells and hematopoietic cells
(Fig. 1). However, there were also occasional labeling errors. Of note, in
areas with high nonspecific staining, the software incorrectly segmented
additional “plasma cells” (Fig. 1A and B; indicated by black arrows),
which illustrates a potential drawback of relying on segmentation-based
methods, notably, the occurrence of oversegmentation (a common observa-
tion for computational cell segmentation). Since our goal was to eventually
deploy a software tool to assist hematopathologists with clinical diagnos-
tics, we felt strongly that labeling errors should be minimized as much as
possible. As such, we turned to deep learning to evaluate it as a potentially
more accurate solution (Fig. 1C).
Figure 1.Overall approach. Initially, we used a commercial software (Definiens Tissue S
correctly identified, but the software also made mistakes, for example, labeling edges o
example served as a cautionary tale for relying on segmentation. (C) Hypothesizing th
patches of images of bone marrows labeled for CD138+ and CD138- cells by a patholo
tested on an independent set of validation image patches. The CNN’s labels were co
Abbreviations: CNN – convolutional neural network.
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Model Training

Since it is controversial whether low magnification visual estimates of
plasma cell percentages are appropriate gold-standards, we trained our
model using point-by-point annotations of CD138+ and CD138- cells pro-
vided by a pathologist across small image patches of bone marrow biopsies
and clot sections. Counting the number of CD138+ and CD138- cells in an
image can be formulated as a multiclass detection task where the centers of
cells are identified and then enumerated. This is contrasted with a segmen-
tation task, as distinguished by Janowczyk et al,23 which tries to identify a
contour around each cell. By doing this, cells only need to be labelled by
marking their centroids; this is particularly suitable for plasma cell detec-
tion because it can be difficult to objectively delineate cytoplasmic bound-
aries between some cells. We build on work from past approaches which
identify the presence of a single cell subtype15,23 and extend it to the detec-
tion of two different cell types: CD138- and CD138+ cells. The overall idea
is to optimizemodel performance using these small image patches and then
scale-up the point-by-point labeling to WSIs.

Evaluation of CNN Labels Against Pathologist and Commercial Software Labels
on an Independent Validation Image Patch Set

Following model training, we benchmarked the CNN’s labels against la-
bels provided by two pathologists (observers #1 and 2), as well as labels
generated by Definiens, on an independent set of small image patches.
Figures 2A–D and 3A–D show an example of a validation patch where
there was a high degree of labeling concordance across the two observers
and two computational methods. By contrast, Figs 2E–H and 3E–H show
the results from a more challenging validation patch. Here, it appears that
the high background staining caused the commercial software to count
far more plasma cells and fewer hematopoietic precursors in comparison
to the CNN and the two observers.

The results across the 10 validation patches are summarized in Fig. 4. In
general, various measures of label concordance were the lowest between
the commercial software and observer #1 (Fig. 4A), and highest for the
two human observers (Fig. 4D). Using observer #1’s labels as reference,
the CNN performed significantly better than the commercial software,
and slightly worsewhen compared to observer #2. ICCs for plasma cell per-
centages between the CNN and pathologist #1, a non-deep learning com-
mercial software and pathologist #1, and pathologists #1 and #2 were
0.975, 0.892, and 0.994, respectively. Overall, these data suggest that the
CNN achieved a level of concordance that approaches but is slightly inferior
to pathologist-based point-by-point annotations.

Whole Slide Image Analysis

Since counting cells one-at-a-time across an entire biopsy would be im-
practical for hematopathologists, a true test of the potential utility of the
CNN would be to assess its point-by-point labels using real-size bone
marrow specimens. For this, we applied the CNN to pathologist-annotated
regions of interest across 10 WSIs of bone marrow biopsies and clot sec-
tions, and compared the resulting plasma cell percentages against those
from the corresponding bone marrow pathology clinical reports.

Figure 5A–B shows that there was near-perfect concordance between
CNN predictions and pathology reports for 8 out of 10 WSIs. For the two
remaining cases, the CNN predicted a lower percentage, whereas pa-
thologist(s) reported a higher percentage on clinical reports.
Figure 5C shows a representative image from one of the two discordant
tudio) to count CD138+ and CD138- cells. A–B shows that many plasma cells were
f tissue with nonspecific staining as plasma cells (indicated by arrows). To us, this
at a deep learning approach could perform better, we trained a CNN using small
gist (observer #1; only positive labels are shown in the figure). The CNN was then
mpared against labels generated by Definiens and two observers (#1 and #2).



Figure 2. Comparison of labels from two human observers (#1 and #2), Definiens, and CNN on independent validation. This shows actual labels from A and E) Definiens v
observer#1, B and F) CNN v observer#1, C and G) CNN v observer#2, and D and H) observer #1 v #2 for two image patches. Symbols and colors are indicated in the legend.
(A–D) Patch 005_0. This proved to be a relatively “easy” patch to label. The labels from the CNN,Definiens, and two observerswere largely concordant. (E–H)Patch 001_1. By
comparison, this patch was more “challenging.” Here, the Definiens software labeled many more plasma cells than the CNN and two observers, possibly because there was
high background staining, which we previously observed (e.g., Fig. 1). All patches shown are 512 x 512 pixels corresponding to physical dimensions of 128 x 128 μm. Ab-
breviations: CNN – convolutional neural network.
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Figure 3. Integrated labels from two observers (#1 and #2), Definiens, and CNN. Symbols and colors are indicated in the legend. The raw image patches and order are the
same as for Fig. 2. All patches shown are 512 x 512 pixels corresponding to physical dimensions of 128 x 128 μm. Abbreviations: CNN – convolutional neural network.
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Figure 5. CNN labeling of plasma cells on WSIs. (A) The ICC for plasma cell percentages on WSIs from CNN and from pathology reports was 0.896. There were two outlier
caseswhere the predicted percentages from the CNNweremuch lower than those reported by pathologists (indicatedwith circles). (B) If the two caseswere removed, the ICC
improves to 0.996. For the two problematic cases, one was a core biopsy, and the other was a clot section with many small marrow particles, each with variably abundant
plasma cells. (C) CNN-labeled image of the core biopsy case shows that while plasma cells (orange labels) appear to occupy slightly more than half the cellularity by area,
these plasma cells are less frequent than other hematopoietic cells (blue) overall (scale bar on lower left is 50 μm in length). Since there does not appear to be significant
labeling errors by the CNN, it is likely that the CNN’s percentage is more accurate and the pathologist overestimated. The red manual outline delineates the border of the
region of interest within which the CNN was applied. Abbreviations: CNN – convolutional neural network; ICC – intraclass correlation coefficient; WSI – whole slide image.

F. Fu et al. Journal of Pathology Informatics 13 (2022) 100011
samples. In this image, plasma cells appear to occupy slightly more than
half of the bone marrow biopsy by area; however, by relative numbers
of blue (other cell) and orange (plasma cell) labels, it is clear that the
true plasma cell percentage is still less than 50%. Since the small
Figure 4. Summary of validation on small image patches. Confusion matrices with F-sc
plasma cell percentages (right) are provided for four comparisons: A) Definiens v obse
Results from the challenging image patch (001_1; Figs 2E–H and 3E–H) is indicated w
reference, the CNN performed significantly better than the commercial software, and a
convolutional neural network; ICC - intraclass correlation coefficient

8

number of labeling errors by the CNN cannot account for such a large
difference in percentages, the CNN’s predicted percentage (29.3%
across the entire biopsy) is more accurate than the estimate that
appeared in the clinical report (about 60%).
ores for cell-type labels (left), scatterplots for cell-type labels (mid), and scatterplots
rver #1, B) CNN v observer #1, C) CNN v observer #2, and D) Observer #1 v #2.
ith circles. ICCs are indicated at the top of each scatterplot. Using observer #1 as
pproached the level of labeling accuracy for pathologist #2. Abbreviations: CNN –
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A similar conclusion was drawn when the second discordant case was
reviewed. This WSI was from a clot section with numerous small bone mar-
row particles, each with variable percentages of plasma cells. This type of
sample is very difficult for pathologists to estimate. Again, the relative
rarity of labeling errors on review suggests that the CNN’s prediction
was more accurate (38.2%), and that the pathologist overestimated on im-
munohistochemistry (60–70%). TheCNN’s predictionwas also closer to the
plasma cell percentage on the aspirate differential for this case (45%).

While the difference in plasma cell percentageswould not have changed
the overall diagnoses for the two cases (de novo and persistent plasma cell
myeloma, respectively), the overall excellent performance for the CNN il-
lustrates its potential as computational second-opinion tool for WSIs.
Deployable Web-Based Server for Microscope Camera Snapshots

The results presented above suggest that one potential workflow would
be to apply the CNN to digitally scanned WSIs of problematic CD138-
stained bone marrow biopsies and clot sections. However, the scanning and
analysis of WSIs adds to clinical turnaround time, which could discourage
the use of this potentially helpful tool. Further, transfer of WSIs from one in-
stitution to another for analysis would involve very large files, which may be
impractical to work with at high case volumes. In view of this, we developed
a simple web application to facilitate more practical clinical workflows,
where pathologists can capture snapshots of CD138-stained images of bone
marrow samples (at 400× magnification), taken directly from microscope-
mounted cameras during routine sign-out, and upload those snapshots to a
server (Fig. 6), to receive near-real-time plasma cell percentages for the snap-
shot image. The server backendwas implemented using Python 3.7 and Flask
to retrieve the uploaded image and run it through the analysis pipeline. The
output was served using a lightweightweb interface primarily using themap-
ping library OpenLayers to display the images and detected points. In our
trial, the web application was hosted on the same workstation as was used
to train the model and accessible within the institution's internal network.
The advantage of this approach is that it does not require users to have any
hardware or software installations beyond an Internet browser,making it eas-
ily accessible. The application returns absolute counts of positive and nega-
tive cells, plasma cell percentages, as well as a screenshot labeling each
class of cells. The detection algorithm generated results within a few seconds
of image upload, supporting its integration in routine clinical workflows.
Figure 6.Web application user interface. The Flask application applies the CNN to an up
of positive and negative cells, and percentages are on the left. Labeled image with scale

9

Conclusions

Membranous and cytoplasmic stains can be difficult to evaluate by ap-
proaches that focus on segmenting cells and nuclei. It is possible for soft-
ware to oversegment areas with intense nonspecific staining into
additional “cells” that do not actually exist (e.g., Figs 1, 2E–H, and 3E–H)
and/or miss nuclei that are comparatively weakly stained for hematoxylin
(for which the existing hematoxylin signal is buried under the stronger
DAB signal). By contrast, our CNN avoids segmentation, and is trained in-
stead to directly predict where pathologists would place labels for cells on
bone marrow images, by relying on the combination of pixel color intensi-
ties and local texture features. This difference is likely the main reason why
our CNN outperformed classical segmentationmethods employed byDefin-
iens, achieved a level of labeling concordance that approached that for a
second pathologist for small image patches, and continued to perform
well when scaled-up to WSIs.

Our approach is therefore distinct from previous studies, which generally
used less accurate area- or segmentation-based methods to identify/quantify
plasma cells, and relied on low magnification visual estimates from patholo-
gists as gold-standard references.3–8 One exception is a recent publication
fromBaranova et al.10 that also started with small image patches, before scal-
ing up to WSIs. The major technical difference between our study and
Baranova et al.10 is that they relied on about 40 features from QuPath's cell
segmentation algorithm to train a downstream neural network, whereas
ours is a single-stage CNN trained on raw image pixels and pathologist labels.
We speculate that our CNN's independence from prior segmentation explains
why our reported measures of concordance appear to be higher than that re-
ported by Baranova et al., although a fair comparison would involve a head-
to-head evaluation using validation images from both studies.

As such, limitations of our study include the inclusion of only a small
number of samples from a single institution, which do not necessarily per-
mit generalizations regarding performance on image sets from outside
sources and overall clinical utility. For our Flask web server, it is also un-
clear howmany high magnification fields/images are required to faithfully
represent the entire bone marrow biopsy/clot section, given the non-
random distribution of plasma cells. While our current implementation
for WSIs involves limiting the analysis to pathologist-identified regions-
of-interest, future implementations would require automated identification
of suitable areas of marrow for scoring, while avoiding bone and tissue ar-
tifacts (e.g., folded marrow sections).
loaded image taken from amicroscope camera. An unprocessed thumbnail, numbers
bar is shown on the right.
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Overall, the performance of our CNN supports its eventual application
as a digital second-opinion tool for evaluating CD138-stainedmarrow sam-
ples in hematopathology—because CNN labels are highly concordant with
pathologist labels at a cell-by-cell level. We note that a single-stage CNN to
predict pathologist labels independent of prior segmentation could also be
applied to other stains. As examples, CD34+blasts and HER2+breast can-
cer cells are arguablymore challenging to score than CD138+plasma cells,
because these may show incomplete staining of tumor cells at variable in-
tensities. The manners by which these stains are evaluated via human
eyes are also not easily converted to fixed pre-defined parameters. As
such, in comparison to segmentation-based approaches, we hypothesize
that single stage CNNs trained on raw pixel data and pathologist labels
may prove to be the superior solution for many cytoplasmic and membra-
nous stains.

Data Availability

The trained model and analysis server code are available online at
[https://github.com/STTARR/plasma-cell-detection] with examples of
usage included. Training data and model training code are currently only
available upon request.
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