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A machine learning approach to predict metabolic pathway
dynamics from time-series multiomics data
Zak Costello1,2,3 and Hector Garcia Martin1,2,3,4

New synthetic biology capabilities hold the promise of dramatically improving our ability to engineer biological systems. However,
a fundamental hurdle in realizing this potential is our inability to accurately predict biological behavior after modifying the
corresponding genotype. Kinetic models have traditionally been used to predict pathway dynamics in bioengineered systems, but
they take significant time to develop, and rely heavily on domain expertise. Here, we show that the combination of machine
learning and abundant multiomics data (proteomics and metabolomics) can be used to effectively predict pathway dynamics in an
automated fashion. The new method outperforms a classical kinetic model, and produces qualitative and quantitative predictions
that can be used to productively guide bioengineering efforts. This method systematically leverages arbitrary amounts of new data
to improve predictions, and does not assume any particular interactions, but rather implicitly chooses the most predictive ones.
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INTRODUCTION
Biology has been transformed in the second half of the twentieth
century from a descriptive science to a design science. This
transformation has been produced by a combination of the
discovery of DNA as the repository of genetic information,1 and of
recombinant DNA as an effective way to alter this instruction set.2

The subsequent advent of genetic engineering and synthetic
biology as effective tools to engineer biological cells has produced
numerous beneficial applications ranging from the production of
renewable biofuels and other bioproducts3–6 to applications in
human health,7–9 creating the expectation of an industrialized
biology affecting almost every facet of human activity.10

However, effective design of biological systems is precluded by
our inability to predict their behavior. We can engineer changes
faster than ever, enabled by DNA synthesis productivity that
improves as fast as Moore’s law,11 and new tools like CRISPR-
enabled genetic editing, which have revolutionized our ability to
modify the DNA in vivo.12 In general, we can make the DNA
changes we intend (in model systems), but the end result on cell
behavior is usually unpredictable.13 At the same time, there is an
exponentially increasing amount of functional genomics data
available to the experimenter in order to phenotype the resulting
bioengineered organism: transcriptomics data volume has a
doubling rate of 7 months,14 and high-throughput workflows for
proteomics15 and metabolomics16 are becoming increasingly
available. Furthermore, the miniaturization of these techniques
and the progressive automation of laboratory work through
microfluidics chips promises a future where data analysis will be
the bottleneck in biological research.17 Unfortunately, the avail-
ability of all this data does not translate into better predictive
capabilities for biological systems: converting these data into
actionable insights to achieve a given goal (e.g., higher bioproduct
yields) is far from trivial or routine.

Mathematical modeling provides a systematic manner to
leverage these data to predict the behavior of engineered
systems. Hence, increasingly, computational biology is focusing
on large-scale modeling of dynamical systems predicting pheno-
type from genotype.18,19 However, computational biology is still
nascent and not able to provide the high accuracy predictions that
we are accustomed to seeing in other engineering fields.20

Arguably, the most widely used and successful modeling
technique in metabolic engineering involves analysis of internal
metabolic fluxes (i.e., reaction rates) through stoichiometric
models of metabolism. Metabolic flux values are constrained by
stochiometry, thermodynamic and evolutionary assumptions,21,22

or experimental data (e.g.,13C labeling experimental data23–25),
and used to suggest genetic interventions that bring cell
metabolism closer to the desired phenotype. While this approach
has provided significant successes,26–29 it has also shown its
limitations30 due to its simplicity. Stochiometric models are limited
for bioengineering purposes because they ignore enzyme kinetics
and cannot accurately capture dynamic metabolic responses, nor
offer a straightforward way to leverage ever more abundant
proteomics and metabolomics data for increased accuracy.
Kinetic models explicitly take into account enzyme kinetics and

are able to predict metabolite concentrations as a function of time
from protein concentrations.31 This type of prediction is useful to
metabolic engineers in order to design pathways that have the
desired titers, rates, and yields. Kinetic models rest on an explicit
functional relationship connecting the rate of change of a
metabolite and the proteins and metabolites involved in the
reaction (see Fig. 1): Michaelis–Menten kinetics32,33 is the most
common choice, but the fact is that the true mechanistic kinetic
rate law for each specific reaction is unknown for most enzymes34

(alternatives include generalized mass action,35 lin-log
kinetics,36,37 or power-law models38). However, there is a lack of
reliable data for the enzyme activity and substrate affinity
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parameters used in these models: in-vitro characterization may
not be extrapolatable to in vivo conditions, and the effect of
activators and inhibitors are typically unknown. Approaches such
as ensemble modeling39–43 tackle the parsity of known kinetic
constants by producing an ensemble of models displaying
different combinations of randomly chosen kinetic parameters
and selecting only those models that match known experimental
data, or by optimizing the selection of these parameters through
genetic algorithms.44,45 In a similar fashion, ORACLE46,47 produces
populations of models which are consistent with reaction
stochiometry, thermodynamics, and available concentration and
fluxomic data. By design, these approaches are able to match
measured final production levels and flux data, and the
predictions have been shown to improve as the model
approaches genome-scale coverage.45 However, a significant
problem remains in that essential mechanisms are only sparsely
known: allosteric regulation, for example, is known to be critical in
order to determine fluxes,48,49 and yet a comprehensive map of
this regulatory mechanism is unavailable. Post-translational
modifications of proteins are also known to markedly affect
catalytic activity,50 but are still largely unmapped. Pathway
channeling, too, significantly affects catalytic rates but the degree
to which this phenomenon occurs in metabolism has only begun
to be explored.51–53 These and other gaps in our knowledge of
mechanisms will require significant time and effort to be cleared.
Given the urgent need of predictive capabilities by the emerging
biotech industry, it may be useful to consider a different approach
while this knowledge is gathered.
Here, we propose an alternative to traditional kinetic modeling

involving a machine learning approach (Figs. 1 and 2), in which
the function that determines the rate of change for each
metabolite from protein and metabolite concentrations is directly
learned from training data (Eq. (1) and Supplementary Fig. S1),
without presuming any specific relationship. Machine learning has
shown remarkable success in well bounded problems where a
mechanistic model is impossible or difficult to develop: e.g.,
artificial vision for driverless cars,54 automated playing of the Go
game,55 automated language translation56, or private trait
prediction from digital records of human behavior57 with direct
impact on national elections.58 In biology, these methods have
recently been successfully applied to challenging problems such

as predicting DNA and RNA protein-binding sequences,59 skin
cancer diagnosis,60 single-nucleotide polymorphism (SNP) and
small indel variant calling,61 and tumor detection in breast
histopathology.62

This alternative, machine-learning based, approach provides a
faster development of predictive pathway dynamics models since
all required knowledge (regulation, host effects… etc) is inferred
from experimental data, instead of arduously gathered and
introduced by domain experts (see Supplementary Material for
an example). In this way, the method provides a general approach,
valid even if the host is poorly understood and there is little
information on the heterologous pathway, and provides a
systematic way to increase prediction accuracy as more data is
added. This method obtains better predictions than the traditional
Michaelis–Menten approach for the limonene and isopentenol
producing pathways studied here (Fig. 3) using only two times
series (strains), and is shown to significantly improve its prediction
performance as more time series are added. The new method is
accurate enough to drive bioengineering efforts: we show it is
able to predict the relative production ranking for several designs,
given enough data. This approach is a specific solution to the
more general type of problem of determining dynamics from
observed data (system identification),63–65 a problem generally
recognized as hard. We believe this approach is scalable to
genome-scale models, or generally applicable to other types of
data (e.g., transcriptomics) or dynamic systems (e.g., microbiome
dynamics).

Mathematical problem formulation
Here, we describe the problem and its solution in succinct
mathematical terms. Let us assume we are given q sets of time
series metabolite ~mi½t� 2 Rn (Supplementary Fig. S2) and protein
~pi ½t� 2 R‘ observations at times T ¼ t1; t2; ¼ ; ts½ � 2 Rs

þ. The
superscript i∈ {1, …, q} indicates the time-series index (strain),
and ~m½t�= ~m1½t�; ¼ ; ~mn½t�½ �T and ~p½t�= ½~p1½t�; ¼ ; ~p‘½t��T are
vectors of measurements at time t containing concentrations for
the n metabolites and ‘ proteins considered in the model. We
require the number of observation time points to be dense
enough to capture the dynamic behavior of the system.

Fig. 1 An alternative to traditional kinetic modeling by using machine learning. Our goal is to use time series proteomics data to predict time-
series metabolomics data (Fig. 2). The traditional approach involves using ordinary differential equations where the change in metabolites
over time is given by Michaelis–Menten kinetics (Figs. 3 and 4). The alternative approach proposed here uses time series of proteomics and
metabolomics data to feed machine learning algorithms in order to predict pathway dynamics (Eq. (1) and Supplementary Fig. S1). While the
machine learning approach necessitates more data, it can be automatically applied to any pathway or host, leverages systematically new data
sets to improve accuracy, and captures dynamic relationships which are unknown by the literature or have a different dynamic form than
Michaelis–Menten kinetics
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We also assume that the underlying continuous dynamics of the
system, which generates these time-series observations can be
described by coupled nonlinear ordinary differential equations of
the general type used for kinetic modeling:

_mðtÞ ¼ f ðmðtÞ;pðtÞÞ; (1)

where m and p are vectors that denote the metabolite and
protein concentrations, as explained above. The function f :
Rnþ‘ ! Rn encloses all the information on the system dynamics.
Deriving these dynamics from the time series data will be
formulated as a supervised learning problem where the function f
is learned through machine learning methods, which predict the
relationship between metabolomics and proteomics concentra-
tions (input features, see Supplementary Fig. S1) and the
metabolite time derivative _mðtÞ (output). In order to provide the

training data set for this problem, the metabolite time derivative
_~m is obtained from the times-series data ~mðtÞ, as shown in
Supplementary Fig. S2.
In order to parametrize the machine learning algorithm, the

following optimization problem is solved (through scikit-learn, see
materials and methods):

Problem 1
(Supervised Learning of Metabolic Dynamics) Find a function f
which satisfies:

argmin
f

Xq
i¼1

X
t2T

f ð ~mi½t�; ~pi ½t�Þ � _~m
iðtÞ

���
���2 (2)

Solving this problem is equivalent to finding the metabolic
dynamics, which best describe the time-series data provided.

Fig. 2 Cycle for learning metabolic system dynamics from time-series proteomics and metabolomics data. (1) Experimentally, time-series
proteomics and metabolomics data are acquired for several strains of interest (represented by different colors). These data are represented in
a metabolomics phase space, with an axis corresponding to each measured metabolite. (2) The time-series data traces are smoothed and
differentiated (Supplementary Fig. S2). The derivatives provide the training data to derive the relationship between metabolomics and
proteomics data and the metabolite change (Supplementary Fig. S1, Eq. (1)). (3) The state derivative pairs are fed into a supervised machine
learning algorithm. The machine learning algorithm learns and generalizes the system dynamics from the examples provided by each strain.
(4) The model can then be used to simulate virtual strains and explore the metabolic space looking for mechanistic insight or commercially
valuable designs. This process can then be repeated using the model to create new strains, which will further improve the accuracy of the
dynamic model in the next round
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Once the dynamics are learned we can then predict the behavior
of the metabolic pathway by solving an initial value problem (Eqs.
(3) and (4).

RESULTS AND DISCUSSION
We used the supervised learning method described above (Figs. 1
and 2, Eqs. (1), (2), (3) and (4)) to predict pathway dynamics (i.e.,
metabolite concentrations as a function of time) from protein
concentration data for two pathways of relevance to metabolic
engineering and synthetic biology: a limonene producing path-
way and an isopentenol producing pathway (Fig. 3). For each
pathway we used experimental times-series data obtained from
the low and high biofuel producing strains as training data sets, in
order to predict the dynamics for the medium producing strains.66

Because of the paucity of dense multiomics time-series data sets,
we used simulated data sets (Fig. 4) to study the algorithm’s
performance as more training data sets (strains) were added.

Qualitative predictions of limonene and isopentenol pathway
dynamics can be obtained with two time-series observations
Surprisingly, just two time-series (strains) were enough to train the
algorithm to produce acceptable predictions for most metabolites.
While the predictions of derivatives from proteomics and
metabolomics were quite accurate (aggregate Pearson R value
of 0.973), any small error in these predictions compounds quickly
when solving the initial value problem given by Eqs. (3) and (4).
The reason is that predictions for a given time point depend on
the accuracy of all previous time points. In spite of these hurdles,
the method produced respectable qualitative and quantitative
predictions of metabolite concentrations for a strain it has never
seen before (Figs. 5 and 6). For some metabolites (33%), the
predictions were quantitatively close to the measured profile:
Acetyl-CoA (83.4 % error, Fig. 5a) and Isopentenol (43.7 % error,
Fig. 5f) for the isopentenol producing pathway; Acetyl-CoA (128.2
% error, Fig. 6a), HMG-CoA (83.9 % error, Fig. 6b) and Limonene
(82.9 % error, Fig. 6f) for the limonene producing pathway. For
most metabolites (42%), the predictions were off by a scale factor,
but they were able to qualitatively reproduce the metabolite
behavior. For example, for Mevalonate in the isopentenol
producing pathway (Fig. 5c) and mevalonate in the limonene
producing pathway (Fig. 6c) the predictions reproduce the initial
increase of metabolite concentration followed by a saturation. For
IPP/DMAPP (Fig. 5e) or mevalonate phosphate (Fig. 5d) in the
isopentenol pathway, the prediction reproduces qualitatively the

concentration increase, followed by a peak and a decrease. The
prediction of even just this type of qualitative behavior is useful to
metabolic engineers in order to obtain an intuitive understanding
of the pathway dynamics and design better versions of it. By
simulating several scenarios the metabolic engineer can extract
qualitative knowledge (e.g., metabolite x seems toxic, or protein y
seems regulated by metabolite x) that can lead to testable
hypotheses. Finally, in a minority of cases (25%), the predictions
are wrong both quantitatively and qualitatively: e.g., HMG-CoA for
the isopentenol producing pathway (Fig. 5b), Mevalonate
phosphate (Fig. 6d) and IPP/DMAPP (Fig. 6e) for the limonene
producing pathway. Interestingly, the predictions for both final
products (limonene and isopentenol) fell in the group of
quantitatively accurate predictions. This is important because,
for the purpose of guiding metabolic engineering, it is the final
product predictions that are relevant.
The machine learning approach outperforms a handcrafted

kinetic model of the limonene pathway (Fig. 6). A realistic kinetic
model of this pathway was built and fit to the data, leaving all
kinetic constants as free parameters (Figs. 3 and 4). The kinetic
model notably fails to capture the qualitative dynamics for Acetyl-
CoA, HMG-CoA, mevalonate, and IPP/DMAPP (Fig. 6a–c, e). More
quantitatively, the machine learning model produces an average
130% error (RMSE= 8.42) vs. an average 144% (RMSE= 10.04) for
the kinetic model. Hence, even a machine learning model
informed by the time series data of just two strains is able to
outperform the handcrafted kinetic model, which required
domain expertise and significant time investment to construct.
The machine learning approach, however, is more easily general-
izable and it can be instantly reapplied for a new pathway, host or
product by feeding it the corresponding data. Once the
predictions were made for the limonene pathway, results for the
isopentenol pathway can be obtained easily just by changing the
time-series data input. In contrast, in order to make predictions for
the isopentenol pathway a new kinetic model would have to be
crafted. Kinetic models become more difficult to construct as the
size of the reaction network increases and as the knowledge of the
relevant network decreases. Additionally, all kinetic relationships
must be known or inferred, whereas unknown relationships can
be uncovered from data using a machine learning approach. The
machine learning approach only requires a sufficient amount of
data to disentangle these relationships. Determining how much
data is a “sufficient amount” is the goal of the next section.
Interestingly, the model was able to perform well even though

the training sets corresponded to pathways which differed in
more than just protein levels. This is important because the model

Fig. 3 The new method was tested on the limonene and isopentenol metabolic pathways. The limonene (blue) and isopentenol (red)
producing pathways are variants of the mevalonate pathway. Time-series proteomics and metabolomics data are used to learn the dynamics
of both the isopentenol and limonene producing strains. Additionally, a kinetic model is created and compared to the machine learning
approach for the more complex limonene production pathway (Fig. 4). This pathway model is also used to generate simulated data to further
evaluate the scaling properties of the proposed machine learning approach. See the original data set66 for enzyme and metabolite acronyms
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is designed to take protein concentrations as input (Fig. 1) in order
to predict pathway dynamics, assuming the rest of pathway
characteristics to remain the same. This use case covers a wide
range of metabolic engineering needs where e.g., promoters and
ribosome-binding sites (RBSs) are modified in order to affect the
resulting protein concentrations. However, other typically used
metabolic engineering strategies include changing a given
enzyme in order to access faster or slower catalytic rates (i.e.,
kcat). Even though this case was not explicitly contemplated, the
model was able to provide good predictions (i.e., I3 was using a
HMGR analog form Staphylococcus aureus and I2 uses a codon
optimized HMGR, see strain description). We hypothesize that kcat
changes can be renormalized into (and be equivalent to) protein
abundance changes. In order to fully address this type of
engineering practice, this method may be expanded to include
enzyme characteristics as input (besides the proteomics data): kcat
and KM constants or even full kinetic characterization curves.

Increasing the number of strains improves the accuracy of
dynamic predictions
We used simulated data to show that predictions improved
markedly as more data sets are used for training. Simulated data
sets have the advantage of providing unlimited samples to
thoroughly test scaling behavior, and allow us to explore a wider
variety of types of dynamics than experimentally accessible.
Moreover, the dense multiomics time series data sets needed as
training data are rare because they are very time consuming and
expensive to produce. Since machine learning predictions
generally improve as more data is used to train them, we
expected our method to improve with the availability of more
time series for training. We expected this improvement to be

significant since initially only two time-series (strains) were used
for training, out of the three available for each product66 (the
other one was needed for testing). Hence, we used simulated data
obtained from using the kinetic model developed for the
limonene pathway (Figs. 3 and 4), in order to study: (1) how
much predictions improve as more time-series data sets are added
and (2) how many time series are needed to guide pathway
design effectively (next section). A pool of 10,000 sets of time-
series data with different protein profiles was created that shared
the same kinetic constants. We fed the machine learning
algorithm groups of 2, 10, and 100 times series randomly sampled
from this pool in order to study how quickly the algorithm was
able to recover the original simulated dynamics. In order to gauge
the variability of the predictions (i.e., how predictions change as
different training sets are used) as a function of training group size
(2, 10, or 100), we repeated the predictions ten times for each
training group size.
The prediction error (RMSE, Eq. (6)) decreased monotonically as

a function of the number of time-series (strains) used to train the
algorithm in a nonlinear fashion (Fig. 7). Also, the standard
deviation of the predictions significantly decreased with the
number of training of data sets (Fig. 8). The standard deviation is
an indication of the variability of pathway dynamics predictions
due to stochastic effects of the optimization algorithms (e.g.,
different seeds) and lack of extrapolability from a reduced set of
initial protein concentrations. Hence, a predictive model trained
with 10 or 100 data sets produces much more robust predictions
than a model trained with two data sets. In fact, the high standard
deviations observed for models trained on only two data sets
explain the prediction variability observed in the previous section
due to stochastic effects. Interestingly, there is a limited drop in
error and standard deviation from 10 to 100 strains, with the

Fig. 4 Limonene pathway kinetic Michaelis–Menten model. This kinetic model was compiled from sources in the BRENDA database along
with guidance from Weaver et al.93 This system is composed of ten nonlinear ordinary differential equations, which describe the
concentration for each metabolite in the pathway (see Supplementary Material for details). The dynamics of this model are rich and complex
enough to pose a significant challenge to be predicted through machine learning. This model is used in this work to: (1) compare its
predictions with machine learning predictions, and (2) generate simulated data sets to check scaling dependencies with the amount of time
series used for training of machine learning algorithms. The method presented in this paper focuses on substituting these Michaelis–Menten
expressions by machine learning algorithms (see Supplementary Fig. S1). Kinetic constants were left as free parameters when fitting
experimental data in Fig. 6
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decrease from 2 to 10 being the largest (Fig. 7). This indicates that
it is more productive to do ten rounds of engineering collecting
ten time-series data set than a single round collecting 100 time
series: in this way, ten time series produce accurate enough
predictions to pinpoint the desirable part of proteomics of phase
space, new strains can be engineered around that space so that
new multiomics time series can be obtained around the desirable
phase space and optimize for prediction accuracy around that
area of phase space. Doing this ten times is more accurate than a
single prediction based on 100 time series that may not be close
to the ultimately desirable proteomics phase space. Furthermore,
it indicates that the results from the previous section would have
been much more reliable if only eight time series more had been
available for training.

Model predictions are accurate enough to guide pathway design
and produce biological insights
The machine learning predictions do not need to be 100%
quantitatively correct to accurately predict the relative ranking of
production for different strains. Being able to reliably predict
which of several possible pathway designs will produce the
highest amount of product is very valuable in guiding bioengi-
neering efforts and accelerating them in order to improve titer,

rate, and yield (TRY). These process characteristics are funda-
mental determinants of economic relevance.67

The machine learning algorithm was able to reliably predict the
relative production ranking for groups of three randomly chosen
strains (highest, lowest, and medium producer, mimicking the
available experimental data) chosen from the pool of 10,000 time-
series data sets mentioned above (Fig. 9, left panel). The success
rate depended critically on the number of data sets available for
training: starting at 22% for only two strains up to 92% for 100
training sets. For ten strains the success rate is ~ 80%, which is
reliable enough to practically guide metabolic engineer efforts to
improve TRY. For models trained using 100 time series, the
prediction errors were minimal (Fig. 9, right panel).
Biological insights can be generated by using the machine

learning (ML) model to produce data in substitution of bench
experiments. For example, similarly to principal component
analysis of proteomics (PCAP68), we can use the ML simulations
to determine which proteins to over/underexpress, and for which
base strain, in order to improve production (Fig. 10). Proteins LS,
AtoB, PMD, and Idi are the most important drivers of production in
the case of limonene: changing protein expression along the
principal component associated with them increases limonene
creation (Fig. 10, left panel). Furthermore, this approach provides

Fig. 5 The machine learning method produces acceptable predictions of metabolite time series from proteomics data for the isopentenol
producing Escherichia coli strain. The measured metabolomics and proteomics data66 for the highest and lowest producing strains (training set
data, red line) are used to train a model and learn the underlying dynamics (Fig. 2). The model is then tested by predicting the metabolite
profiles (blue line) for a strain the model has never seen (medium producing strain, test data in green). A perfect prediction (blue line) would
perfectly track the test data set (green line). Interestingly, reasonable qualitative agreement is achieved even with only two time-series (strains)
as training data. From a purely quantitative perspective, the average error is high: the total RMSE for the strain predictions is 40.34, which can
be translated to 149.2% average error. However, for a couple of metabolites (green color band) the predictions quantitatively reproduce the
measured data: Acetyl-CoA and isopentenol (the final product, and most relevant for guiding bioengineering). For some metabolites
(mevalonate, mevalonate phosphate and IPP/DMAPP, yellow band), the model qualitatively reproduces the metabolite patterns, missing the
scale factor. Only for HMG-CoA does the model fail to predict the metabolite concentration over time both quantitatively and qualitatively
(red band)
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expected behavior for all metabolites in the pathway, providing
hypotheses that can be tested experimentally (Fig. 10, right panel).

Data constraints are significant but surmountable
Since the ML approach is purely data-based, data quantity and
quality concerns are of paramount importance. Data quantity
concerns involve both the availability of enough time series as
well as time points sampled in each time series.
The training set used here66 is one of the largest data sets

characterizing a metabolically engineered pathway at regular time
intervals through proteomics and metabolomics. There are no
larger data sets that include: time series, several types of omics
data, more than seven time points, and several strains. For
example: the E. coli multiomics database69 has proteomics and
metabolomics data for several strains, but no time series; Ma
et al.70 report proteomics and metabolomics data but only one
time series with fewer time points (5 instead of 7); Yang et al.71

only provide one time series and only one time point for
proteomics; Doerfler et al.72 and Dyar et al.73 only provide time-
series metabolomics data; Patel et al.74 does not combine
metabolomics and proteomics and data download was disabled
at the time of testing; the DOE kbase75 focuses on genomics and
does not have any time-series proteomics or metabolomics
publicly available; and the Experiment Data Depot76 does not

Fig. 6 The machine learning method outperforms the handcrafted kinetic model for the limonene producing E. coli strain. The only
metabolite for which the kinetic model (black line) provides a better fit than the machine learning method (blue line) is mevalonate
phosphate, although both methods appear to track limonene (final product) production fairly well. The machine learning approach provides
acceptable quantitative fits for Acetyl-CoA, HMG-CoA, and limonene (green band), a qualitative description of metabolite behavior missing
the scale factor for mevalonate (yellow band), and fails quantitatively and qualitatively for mevalonate phosphate and IPP/DMAPP (red band).
As in Fig. 5, the experimentally measured profiles correspond to high, low and medium producers of limonene. The training sets are the low
and high producers (in red) and the model is used to predict the concentrations for the medium producing strain (in green). Kinetic constants
for the handcrafted kinetic model in Fig. 4 were left as free parameters when fitting the experimental data

Fig. 7 Prediction errors decrease markedly with increasing training
set size. As the number of available proteomics and metabolomics
times-series data sets (strains) for training increases, the prediction
error (RMSE, Eq. (6)) decreases conspicuously. Moreover, the
standard deviation of the predictions error (vertical bar) decreases
notably as well. The change from 2 to 10 strains is more pronounced
that the change from 10 to 100. This fact indicates that it is more
productive to do ten rounds of metabolic engineering collecting ten
time-series data sets, than a single round collecting 100 time series
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Fig. 8 Predictions improve with more training data sets. The machine learning algorithm was used to predict kinetic models for varying sizes
of training sets (2, 10, and 100 virtual strains in blue, red and black). Ten unique training sets were used for each size to show prediction
variability (transparency) for each training set size. All models converge towards the actual dynamics with the 100 strain models in closest
agreement. Standard deviations (shown by the transparency) also decrease markedly as the size of the training set increases

A machine learning approach to predict metabolic
Z Costello and HG Martin

8

npj Systems Biology and Applications (2018) 19 Published in partnership with the Systems Biology Institute



have any studies surpassing this one in terms of data points and
strains.
In order to get enough pairs of derivatives and proteomics and

metabolomics data to train ML algorithms (Supplementary Fig.
S1), we have used data augmentation (filtering and interpolation,
Fig. 2 and Supplementary Fig. S2), expanding the initial seven time
points to 200 by just assuming continuity in the multiomics data (a
reasonable assumption in our experience). It would be desirable to
have more time points available, so as to not to depend on these
data augmentation techniques. However, data sets including more
time points are nonexistent for physical, biological, and econom-
ical reasons. Every time a sample is taken for -omics analysis, the
volume in the culture flask diminishes and, if the total sampled
volume is comparable to the total volume, it may significantly
affect the strain physiology. Since taking excessive samples may
affect measurements, and these coupled omics analysis are
expensive and require specialized personal, it is not surprising
that the maximum amount of time points we have seen is ~ 7.
Another reason more time points have not been typically
collected is that experts in multiomics data collection consider
this sampling rate to fully capture the physiology of strains based
on previous experience.77,78 The fact that we are able to produce
reasonable predictions for a third time series that the algorithm
has never seen before (test strain) validates this, and the
multiomics data continuity assumption.

Future work
The application of machine learning to synthetic biology will
hopefully open up new avenues of research as well as accelerate
the adoption of modeling in bioengineering and beyond. This
work is a first step demonstrating that a purely data-driven
approach can fruitfully predict biological dynamics. There are
plenty of possible ways to improve it.
An obvious first step involves adding other supervised learning

techniques to improve predictions. The current approach uses
tree-based pipeline optimization tool (TPOT) to combine, through
genetic algorithms, 11 different machine learning regressors and
18 different preprocessing (feature selection) algorithms. New
supervised learning techniques can be added to this approach by
adding them to the scikit-learn library.79 TPOT will automatically
test them and use them if they provide more accurate predictions
than the techniques used here. Among the most popular

algorithms for ML are deep-learning (DL) techniques based on
neural networks. However, the small size of the available data sets
for this study limited the use of machine learning techniques to
classical methods. Modern DL techniques typically require orders
of magnitude more data than was used in this study (~
1000 strains as a starting point). While this amount of data is
currently cost prohibitive, it is a worthy goal to move towards DL:
these methods have demonstrated super human performance
across a variety disciplines. These include, for example, image
labeling tasks, in which humans have evolved proficiency. In
domains where humans are less capable, such as the dynamical
system characterization considered here, super human perfor-
mance should be substantially easier to achieve. The payoff would
involve radically improving engineering outcomes by making the
predictability of complex biological systems proportional to the
quantity of input data.
An often posed question is whether mechanistic insights can be

inferred from ML approaches. While this is not trivial, there are a
couple of possibilities for this inference: (1) for any particular ML
model that produces good fits, the most relevant features (i.e.
protein x has the highest weight in determining y molecule
concentration) provides a prioritized list of putative mechan-
istically linked parts that can be further investigated. (2) the ML
model can be used as a surrogate for high-throughput experi-
ments to derive mechanistic biological insights (Fig. 10). Another
example of this last approach would involve studying toxicity by
adding cell biomass (through optical density, OD) to the
measurements and simulate for a variety of scenarios (protein
inputs) the correlation between OD and all metabolites: a negative
correlation would signal putative toxic metabolites.
It is instructive, however, to pause and reflect on the drive to

find mechanisms. Mechanisms offer a causally related set of
processes and parts that produce the observed phenomena.
Understanding these processes, parts, and causal relations
produces a knowledge that can indeed be transferred to predict
the behavior of different systems (pathways, strains, products. etc)
where the same mechanism is involved. However, biology has
been particularly inefficient in making predictions of complex
systems from known and tested mechanisms. If our final goal is to
predict new biological systems, it may be more successful to look
into ML techniques such as transfer learning.80 These techniques
tackle directly the challenge of predicting systems based on data
originated in related systems without the need to delve into

Fig. 9 Success rate predicting production ranks increases with training set size. The left panel shows the success rate in predicting the relative
production order (i.e., which strain produces most, which one produces least and which one is a medium producer) for groups of three time
series (strains) randomly chosen from a pool of 10,000 strains, as a function of training data set size (strains). For 100 data sets, the failure rate
to predict the top producer is <10%. For ten data sets the success rate is ~ 80%, which is reliable enough to guide engineering efforts. The
horizontal line provides the rate of success (1/6) if order is chosen randomly. The right panel shows that prediction of limonene production is
extremely accurate for the case of a training data set comprised of 100 time-series (strains). These data shows that the machine learning
model predictions are accurate enough to guide pathway design if enough training data is available
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mechanisms. Having said this, there is not doubt that the most
desirable outcome is a model that is both predictive and
mechanistic, but if we are to do without one of these
characteristics, the mechanistic knowledge may be the least
immediately useful for current bioengineering.
Infusing prior knowledge into the ML approach is a related

possible future research avenue. Currently, our method does not
constrain the vector fields that are learned using any biological
intuition. There are often biological facts known about these
dynamical systems that could be use to improve the performance
of our method. Specifically, genome-scale stoichiometric con-
straints could provide guarantees that the resulting system
dynamics conserve mass and conform to our prior knowledge
about the organism.
Since the procedure outlined here requires little prior biological

knowledge, it is enticing to imagine extending this method for use
with different data inputs or other types of applications. An
obvious extension is to use transcriptomics data as input. Given
the current exponential increase in sequencing capabilities,
transcriptomics data is more amenable to high-throughput
production than proteomics and metabolomics data. Our biolo-
gical intuition says that transcriptomics data should be less
informative than proteomics, but it is surely interesting to explore
whether that can be countered with more time series (and how
many). It would also be of interest to use the ML method to
predict proteomics in addition to metabolomics time series.
Another logical proposition is to expand this method to
encompass genome-scale multiomics data. We surmise that the
extra predictive capabilities of the machine learning with respect
to the Michaelis–Menten approach proceed, in part, from
indirectly accounting for host metabolism effects through proxies
(e.g., metabolites or proteins that are affected indirectly by host
metabolism). Hence, we expect more comprehensive metabolo-
mics and proteomics (as well as transcriptomics) data sets to
increase the method predictive accuracy. A more intriguing and
bold endeavor would be to apply this method to predict microbial
community dynamics using metaproteomics and metabolite
concentration data as inputs. There is nothing in this approach
that constrains it to intracellular pathway prediction and micro-
biome research, and industry has a definite need for increased
predictive power.81 Finally, the incoming availability of dense
multiomics data sets for human metabolism provides an alluring
target.82,83

CONCLUSION
We have demonstrated that it is possible to use a pure machine
learning approach to qualitatively predict pathway dynamics. This
approach, using only two time-series (strains) as training data, was
able to outperform in predictive power a classical
Michaelis–Menten kinetic model. Unlike traditional kinetic model-
ing, we do not need to assume any particular interaction (e.g.,
allosteric regulation), but we give full freedom to the system to
implicitly choose the ones that best predict the experimental data.
Furthermore, we were able to produce predictions that, although
not fully quantitatively accurate, are precise enough to drive
design decisions given enough data: production rankings can be
predicted. The ability to predict the pathway dynamics is of
significant interest to metabolic engineers and synthetic biolo-
gists, since it allows for building an intuitive understanding of the
pathway that can produce testable hypotheses (yield increase,
compound toxicity). This method is also an example of the benefit
of targeting the prediction of derivatives using machine learning
in order to predict dynamic processes.
We have also shown that the machine learning approach

improves markedly by using more time series (strains) as training
sets, and used simulated data to estimate the number of time
series required to guide engineering. Although the training set
used here66 is one of the largest data sets characterizing a
metabolically engineered pathway at regular time intervals
through proteomics and metabolomics, it is barely sufficient to
train machine learning algorithms. Another limitation of this work
involves only being able to test the method with two pathways,
which are the only ones for which dense time-series multiomic
data sets are available. These limitations justify future efforts
directed at methodic collection of large time-series data sets as
enabled by multiomic pipelines,84–87 since this method provides a
systematic method to productively leverage those data. Moreover,
coupled with recent developments providing real-time metabo-
lomics capabilities,88 this method opens the alluring possibility of
real-time prediction and control of biological pathways.
These results open the door to a data-centric approach to

predicting metabolism that can greatly benefit the biotech and
synbio industries, much necessitated of predictive power in order
to enable reliable production.13,89 This approach is agnostic as to
the pathway, host or product used, and can be systematically
applied, as we have shown. Unlike previous approaches,66 it can
systematically leverage proteomics and metabolomics data in a
fashion that increases accuracy as more data is available. Besides

Fig. 10 The ML approach can be used to produce biological insights. The left panel shows the final position in the proteomics phase space
(similarly to the PCAP68 approach) for 50 strains generated by the ML algorithm by learning from the Michaelis–Menten kinetic model (Fig. 4)
used as ground truth. Final limonene production is given by circle size and color. The PLS algorithm finds directions in the proteomics phase
space that best align with increasing limonene production (component 1). Traveling in proteomics phase space along that direction (which
involves overexpression of LS and underexpression of AtoB, PMD, and Idi, see Table S2) creates strains with higher limonene production. The
ML approach not only produces biological insights to increase production but also predicts the expected concentration as a function of time
for limonene and all other metabolites, generating hypotheses that can be experimentally tested (right panel)
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being of immediate practical utility for bioengineering, this
approach can be used as a first step in improving mechanistic
kinetic models by pinpointing the most relevant machine learning
features for accurate predictions, that can then be followed up by
further experiments in order to obtain a mechanistic under-
standing of the reasons for their predictive power.
This work shows that, given sufficient data, the dynamics of

complex coupled nonlinear systems relevant to metabolic
engineering can be systematically learned.

MATERIALS AND METHODS
Learning system dynamics from time-series data
The core of this method consists in using machine learning methods to
predict the functional relationship between the metabolite derivative and
proteomics and metabolomics data, substituting the Michaelis–Menten
relationship (Eq. (1), Supplementary Fig. S1 and Fig. 4). The first step
involves creating a training set comprising sets of proteomics and
metabolomics data and their corresponding derivatives (Supplementary
Fig. S1). This entails computing the derivatives of the metabolite
concentration time-series data. Because the time-series data is subject to
measurement noise, the derivatives must be carefully estimated. The
second step involves finding the best performing regression technique,
among the many possibilities available.79 Finally, once the best prediction
algorithm is found and cross-validated, we can use it to predict metabolite
concentrations given initial time points. The complete code to implement
these steps is provided in github (see below).

Construction of the training data set. In order to train a machine learning
model, a suitable training set must be created. We expect the trained
machine learning model to take in metabolite and protein concentrations
at a particular point in time and return the derivative of the metabolite
concentrations at the same time point (Supplementary Fig. S1). The
observations provide us with the inputs to the model, ~mi ½t� and ~pi ½t�. In
order to have examples of correct outputs for supervised learning we have
to estimate the derivatives of the metabolite time series data, _~m

iðtÞ
(Supplementary Fig. S2).
Naively computing the derivative of a noisy signal will amplify the noise

and make the result unusable. Derivatives of noisy signals, like those
obtained from experiments, require extra effort to estimate. In order to
estimate the time derivatives on time series of real data obtained from
Brunk et al.66 accurately, we apply a Savitzky–Golay90 filter to the noisy
time-series data to find a smooth estimate of the data (Supplementary Fig.
S2). This smooth function estimate can then be used to compute a more
accurate estimate of the derivative. We compute the derivative estimate of
the signal using a central difference scheme from the filtered experimental
data. Specifically, the Savitzky-Golay filter is used with a filter window of 7
and a polynomial order of 2. The derivative estimate, _~m

iðtÞ, is computed
for all time points in T and time series i. This results in a training example
associated with each time point in every time series.
This work assumes that all relevant metabolites are measured and that

the system has no unmeasured memory states. In other words, the present
set of metabolite and protein measurements completely determines the
metabolite derivatives at the next time instant. If this assumption does not
hold practically, a limited time history of proteins and metabolites can be
used to predict the derivative at the next time instant. We observe that, for
the specific pathways used in this paper, this assumption produces good
predictions.

Model selection. The model selection process used a meta-learning
package in python called TPOT.91 Once the training data set is established,
a machine learning model must be selected to learn the relationship
between input and outputs (Supplementary Fig. S1). TPOT uses genetic
algorithms to find a model with the best cross-validated performance on
the training set. Cross validation techniques are used to score an initial set
of models. The best performing models are mated to form a new
population of models to test. This process is repeated for a fixed number of
generations and the best performing model is returned to the user.92 If
desired, the search space for model selection can be specified before
execution of the TPOT regressor search. This might be done to prune
models that require long training times or to select only models that have
desirable properties for the problem under consideration. Specifically, we
used TPOT to select the best pipelines it can find from the scikit-learn

library79 combining 11 different regressors and 18 different preprocessing
algorithnms. This model selection process is done independently for each
metabolite (Supplementary Table S1). After TPOT determines the optimal
models associated with each metabolite, they are trained on the data set of
interest and are ready for use to solve Eqs. (3) and (4). Models with
the lowest tenfold cross-validated prediction root mean squared error
were selected. In this way, the best validated models were selected for use.
After automated model selection via TPOT, we manually evaluated each

model based on its accuracy in predicting metabolite derivatives given
protein and metabolite concentration at a given time point (Supplemen-
tary Fig. S1). Each data set used for model fitting was split into training and
test sets ten times using the shuffle split methodology implemented in
scikit-learn.79 After the model was fit, predictions on both the training and
test sets were computed for each metabolite model and their predictive
ability quantified through a Pearson R2 coefficient (e.g., Supplementary Fig.
S3).

Using the model. Once the models are trained, we can use them to
predict metabolite concentrations by solving the following initial value
problem using the same function f that was learned in Eqs. (1) and (2):

_m ¼ f ðm; ~pÞ (3)

mðt0Þ ¼ ~mðt0Þ (4)

This problem is solved by integrating the system forward in time
numerically. As a general purpose numerical integrator, we used a Runga
Kutta 45 implementation.

Data set curation and synthesis
Two different data sets were used in this work. The first is an experimental
data set curated from a previous publication,66 comprising three
proteomic and metabolomic time-series (strains) from an isopentenol
producing E. coli and three time-series (strains) from limonene producing E.
coli. The second data set involves computationally simulated data from a
kinetic model of the limonene pathway, which is used to test how the
method performance scales with the number of time series used.

Description of a real time-series multiomics data set. Proteomics and
metabolomics data for two different heterologous pathways engineered
into E. coli were available from Brunk et al.66 There are three (high, medium,
and low production) variants for strains which produce isopentenol and
limonene, respectively. All strains were derived from E. coli DH1. The low
and high-producing strain for each pathway were used to predict the
medium production strain dynamics by solving Eqs. (3) and (4).
The isopentenol producing strains (I1, I2 and I3) were engineered to

contain all of the proteins required to produce isopentenol from acetyl-
CoA as (Fig. 3). I1 is the unoptimized strain containing the naive variants of
each protein in the pathway. I2 differs from the base strain I1 in that it
contains a codon optomized HMGR enzyme along with the positions of
PMK and MK swapped on its operon. I3 uses an HMGR homolog from
Staphylococcus aureus. Limonene producing strains (L1, L2, and L3)
produce limonene from acetyl-CoA (Fig. 3). L1 is the unoptimized strain
with the naively chosen variants for each protein in the pathway. It is a two
plasmid system where the lower and upper parts of the pathway are split
between both constructs. L2 is a DH1 variant that contains the entire
limonene pathway on a single plasmid. L3 is another two plasmid strain
where the entire pathway is present on the first plasmid, and the terpene
synthases are on a second plasmid for increased expression. Starting at
induction, each strain had measurements taken at seven time points
during fermentation over 72 h. At each time point pathway, metabolite
measurements and pathway protein measurements were collected.
Further details on these strains and experimental design can be seen in
the original publication.66

Data augmentation through filtering and interpolation. In the training set
each time series contains seven data points. These are too sparse to
formulate accurate models. To overcome this a data augmentation scheme
is employed where seven time points from the original data are expanded
into 200 for each strain. This is done by smoothing the data with a
Savitzky-Golay filter and interpolating over the filtered curve (Fig. 2 and
Supplementary Fig. S2). When predicting the dynamics of a medium
production strain from high and low producing strains, we performed
model selection by scoring each model using tenfold cross validation and
a Pearson R2 metric on two data augmented training strains.
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Development of realistic kinetic models. In order to study the scaling of
performance as more training sets were added, a realistic and dynamically
complex model of the mevalonate pathway was developed from known
interactions extracted from the literature (Figs. 3 and 4). The dynamic
model is implemented with Michaelis–Menten like kinetics and is a
10 state coupled nonlinear system. Complete details of this kinetic model
are available in the Supplementary Material. The objective was to create a
realistic model, relevant to metabolic engineering, for which learning the
system dynamics is a non-trivial task on par with the difficulty of learning
real system dynamics from experimental data.

Generation of a simulated data set. The kinetic model described above
was used to create a set of virtual data time-series (strains). The kinetic
model coefficients were chosen to be close to values reported in the
literature while maintaining a non-trivial dynamic behavior.
A virtual strain is created by first generating a pathway proteomic time

series. This is done by randomly choosing three coefficients for each
protein (kf, km, kl), which specify a leaky hill function. The hill function was
chosen because it models the dynamics of protein expression from RNA
accurately. This leaky hill function specifies the protein measurements for
each time point and is defined in the equation below:

~pðtÞ ¼ kf t
km þ t

þ kl (5)

Once all protein time series are specified, they are used in conjunction
with the kinetic coefficients to solve the initial value problem in Eqs. (3)
and (4) in order to determine the time series of metabolite concentrations.
The resulting data set is a collection of time-series measurements of
different strain proteomics and metabolomics. All strains use the same
kinetic parameters and differential equations to generate the metabo-
lomics measurements. The code used to generate this data can be found in
the github repository, as well.

Fitting the Michaelis–Menten kinetic model
To compare the handcrafted kinetic model with the data-centric machine
learning methodology, the parameters of the kinetic model were fit to
strain data. To find the best fit we used a differential evolution algorithm
implemented in scipy. This global optimizer was chosen because its
convergence is independent of the initial population choice and it tends to
need less parameter tuning than other methods. All kinetic parameters
were constrained to be between 10−12 and 109. This large range of
acceptable parameter values allowed for maximum flexibility of the kinetic
model to describe the data.

Evaluation of model performance for time series
Dynamical prediction was tested on a held back strain that the model
did not use in training. When using the experimental data sets,66 the
medium titer strains were held back for testing. When using simulated
data, a random strain from the data set was selected. For each time
series, agreement between predictions and test data was assessed by
calculating the root mean squared error (RMSE) of the predicted
trajectories:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
j¼1

Ztf

t0

mjðtÞ �mjðtÞ
� �2

dt

vuuut (6)

where mjðtÞ is the interpolation of the actual metabolite concentration of
metabolite j at time t (Supplementary Fig. S2), and mjðtÞ is the prediction
obtained from solving Eqs. (3) and (4).

Biological insight analysis
In order to showcase how biological insights can be derived (Fig. 10), we
trained the ML model using 50 proteomics and metabolomics time series,
using the Michaelis–Menten kinetic model as ground truth. Another 50
proteomics time series were held back as a test data set. Each metabolite
time series was predicted using the machine learning model and the
associated proteomic time series. The final time point proteomics and final
production were collected for each predicted strain. The final time point
proteomics data was plotted in two dimensions with a basis selected by
performing a partial least squares [PLS] regression between the proteomics
and final production data. These first basis vector from a PLS regression is

the direction that explains the most covariance between the proteomics
data and production data. The PLS regression was implemented by and
used from scikit-learn.

Code availability
Code is available at the following code repository: https://github.com/JBEI/
KineticLearning.

Data availability
All data was obtained from Brunk et al.,66 and is also available at the code
repository: https://github.com/JBEI/KineticLearning.
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