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Abstract

Based on a Bayesian decision theoretic approach, we optimize frequentist single- and adaptive two-stage trial designs for

the development of targeted therapies, where in addition to an overall population, a pre-defined subgroup is investigated.

In such settings, the losses and gains of decisions can be quantified by utility functions that account for the preferences of

different stakeholders. In particular, we optimize expected utilities from the perspectives both of a commercial sponsor,

maximizing the net present value, and also of the society, maximizing cost-adjusted expected health benefits of a new

treatment for a specific population. We consider single-stage and adaptive two-stage designs with partial enrichment,

where the proportion of patients recruited from the subgroup is a design parameter. For the adaptive designs, we use a

dynamic programming approach to derive optimal adaptation rules. The proposed designs are compared to trials which

are non-enriched (i.e. the proportion of patients in the subgroup corresponds to the prevalence in the underlying

population). We show that partial enrichment designs can substantially improve the expected utilities. Furthermore,

adaptive partial enrichment designs are more robust than single-stage designs and retain high expected utilities even if the

expected utilities are evaluated under a different prior than the one used in the optimization. In addition, we find that

trials optimized for the sponsor utility function have smaller sample sizes compared to trials optimized under the societal

view and may include the overall population (with patients from the complement of the subgroup) even if there is

substantial evidence that the therapy is only effective in the subgroup.
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1 Introduction

A major challenge in the development of targeted therapies is the identification and confirmation of subgroups of
patients where a treatment is effective. To address this issue, a range of clinical trial designs and statistical
methodology have been proposed.1–4 An important field of application is oncology, where the better
understanding of the molecular basis of the disease leads the development of therapies that directly act on
specific molecular mechanisms and therefore may be effective in special subgroups of patients only. In this
work, we consider a setting, where there is a priori biological plausibility that the treatment effect is larger or
only present in a subgroup defined by a binary biomarker. However, there is still uncertainty if the treatment is
effective at all and if so, if the treatment effect is larger or only present in a subpopulation of biomarker positive
patients. To address this uncertainty, clinical trials testing for a treatment effect in the full population and a
subgroup can be performed.

While in standard parallel group clinical trials the statistical power to demonstrate a treatment effect in a
dedicated primary endpoint is typically the basis for the planning of clinical trials, the consideration of power
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alone does not sufficiently represent the losses and gains of correct and incorrect test decisions when several
subgroups are tested. Subgroup analyses are challenging because several types of risks are associated with
inference on subgroups. On the one hand, by disregarding a relevant subpopulation a treatment option may be
missed due to a dilution of the treatment effect in the full population. In addition, even if the diluted treatment
effect can be demonstrated in an overall population, it is not ethical to treat patients that do not benefit from the
treatment when they can be identified in advance.5,6 On the other hand, selecting a spurious subpopulation
increases the risk to restrict an efficacious treatment to too narrow a fraction of a potential benefiting
population. In order to account for these risks, we apply a decision theoretic framework and define utility
functions that quantify the expected benefits as well as the costs of a particular clinical trial.

Decision theoretic approaches are based on utility functions that map actions to a numeric scale representing
the values of these actions. Optimal actions are then defined as the actions that maximize these utility functions.
In the application to clinical trials the set of actions are families of trial designs, specified by sample sizes,
allocation ratios, stopping and adaptation rules (for adaptive designs), as well as inference procedures. The
utilities represent the value of trial outcomes (as e.g. the rejection of a null hypothesis or the size of observed
treatment effects), adjusted for the cost of the trial and may also depend on the true treatment effects (see Hee
et al.7 for a recent review on the application of decision theoretic approaches to guide clinical trial design). When
applying the approach to optimize enrichment designs, the utilities also account for the size of the population for
which an efficacy claim is made.8–12 Because the outcome of the trial as well as the true treatment effects are
unknown at the time of planning, the optimization relies on expected utilities. Here, the expectation is taken over a
prior distribution on the effect sizes as well as the distribution of trial outcomes given the effect sizes. The optimal
design based on the decision theoretic approach is then defined as the design with the largest expected utility.

We derive optimized clinical trial designs in the setting of a parallel group trial comparing the means of a
normally distributed outcome and consider utility functions from the perspective of different stakeholders: a
sponsor’s as well as a societal view. We assume that the utility of the sponsor is the net present value (NPV),
while for the societal perspective it is the expected health benefit (adjusted for the cost of the trial).

We especially focus on single-stage and adaptive partial enrichment designs. Partial enrichment designs are
designs, where the prevalence of the subgroup in the trial is a design parameter and may differ from the prevalence
in the underlying population.8,13 Therefore, we can choose to make the subpopulation over- or underrepresented.
Adaptive designs,14–17 on the other hand, are two-stage designs, where in a first stage patients are recruited from
the full population. Then, in an interim analysis, based on interim data, the trial design of the second stage may be
modified. For example recruitment may be limited to patients in a subgroup of biomarker positive patients and/or
the sample size may be adapted. In the proposed adaptive partial enrichment designs, in addition the prevalence of
the subgroup in the second stage sample can be chosen adaptively, based on the first stage data. The adaptations
may be based on all information observed at the interim analysis, including information on secondary and
surrogate endpoints and safety information.

Using numerical optimization and a dynamic programming approach, we determine optimal single and two-
stage designs optimizing the total sample size of the trial, the prevalence of the subgroup in the trial, and, for the
adaptive designs, the optimal adaptation rule. The adaptation rule is a function of the first stage data that
determines the population selected for the second stage as well as the second stage sample size in the overall
population and the sample size in the subgroup, which may imply different subgroup prevalences in the first and
second stage. An adaptation option is also stopping for futility, which corresponds to a second stage sample size
of zero.

In this manuscript, we extend earlier work on decision theoretic approaches to optimize single-stage designs12

and optimal adaptive enrichment designs.11 We derive optimal single- and adaptive two-stage partial enrichment
designs with optimal adaptation rules that go beyond subgroup selection and allow one to choose optimal second
stage sample sizes in the full population and the subgroup conditional on the first stage data using a backwards
induction algorithm. The use of Bayesian decision theoretic methods has also been proposed to optimize clinical
development programs and in models that account for errors in the determination of the patient’s biomarker
status.8,18,19 An alternative line of research optimizes multiple testing procedures in one and two-stage designs
based on a decision theoretic approach.9,10,12,20

The remainder of the paper is structured as follows: In Section 2, the considered single-stage and adaptive
enrichment designs are introduced. In Section 3, the utility functions are discussed and in Section 4, we derive the
optimized trial designs. We present the results of a case study in Section 5 and conclude with a discussion in
Section 6.
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2 Testing scenario and trial designs

Consider a parallel group trial comparing the means of a normally distributed endpoint in a population F that is
divided into a subgroup S of biomarker positive patients and its complement S0, the biomarker negative patients.
Let �i, i 2 fS,S

0g denote the treatment effects in the subgroups and �F ¼ l�S þ ð1� lÞ�S0 the overall treatment
effect, where k denotes the prevalence of the subgroup in the considered patient population, which is assumed to
be known. We consider a setting, where there is a biological rationale that the treatment effect might be higher
(or only present) in S compared to S0 and consider one-sided tests of the null hypotheses HF : �F � 0 and
HS : �S � 0.

Next, we define single-stage and adaptive two-stage designs to test HF and HS controlling the family-wise error
rate (FWER) at a pre-specified one-sided level �. In Sections 2.1 and 2.2, these tests are defined for given sample
sizes in the subgroups (for single stage designs) or given first stage sample sizes and second stage sample sizes
functions (for adaptive designs). In Section 4, we optimize these sample sizes and sample size functions.

2.1 Single-stage designs

We consider single-stage designs with partial and with full enrichment. Partial enrichment designs include
biomarker positive and biomarker negative patients, while full enrichment designs include biomarker positive
patients only.

2.1.1 Single-stage designs with partial enrichment

A single-stage partial enrichment design is a clinical trial with nS 4 0 biomarker positive and nS0 4 0 biomarker
negative patients per treatment arm. Thus, the trial prevalence of the biomarker positive subgroup is given by
� ¼ nS=n, where n ¼ nS þ nS0 denotes the overall sample size per treatment arm. We define Z-test statistics to
compare the outcomes in subgroup S, its complement S0 and the full population F

ZS ¼ �̂S=
ffiffiffiffiffi
vS
p

, ZS0 ¼ �̂S0=
ffiffiffiffiffiffi
vS0
p

, ZF ¼ �̂F=
ffiffiffiffiffi
vF
p

ð1Þ

where �̂i denotes the estimated mean treatment effects and
ffiffiffiffi
vi
p

their standard error which is assumed to be known.
The treatment effect estimates in the subgroups �̂i, i ¼ S,S0 are the mean differences of the outcomes in S and S0. In
the full population, the treatment effect estimate is given by �̂F ¼ l�̂S þ ð1� lÞ�̂S0 . Note that �̂F is a weighted
average of the treatment effect estimates in S and S0, where the weights are given by the population prevalence k
and not the trial prevalence c.13 Therefore, it gives an unbiased estimate of the overall treatment effect in the
underlying population. Note that ZF can be rewritten as a weighted sum of the test statistics in S and S0

ZF ¼ �
lffiffiffi
�
p ZS þ

1� lffiffiffiffiffiffiffiffiffiffiffi
1� �
p ZS0

� �
ð2Þ

with � ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=� þ ð1� lÞ2=ð1� �Þ

q
(see online supplementary material, Section S1). The standard errors are

given by vi ¼ 2�2=ni, i ¼ S,S0 and vF ¼ 2�2=ðn�2Þ, where �2 denotes the variance of the observations in the
treatment and control group. For simplicity, this variance is assumed to be homogeneous across the
subpopulations and treatment groups. For the generalization to unequal variances, the definitions of
vi, i 2 fS,S

0,Fg and the weights in equation (2) have to be adjusted accordingly.
Note that we use the re-weighted test statistics ZF because the standard Z-statistics computed from the pooled

sample in the full population may have an expectation different from zero even if �F ¼ 0. This occurs if the means
in the two subpopulations have different signs and the effects cancel out in the underlying patient population but
not in the trial population. Furthermore, by the definition of ZF, the vector of test statistics (ZS, ZF) follows a
multivariate normal distribution with means �S=

ffiffiffiffiffi
vS
p

, �F=
ffiffiffiffiffi
vF
p

, variances 1 and covariance �l=
ffiffiffi
�
p

.
To adjust for multiplicity for the test of the two hypothesesHF andHS, we apply a Bonferroni correction. While

more powerful testing procedures could be used, we chose the conservative Bonferroni test to limit the
computational complexity (especially in the adaptive setting below this allows us to utilize numerical
integration rather than to have to rely on simulations). In addition, to avoid test decisions where HF is rejected
but the rejection is driven by a strong effect in a single subpopulation only, we additionally require that a sufficient
positive Z-test statistic is observed in each subpopulation to reject HF (called consistency criterion6,12,21).
The decision function of the resulting multiple test for HF and HS, whose components take the value 1 if the
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corresponding hypotheses are rejected and zero otherwise, is then given by

 e ¼ ð e
S, 

e
FÞ ¼ 1fZS�b�=2g, 1fZF�b�=2,ZS�b�,ZS0�b�g

� �
ð3Þ

where � � �=2 is a pre-chosen consistency threshold, bq denote the 1� q quantiles of the standard normal
distribution, and 1f�g the indicator function. Thus, HF is only rejected if there is a significant treatment effect in
F at the Bonferroni adjusted level �=2 and, in addition, in both subgroups a significant treatment effect at level � is
observed. Given this decision function, a partially enriched single-stage design d ¼ ðnS, nS0 Þ is fully specified by the
sample sizes in the subgroup and its complement. We denote the family of single-stage enrichment designs by De.

2.1.2 Fully enriched single-stage designs

In the single-stage full enrichment design, patients from the full population are screened but only biomarker
positive patients are included in the trial (i.e. n¼ nS). Only hypothesis HS is tested and the decision function of
the respective test is given by

 f ¼ ð f
S, 

f
F Þ ¼ ð1fZS�b�g, 0Þ ð4Þ

where ZS is defined as in equation (1). Note that HS can be tested at full level � since only one hypothesis is under
investigation (because  f

F is set to zero). A single-stage fully enriched design d is specified by the sample size nS and
we define d¼ nS and denote the family of single-stage full enrichment designs by D f.

2.2 Adaptive two-stage designs

For an adaptive two-stage design, let n
ðkÞ
S , n

ðkÞ
S0 denote the number of patients per treatment arm recruited in the

subgroup and its complement in stage k¼ 1, 2. The corresponding total per treatment arm sample size in stage k is
denoted by nðkÞ ¼ n

ðkÞ
S þ n

ðkÞ
S0 . The trial prevalence of the biomarker positive subgroup in stage k is given by

�ðkÞ ¼ n
ðkÞ
S =n

ðkÞ. We assume that in the first stage patients from S and S0 are recruited (i.e. n
ð1Þ
S 4 0, n

ð1Þ
S0 4 0). In

the interim analysis, the trial may be either stopped for futility, continued only in S or continued in the full
population. The second stage sample sizes can be chosen based on the interim data. In accordance with equations
(1) and (2), we define the stage k test statistics Z

ðkÞ
S ,Z

ðkÞ
S0 and Z

ðkÞ
F , where all variables in equations (1) and (2) are

replaced by the corresponding stage k quantities denoted by the superscript ðkÞ. Note that the second stage statistics
are not cumulative test statistics but computed from the second stage data only. We define an adaptive two-stage
test that combines the test statistics of the first and second stage with the inverse normal combination function,
with equal weights for the two-stages. The combined test statistics are then given by
Z
ðcÞ
i ¼

ffiffiffiffiffiffiffiffi
wð1Þ
p

Z
ð1Þ
i þ

ffiffiffiffiffiffiffiffi
wð2Þ
p

Z
ð2Þ
i , i ¼ S,S0, F , where wð j Þ, j ¼ 1, 2 are pre-defined, non-negative weights such that

wð1Þ þ wð2Þ ¼ 1. Note that Z
ðcÞ
i follows a standard normal distribution under the respective null hypothesis, even

if the second stage sample size is chosen in a data dependent way, see literature.22–24 This comes at the cost, that
the stage-wise test statistics are combined with weights wð j Þ, j ¼ 1, 2 that need to be pre-defined and are not
adjusted to the actual stage-wise sample sizes. To adjust for multiple testing, we apply the Bonferroni
correction and define the adaptive multiple test for HF and HS setting its decision function, denoted by
 a ¼ ð a

S, 
a
FÞ, equal to equation (3) replacing the single-stage test statistics Zi by the combination test statistics

Z
ðcÞ
i , i ¼ S,S0, F . If no patients in S0 are recruited in the second stage such that n

ð2Þ
S0 ¼ 0, we set  a

F ¼ 0 and
 a
S ¼ 1

fZðcÞ
S
�b�=2g

. If the trial is stopped for futility and the second stage sample sizes are zero, we set  a
F ¼  

a
S ¼ 0.

We assume that the second stage sample sizes n
ð2Þ
i , i ¼ S,S0 are adaptively chosen and can be written as function

of the vector of first stage test statistics Zð1Þ ¼ ðZ
ð1Þ
S ,Z

ð1Þ
S0 Þ (for notational convenience we drop the argument of the

functions n
ð2Þ
i ). Given the decision function  a, an adaptive two-stage enrichment design d is fully specified by the

first stage sample sizes n
ð1Þ
i and the second stage sample size functions n

ð2Þ
i , i ¼ S,S0 and we define

d ¼ ðn
ð1Þ
S , n

ð1Þ
S0 , n

ð2Þ
S , n

ð2Þ
S0 Þ, where the first two elements are numbers and the second two components functions

from R
2
! N. Let Da denote the family of adaptive two-stage enrichment designs.

3 Utility functions

Let D ¼ De [ Df [ Da denote the family of considered one- and two-stage trial designs. As in Ondra et al.,12 we
define two types of utility functions for the trial designs d 2 D representing either a societal perspective or a
commercial sponsor perspective. The societal utility function models the total public health benefit, whereas the
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sponsors utility function models the total revenue of the sponsor. Let � ¼ ð�S, �FÞ denote the true treatment effects
in the subgroup and the full population. Then the utility from a societal perspective is modelled as

Usoðd Þ ¼ �Cðd Þ þ

rNð�F � �FÞ if  F ¼ 1

rlNð�S � �SÞ if  S ¼ 1, F ¼ 0

0 otherwise

8><
>: ð5Þ

where N denotes the expected number of future patients, r is a reward parameter, �S,�F are lower thresholds for
the effect size that represent, for example the minimal clinically relevant effect size that outweighs the treatment
cost and/or known side effects, C(d) denotes the costs of the trial with design d defined in equation (7), and  S, F

denote the test procedure of design d. Note that the utility function also depends on the trial data through the test
decisions  S and  F that are functions of the respective Z-statistics. Given that the hypothesis test rejects the null
hypothesis of no treatment effect in a certain population, the utility increases linearly with the true treatment effect
and the population size. If the true treatment effect is smaller than the respective threshold, but the hypothesis test
rejects, the utility takes negative values.

From a sponsor perspective, we define a utility that models a setting where the price of the drug depends on the
effect size estimate from the pivotal trial as well as the size of the market and set

Uspðd Þ ¼ �Cðd Þ þ

rNð�̂F � �FÞ
þ

if  F ¼ 1

rlNð�̂S � �SÞ
þ

if  S ¼ 1, F ¼ 0

0 otherwise

8><
>: ð6Þ

where ð�Þþ denotes the positive part and, compared to the utility from a societal perspective, the effect sizes dF as well
as dS have been replaced by their respective point estimates �̂S, �̂F as defined in Section 2.1 for single-stage designs.
For adaptive designs, the point estimates of the treatment effect in S and F are computed based on the subgroup
estimates of the pooled data from the two stages. Note that the sponsor utility does not depend on the true treatment
effects. However, it depends on the trial data through the treatment effect estimates and, as above, through the test
decisions. Note that, in contrast to the societal utility function, the sponsor’s utility depends on the positive part of
ð�̂i � �iÞ, i 2 fF,Sg rather than the difference �i � �i. If the sponsor observes a treatment effect lower than the
clinically relevant threshold, we assume that payors and/or patients will not be willing to pay for the treatment
and that it will not be marketed, leading to zero gain. In this case the sponsor’s utility equals�Cðd Þ. For the societal
utility function in contrast, false decisions (where a treatment is licensed in a population where the true treatment
effect is smaller than the threshold) give a negative contribution to the utility, in addition to the trial costs.

For both utility functions, the trial costs C(d) are modelled as

Cðd Þ ¼ csetup þ cbiomarker þ 2cper-patientðn
ð1Þ þ nð2ÞÞ þ Cscreeningðd Þ ð7Þ

where for single-stage designs we set nð2Þ ¼ 0 and nð1Þ ¼ n. The costs are composed of trial setup costs csetup, the
biomarker development costs cbiomarker, screening costs to identify biomarker positive patients and costs per patient
in the trial. The screening costs are proportional to the number of patients that have to be screened to recruit n

ðkÞ
S

biomarker positive patients in stage k¼ 1, 2 and depend on the population prevalence (the lower the prevalence the
larger the number of patients that need to be screened) and the sample sizes in the trial and are given by (see online
supplementary material, Section S2).

Cscreeningðd Þ ¼ 2cscreening nð1Þmax
�ð1Þ

l
,
1� �ð1Þ

1� l

� �
þ nð2Þmax

�ð2Þ

l
,
1� �ð2Þ

1� l

� �� �
ð8Þ

4 Optimizing trial designs

The utilities defined in equations (5) and (6) depend on the trial outcomes and are therefore unknown at the
planning stage of the trial. The societal utility is even unknown after the trial is performed because it depends on
the unknown true treatment effects. However, given a prior distribution on the effect sizes in the two subgroups,
we can compute expected utilities and determine optimal trial designs that maximize these expected utilities.
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4.1 Expected utilities

The expected utility for a trial design d 2 D is given by

V	0, xðd Þ :¼ E	0 ½E�½Uxðd Þ�� ð9Þ

where x ¼ so for the societal and x ¼ sp for the sponsor utility function, and the expectation is taken both over
a prior distribution 	0ð�Þ on the effect sizes � ¼ ð�S, �S0 Þ and the sampling distribution of the data given the effect
sizes d.

The expected utility for partially enriched single-stage designs is given by

V	0, xðd Þ ¼

Z Z
Uxðd Þf�,dðzÞdz	0ð�Þd� ð10Þ

where f�,d denotes the joint density of the Z-statistics ZS,ZS0 given the effect sizes � ¼ ð�S, �S0 Þ and design
d ¼ ðnS, nS0 Þ. Since ZS,ZS0 are independent, f�,d is the product of two univariate normal densities with means
�S=

ffiffiffiffiffi
vS
p

, �S0=
ffiffiffiffiffiffi
vS0
p

, and variance 1. For the full enrichment design, the computation of the expected utility reduces to
an integral over the marginal prior on dS and the marginal sampling distribution of ZS given dS (see online
supplementary material, Section S5).

The expected utility of an adaptive enrichment design d 2 Da is given by an integral over the joint sampling

distribution of the stage-wise test statistics ZðkÞ ¼ ðZ
ðkÞ
S ,Z

ðkÞ
S0 Þ of the two-stages k¼ 1, 2 as well as the prior

distribution on d. Let f ð1Þ
�,dð1Þ

denote the joint density of the first stage test statistics and f
ð2Þ

�,dð2Þðzð1ÞÞ
the conditional

joint density of the second stage test statistics conditional on Zð1Þ ¼ zð1Þ, where dð1Þ ¼ ðn
ð1Þ
S , n

ð1Þ
S0 Þ denotes the sample

sizes in the first stage and d ð2Þðzð1ÞÞ ¼ ðn
ð2Þ
S , n

ð2Þ
S0 Þ the sample sizes in the second stage. Note that n

ð2Þ
i , i ¼ S,S0 are

functions of the vector of first stage test statistics Zð1Þ. The joint sampling distribution of the stage-wise test

statistics of the two stages is then given by the product f
ð1Þ

�,dð1Þ
f
ð2Þ

�,dð2Þðzð1ÞÞ
, where each factor is the product of two

univariate normal densities with means �S=
ffiffiffiffiffiffiffi
v
ðkÞ
S

q
, �S0=

ffiffiffiffiffiffiffi
v
ðkÞ
S0

q
and variance 1, where

ffiffiffiffiffiffiffi
v
ðkÞ
i

q
, i ¼ S,S0 and k¼ 1, 2 denote

the standard errors of the stage-wise treatment effect estimates. Note that v
ð2Þ
i depend on the second stage sample

sizes and therefore are functions of the interim test statistics Zð1Þ. Then, the expected utility for an adaptive

enrichment design d ¼ ðd ð1Þ, d ð2Þðzð1ÞÞÞ is given by

V	0, xðd Þ ¼

Z Z Z
Uxðd Þ f

ð2Þ

�,dð2Þðzð1ÞÞ
ðzð2ÞÞdzð2Þ f

ð1Þ

�,dð1Þ
ðzð1ÞÞdzð1Þ	0ð�Þd� ð11Þ

where the inner two integrals integrate over the sampling distribution of the stages and the outer integral over the
prior. For first stage outcomes Zð1Þ where the adapted second stage sample size in both subgroups is zero (stopping
for futility) v

ð2Þ
S and v

ð2Þ
S0 are not defined. However, for these outcomes  a

F ¼  
a
S ¼ 0 and the utility no longer

depends on the second stage test statistics such that we can arbitrarily set v
ð2Þ
S ¼ v

ð2Þ
S0 ¼ 1 in the integral above.

Similarly, if only the second stage sample size in S0 is zero then  a
F ¼ 0 and we can set v

ð2Þ
S0 ¼ 1.

4.2 Determining the optimal design

We consider the optimization problem maxdV	0, xðd Þ for single-stage designs (d 2 De [ Df) and for adaptive
designs (d 2 Da). For single-stage partial enrichment designs, the design d is fully specified by the sample sizes
nS and nS0 . Thus, to find the optimal design we numerically maximize equation (10) in the sample sizes nS, nS0 .
Similarly, for the full enrichment designs we optimize the corresponding expected utility function in nS. The
optimal single-stage design is then given by the optimal partial enrichment or the optimal full enrichment
design, whichever gives the higher expected utility.

To determine optimal adaptive enrichment designs d as defined in Section 2.2, we use a dynamic programming
approach. We first rewrite the objective function (10) to (see online supplementary material, Section S3)

V	0,xðd Þ ¼

Z Z
W	1, xðd

ð1Þ, dð2Þðzð1ÞÞ, zð1ÞÞ f
ð1Þ

�,dð1Þ
ðzð1ÞÞ	0ð�Þdz

ð1Þd� ð12Þ

Ondra et al. 2101



where

W	1, xðd
ð1Þ, dð2Þðzð1ÞÞ, zð1ÞÞ ¼

Z Z
Uxðd Þ f

ð2Þ

�,dð2Þðzð1ÞÞ
ðzð2ÞÞ	1ð�jz

ð1ÞÞdzð2Þd�

and 	1ð�jz
ð1ÞÞ denotes the posterior distribution of the effect sizes given the first stage data. W	1, x is the conditional

expected utility, given the first stage test statistics Zð1Þ if design d is used. For a specific zð1Þ it depends only on the
value of dð2Þ evaluated at zð1Þ but not the entire function dð2Þ.

Given first stage sample sizes dð1Þ ¼ ðn
ð1Þ
S , n

ð1Þ
S0 Þ and first stage test statistics Zð1Þ ¼ zð1Þ the optimal second stage

sample sizes d�ð2Þðzð1ÞÞ ¼ ðn
�ð2Þ
S , n

�ð2Þ
S0 Þ, which maximize the conditional expected utility, are given by

d�ð2Þðzð1ÞÞ :¼ argmaxðmS,mS0 Þ2N
2W	1, x dð1Þ, ðmS,mS0 Þ, z

ð1Þ
� �

ð13Þ

The optimal first stage sample sizes are then given by

d�ð1Þ :¼ argmaxðmS,mS0 Þ2N
2V	0, x ðmS,mS0 Þ, d

�ð2Þðzð1ÞÞ
� �

, ð14Þ

where the functions d�ð2Þðzð1ÞÞ are defined in equation (13). The optimal adaptive enrichment design is then given by
d� ¼ d�ð1Þ, d�ð2Þðzð1ÞÞ

� �
, where the second component is a function of the first stage test statistics. By the dynamic

programming principle, the solutions (13) and (14) maximize equation (12) and thus also equation (11). Note that
optimization can be performed under constraints on minimal and maximal sample sizes, by maximizing the
utilities over respective restricted sets of sample sizes.

If the optimal single-stage or adaptive trial leads to a non-positive utility, the optimal option is to perform no
trial and to retain both null hypotheses. This leads to an expected utility of zero.

5 Examples

We derive optimized trial designs for a range of scenarios to investigate the dependence of the optimum designs on
the prior, the type of utility function (societal or sponsor) and the cost of the biomarker development and
determination. We compare optimized adaptive enrichment designs with single-stage designs for both the weak
and the strong biomarker prior for a grid of population subgroup prevalences from 10% to 90% in steps of 10%.

To explore the gain in expected utility by allowing the subgroup prevalence in the trial to differ from the
population subgroup prevalence k, we in addition consider optimized single-stage designs, where the prevalence of
the subgroup in the trial is equal to the population prevalence such that � ¼ l. For the latter, we optimize the
expected utilities in the overall per arm sample size n. We refer to these designs as fixed trial prevalence designs.

As priors 	0 on the effect size d we considered two scenarios, a weak and a strong biomarker prior (see Table 1).
Both, the weak and the strong biomarker prior are discrete joint prior distributions on the effect sizes ð�S, �S0 Þ, with
weights on the points fð0, 0Þ, ð0:3, 0Þ, ð0:3, 0:15Þ, ð0:3, 0:3Þg. The weak biomarker prior reflects a situation where the
predictive property of the biomarker is questionable, whereas the strong biomarker prior reflects a situation where
there is a strong belief that the treatment is only effective in the subgroup S. Note that the prior distributions of the
effect sizes in the subgroups are not independent. The Pearson correlation between the effect sizes is 0.54 for the
weak biomarker prior and 0.23 for the strong biomarker prior. The variance of the outcomes was set to �2 ¼ 1 in
both groups.

In the examples below, the clinically relevant thresholds were set to �S ¼ �F ¼ 0:1, assuming that the minimal
clinical relevant effect is a third of the maximal effect sizes considered in the prior and the consistency parameter is
� ¼ 0:3 such that a weak positive trend needs to be observed in both subgroups to reject HF without substantially

Table 1. Weak and strong biomarker prior. Each column specifies an effect size vector and its prior

probabilities under the weak and the strong biomarker prior.

dS 0 0.3 0.3 0.3

�S0 0 0 0.15 0.3

Weak biomarker prior 0.2 0.2 0.3 0.3

Strong biomarker prior 0.2 0.6 0.1 0.1
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compromising the power for the test of HF (see Section S6 in the online supplementary material for results for
other parameter values). The weights in the combination test were set to wð1Þ ¼ wð2Þ ¼ 1=2 and the significance level
to � ¼ 0:025. The adaptive enrichment designs were optimized over stage-wise sample sizes with a minimum of 25
subjects per arm, stage and subgroup. Specifically, the first stage sample sizes were chosen from a grid, starting at
25 and increasing in steps of 30% up to 265 (note that, however, the maximum sample size 265 was never identified
as optimal in the investigated scenarios). The second stage sample sizes for each interim outcome were optimized
with the L-BFGS-B algorithm of the optim function of R,25 setting the second stage maximum sample size to 500
(for simplicity we treated the optimization problem as continuous in the sample sizes). The minimal and maximal
sample sizes for single-stage designs were set to the sum of the stage-wise minimal and maximal sample sizes of the
adaptive enrichment designs. We considered two scenarios for the cost and reward parameters that differ in
the biomarker development costs and the biomarker determination costs (i.e. the screening costs). For both
cases the reward parameter is set to rN ¼ 109, the per patient cost to cper-patient ¼ 50000 and the fixed costs of
the trial to csetup ¼ 106.

Case 1. Biomarker with costs.

The costs for biomarker determination are cscreening ¼ 5000 and for the biomarker development cbiomarker ¼ 107.

Case 2. Biomarker with negligible costs.

The biomarker costs cscreening and cbiomarker are set to zero.

5.1 Optimized utilities

For Case 1, optimized utilities of adaptive enrichment designs, single-stage enrichment designs and single-stage
fixed trial prevalence designs are shown in Figure 1 (Case 2 is shown in the online supplementary material, Section
S4). Since the single-stage designs with fixed prevalence (dotted lines) are a subclass of the single-stage designs De

the utility of optimized single-stage designs with a fixed prevalence is always lower or equal than the optimized
utility for single-stage designs. The difference is largest when the prevalence is either very low or very large: then
optimized single-stage trials with � ¼ l need to recruit a large number of patients to reach the required minimal
sample size nmin ¼ 50 in S and S0.

5.1.1 Weak biomarker prior

For the sponsor view, the expected utilities of the optimized single-stage partial enrichment designs are at least
10% larger compared to the fixed trial prevalence designs if the population prevalence k is in the range of 0.1–0.5

0.2 0.4 0.6 0.8

0
20

40
60

80
10

0
12

0

Weak biomarker prior

λ

E
xp

. U
til

ity
 in

 M
io

. E
ur

o

Sponsor view
Societal view
Adaptive
Single Stage
Single Stage with FP

0.2 0.4 0.6 0.8

0
20

40
60

80
10

0
12

0

Strong biomarker prior

λ

E
xp

. U
til

ity
 in

 M
io

. E
ur

o

Figure 1. Case 1. Optimized utilities as function of the population prevalence for adaptive enrichment trials (solid lines), single-stage

designs (dashed lines) and single-stage designs restricted to a fixed prevalence (FP) 
 ¼ � (dotted lines). Red lines show the sponsor

utility and blue lines the societal utility.
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and for l ¼ 0:9. For the societal view, such an increase is observed for prevalences of 0.1,0.2, and 0.9. Note that for
the societal view and a prevalence of 0.1 among the fixed trial prevalence designs ‘no trial’ is the optimal design
(leading to a utility of 0) while the optimal partial enrichment design has a positive expected utility. The optimized
adaptive enrichment designs lead to a further improvement in expected utility compared to single-stage partial
enrichment designs for both the sponsor and the societal utility functions. The improvement exceeds 10% for all
considered prevalences under the sponsor view and for prevalences up to 0.5 for the societal view.

5.1.2 Strong biomarker prior

For the sponsor view, increases of more than 10% in the expected utility are observed for prevalences from 0.2 to
0.6 and a prevalence of 0.9 (with increases from 14% to 651% in expected utility) if an optimized single-stage
partial enrichment design is used instead of a fixed trial prevalence design. For the societal view, such
improvements occur for prevalences of 0.3 and above. For the latter the optimal design is the full enrichment
design in these setting and the expected utilities increase by 13% to 572% and, for a prevalence of 30%, where the
optimal fixed prevalence trial is to perform no trial, the relative increase becomes infinite.

The benefit of optimized adaptive enrichment designs compared to single-stage partial enrichment designs is
substantial for the sponsor view, with improvements above 10% for all considered prevalences. For a prevalence
of 0.1, only the adaptive enrichment designs lead to a positive expected utility. For the societal view, an
improvement in expected utility of more than 10% is observed for a prevalence of 0.3 only, where it reaches 37%.

5.2 Optimized designs

Figures 2 and 3 (see online supplementary material, Section S4 for Case 2) show the (expected) sample sizes of the
optimized designs.

5.2.1 Weak biomarker prior

For very small and very large prevalences, the total sample sizes of fixed trial prevalence designs are very large
because of the lower bound on the sample size in each subgroup. An exception is the optimal design for the societal
utility function and very low prevalence, where all such trials have negative expected utility (and are outperformed
by the option to perform no trial which leads to an expected utility of zero). For the single-stage partial enrichment
designs, the optimal number of patients recruited from S (S0) is monotonically increasing (decreasing) in k for both
the societal and the sponsor view, however, for the latter with the exception of the case where l ¼ 0:9. These
monotone relationships are due to the increased reward that can be gained by rejecting HS (and the decreased
additional gain by rejecting HF) as the prevalence increases. Furthermore, the optimal samples sizes under the
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sponsor view are lower than under the societal view. For the weak biomarker prior and intermediate or large
prevalences, the sponsor optimal sample size for S0 is given by the lower sample size bound of 50. For very large
prevalences, a fully enriched trial is optimal for both the societal and the sponsor perspective.

For the adaptive enrichment designs, Figure 3 shows the optimized first stage sample sizes and the conditional
expected second stage sample sizes, conditional on the event that the respective population is continued to the
second stage. The last column of Figure 3 shows the probability to recruit in the second stage only biomarker
positive patients and the probability to continue in the full population. The first stage and conditional expected
second stage sample sizes in S are essentially monotonically increasing in the prevalence (the minor deviation from
monotonicity observed might be due to the discrete grid used in the optimization of the first stage sample sizes) for
both the sponsor and the societal view. However, for the sponsor view lower first stage sample sizes are used.

5.2.2 Strong biomarker prior

If the prevalence is very small, all considered single-stage trial designs lead to negative expected utilities, for both
the sponsor and the societal utility function, and the expected utilities are maximized if no trial is performed. For
the societal utility function, the fixed trial prevalence designs lead to negative utilities also for somewhat larger
prevalences. When the societal utility function is optimized, then, with the exception of very low prevalences,
among the general enrichment designs the fully enriched design is optimal. In contrast, for the sponsor a more
aggressive strategy is optimal also under the strong biomarker prior, and the optimal sample size in S0 is given by
the lower bound 50. Only for very large prevalences, the fully enriched design is also optimal for the sponsor. This
is due to the fact that a positive trend needs to be observed in S and S0 to reject HF (due to the consistency
threshold �), which becomes more challenging as 1� l increases. But for large k rejecting HF brings little benefit
compared to rejecting HS only.

For the adaptive enrichment designs, first stage sample sizes in S are similar to those for the weak biomarker
prior, however, the sample size in S0 is lower or equal. Again we observe that optimizing the sponsor expected
utility leads to lower first stage sample size than optimizing the societal utility. For very low prevalences, the
optimal strategy for the societal perspective remains to conduct no trial, even if optimized adaptive enrichment
designs are used. However, for the sponsor view, the range of prevalences, for which performing a trial is the
optimal solution is larger. A striking difference between the sponsor and the societal perspective is observed in the
probabilities to continue to the second stage in the full population. Optimizing the societal utility function leads to
a strategy that continues more likely in the subpopulation only, while the sponsor tends to continue in the full
population. This is due to the fact that the sponsor can profit from a positive result in the full population, even if
the treatment is only effective in the subpopulation.

Figure 4 illustrates the optimal adaptation rules for Case 1 and a population subgroup prevalence l ¼ 0:5 (see
online supplementary material, Section S4 for Case 2). The optimal second stage design is full enrichment (i.e.
�ð2Þ ¼ 1) if, in the interim analysis, a large treatment effect in S but a low effect in S0 is observed and it is unlikely
that the trial will be successful to reject HF. Note that for the societal perspective, the region where a full
enrichment trial is optimal is much larger under the strong biomarker prior than under the weak biomarker
prior. For the sponsor view, this difference is much less pronounced and the region where the sponsor
continues with the full population is large also under the strong biomarker prior.

5.2.3 Operating characteristics of optimized designs under specific alternatives

To illustrate the properties of the optimized procedures under specific treatment effect constellations (rather than
averaged over a prior), we computed the operating characteristics of single-stage and adaptive designs optimized
under the sponsor and societal perspective under the null hypothesis and specific alternatives, see Table 2. Here, we
considered the parameters of Case 1 and a population prevalence of l ¼ 0:5. In all considered scenarios, the
average sample numbers in the subgroup are larger under the societal than the sponsor view. Under the weak
biomarker prior also the probability for a correct decision (i.e. to show efficacy in S only if there is no effect in the
complement and to show an effect in the full population if the trial is effective overall) is larger for the optimal
designs under the societal view compared to designs optimized under the sponsor view. In contrast, under the
strong biomarker prior, the optimal design from the societal perspective outperforms the optimal sponsor design
(with respect to the probability of a correct decision) only in cases where the treatment effect is confined to the
subgroup. Under the strong biomarker prior, the design optimized under the sponsor perspective has better
performance if there is in fact some treatment effect in the complement. We also find that the optimized
adaptive designs have a larger probability for a correct decision compared to single-stage designs, with one
notable exception: under the strong biomarker prior and the societal utility function, the optimal single-stage
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design is a fully enriched design which has probability 0 to reject HF. Therefore, it outperforms the adaptive
designs in the case where there is only a treatment effect in S.

5.3 Sensitivity analyses if several prior distributions are under consideration

To investigate the robustness of optimized single-stage and adaptive enrichment designs with respect to the choice
of the prior distribution, we consider designs optimized for a prior 	00 and evaluate its expected utilities under a
different prior 	0.

For a prior distribution p and for x 2 fso, spg let d�p,xðDÞ denote the design maximizing Vp,xðd Þ for all designs d
in a family of designs D. Later, we consider the families of single-stage and the family of adaptive designs. For
convenience we drop the index x below. Consider two different prior distributions 	0 and 	

0
0, possibly arising due

to two different expert opinions. We are interested in a measure quantifying to which extent the expected utility
drops if trial designs are optimized under a prior that differs from the prior used to calculate the expected utility.
To this end, we define for a given family of designs D the proportion

�ð	0,	
0
0,DÞ ¼

max V	0 d�
	0
0

ðDÞ

� �
, 0

� �
V	0 d�	0

ðDÞ

� � ifV	0 d�	0 ðDÞ
� �

4 0
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Figure 4. Optimized interim decisions under the weak and the strong biomarker prior for Case 1 and 
 ¼ 0:5 as function of the first

stage test statistics Z
ð1Þ
S ,Z ð1ÞS0 . Grey (red) areas correspond to regions where patients from S and S0 (only S) are recruited in the second

stage of the trial, respectively. White areas correspond to regions where a futility stop is optimal. Note that the first stage sample sizes

have been optimized as well and therefore differ between the considered scenarios.
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Thus, � is the ratio of the expected utilities under the prior 	0 if designs d
�
	0
0
and d�	0 are applied. By definition of

d�	0 it follows that V	0 ðd
�
	0
0
ðDÞÞ � V	0ðd

�
	0
ðDÞÞ and hence � � 1. Large values of � indicate that designs d�	0 and d�	0

0

perform almost equally well under prior 	0. Hence, if � is close to one, the trial design is robust with respect to the
prior specification, since the utilities obtained by using the designs d�	0 and d�	0

0
do not differ by much.

Figure 5 shows the proportions �ð	0,	
0
0,DÞ as function of the population prevalence, where 	0 is the weak, and

	00 the strong biomarker prior and vice versa. We consider D 2 fSingle-Stage, Adaptive} and investigate the
sponsor and the societal utility functions. For the societal view, adaptive enrichment designs are for many
scenarios substantially more robust with respect to the prior specification than single-stage trial designs and
they retain a larger proportion of the expected utility than single-stage designs. This holds for both scenarios,
designs optimized for the weak and evaluated under the strong biomarker prior and the other way round. For the
sponsor view, the robustness of single-stage and adaptive enrichment designs is very similar, with the exception of
l ¼ 0:1 under the weak biomarker prior and if the design is optimized under the strong biomarker. The optimal
single-stage design under the strong biomarker prior is to perform no trial while the adaptive designs include
patients from S and S0 in the first stage which is favourable under the weak biomarker prior.

6 Discussion

In this work, we apply a decision theoretic approach to optimize single-stage and adaptive partial enrichment
designs with general adaptation rules. To make the dynamic programming approach for adaptive enrichment
designs feasible, we considered simple adaptive Bonferroni tests for which the expected utilities could be computed
by numeric integration rather than having to rely on Monte Carlo simulation. We showed that single-stage partial
enrichment designs can substantially improve the expected utility compared to designs where the prevalence in the

Table 2. Operating characteristics of optimized single- and adaptive two-stage designs optimized under the weak and strong

biomarker prior for the parameters of Case 1 and a population prevalence of 
 ¼ 0:5.

Societal view Sponsor view

Treatment effect d (0, 0) (0.3, 0) (0.3, 0.15) (0.3, 0.3) (0, 0) (0.3, 0) (0.3, 0.15) (0.3, 0.3)

Weak biomarker prior

Adaptive designs

P(futility stop) 0.58 0.04 0.02 0.01 0.43 0.05 0.03 0.02

P(full enrichment) 0.12 0.28 0.08 0.01 0.1 0.16 0.06 0.02

P(partial enrichment) 0.3 0.68 0.9 0.97 0.47 0.79 0.9 0.96

Average sample number in S 164 212 199 179 162 174 174 172

Average sample number in S0 82 98 112 113 57 69 70 66

Power to reject HF 0.011 0.226 0.627 0.907 0.010 0.173 0.453 0.744

Power to reject only HS 0.010 0.626 0.268 0.051 0.010 0.574 0.342 0.129

Single stage designs

Power to reject HF 0.011 0.225 0.614 0.901 0.010 0.160 0.378 0.641

Power to reject only HS 0.010 0.575 0.245 0.043 0.011 0.552 0.374 0.184

Strong biomarker prior

Adaptive designs

P(futility stop) 0.64 0.03 0.02 0.02 0.5 0.04 0.03 0.02

P(full enrichment) 0.25 0.76 0.59 0.39 0.16 0.28 0.14 0.04

P(partial enrichment) 0.11 0.21 0.38 0.59 0.34 0.68 0.83 0.93

Average sample number in S 188 237 231 221 164 187 187 184

Average sample number in S0 30 32 37 43 37 46 49 52

Power to reject HF 0.008 0.098 0.265 0.507 0.009 0.155 0.384 0.661

Power to reject only HS 0.011 0.797 0.639 0.422 0.011 0.637 0.440 0.216

Single stage designs

Power to reject HF 0 0 0 0 0.010 0.160 0.379 0.643

Power to reject only HS 0.025 0.874 0.874 0.874 0.011 0.558 0.378 0.186

Note: The operating characteristics are given under the global null (where the Power corresponds to the type I error rate) and several alternative

hypotheses. For the adaptive designs the probabilities of the interim decisions futility stop, full enrichment, partial enrichment and the average sample

numbers (across both stages) are given. For all designs the power to reject F and the power to reject S only are reported. Note that the power to

reject any null hypothesis is given by the sum of the two.
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subgroup coincides with the population prevalence. In many settings, a further increase in expected utility can be
achieved by adaptive enrichment designs. Especially, if there is substantial uncertainty about the population that
benefits from the drug (modelled by the weak biomarker prior), the stepwise approach of the adaptive design
achieves a higher expected utility. Importantly, we also investigated the sensitivity of the optimized designs with
respect to the prior distribution and showed that optimal adaptive enrichment designs are not as dependent on
expert information as single-stage trial designs, because they can ‘learn’ from the observed interim data and allow
for interim design adaptations. Stabilization of performance due to mis-specified biomarker priors can also be
achieved by adaptive alpha allocation in a full population study, assuming biomarker positive and negative
populations are both present in adequate proportions.20

Adaptive designs are more complex to analyse and execute26 which may result in higher setup costs. While in
the numerical example the same cost parameters as for single-stage designs were used, the utility-based approach
allows one to easily account for different costs in the planning of the trial. A further limitation of our approach is
the assumption that the endpoints can be immediately observed. If the endpoint is delayed, the efficiency of
adaptive designs is reduced, because the primary outcome is available only for a part of the recruited patients
at the time of the interim analysis. This, however, can be ameliorated if information on short-term surrogate
endpoints is available. In that case, the effectiveness of adaptive trials will depend on the ability of short-term
endpoints to predict treatment effects on long-term endpoints.

The proposed decision theoretic framework was derived for multivariate normally distributed test statistics,
resulting from the comparison of means of a normally distributed outcome. However, multivariate normal test
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Figure 5. Case 1. �ð	0,	
0
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statistics arise, at least asymptotically, also for other endpoints such as, for example, binary, or time to event
outcomes and the results can be generalized to these settings. For time to event endpoints, however, special care
has to be taken in the implementation of adaptive designs to control the FWER.27–30

The considered utility functions are linear in the size of the subgroup and the observed or actual effect sizes.
This assumption can be relaxed to account for settings where a sponsor’s drug development program is optimized
across a number of competing candidate compounds. Then, the utility can be modelled as the marginal expected
gain per invested capital which can be approximated by the ratio of the expected gain and trial costs. Furthermore,
to account for regulatory incentives for the development of medicines in orphan indications, the drug’s net present
value in small groups may be modelled to be larger than predicted by the model considered here. Similarly, in the
societal view a larger weight may be put on smaller populations as a step to address the ethical issue of drug
development in small populations.

A further extension of the considered model is the choice of optimized weights in the combination function.
Also the multiple testing procedure can be improved by replacing the Bonferroni adjustment by a weighted
Bonferroni test with optimized weights or by applying (adaptive) closed tests that also take the correlation of
the test statistics into account. In addition, one can drop the assumption that the population prevalence of the
subgroup is known in advance by introducing a prior for k. Then the expected utility is computed over a prior on
the effect sizes and the population prevalence. Finally, the utility function can be extended to include also
secondary outcomes and safety endpoints to better model the overall effect of a drug. However, with increasing
complexity of the underlying model, the computational burden increases and can become a constraint in the
implementation of the optimization approach.

We investigated two utility functions, representing a sponsor and a societal view and found several
discrepancies in the resulting optimized designs. Especially, we saw that with the prospect of a large market, a
commercial sponsor may be incentivized to develop a treatment in too large a population. Note, however, that the
incentive to search for positives in the full population may be exaggerated in our approach which considers
absolute net benefit. That is, pursuing opportunities with low probability of success may at times increase the
net benefit, but the same investment in a different opportunity might have a more attractive marginal benefit/cost
ratio.8 Thus, it is unclear to which degree sponsors would choose to develop drugs in over-broad populations. In
addition, to avoid approval of a drug in too large a market, we assumed that besides the hypothesis test a
consistency condition is applied and at least a positive trend in both subpopulations must be observed to
demonstrate a positive treatment effect in the full population. The results in Ondra et al.12 show, however, that
if licensing the treatment in F in a stratified framework (allowing for testing HF and HS simultaneously) becomes
too difficult, it maybe optimal for a sponsor to conduct a clinical trial without subgroup tests, where the biomarker
information is ignored.

Overall, the results suggest that single-stage and adaptive two-stage partial enrichment designs can lead to
substantial improvements of expected utilities. The actual benefit, however, depends on the cost structure, the
prevalence of the subgroup, the expected effect sizes and the type of utility function and must be assessed
separately for each individual setting. This can be challenging if little data for the elicitation of priors and
other parameters is available. In addition, for the utility functions representing the societal view, the necessity
to project health benefits and monetary costs to the same scale can be difficult.
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