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Abstract
As large clinical and multiomics datasets and knowledge resources accumulate, they need to be
transformed into computable and actionable information to support automated reasoning. These
datasets range from laboratory experiment results to electronic health records (EHRs). Barriers
to accessibility and sharing of such datasets include diversity of content, size and privacy.
Effective transformation of data into information requires harmonization of stakeholder goals,
implementation, enforcement of standards regarding quality and completeness, and availability
of resources for maintenance and updates. Systems such as the Biomedical Data Translator
leverage knowledge graphs (KGs), structured and machine learning readable knowledge
representation, to encode knowledge extracted through inference. We focus here on the
transformation of data from multiomics datasets and EHRs into compact knowledge,
represented in a KG data structure. We demonstrate this data transformation in the context of
the Translator ecosystem, including clinical trials, drug approvals, cancer, wellness, and EHR
data. These transformations preserve individual privacy. We provide access to the five resulting
KGs through the Translator framework. We show examples of biomedical research questions
supported by our KGs, and discuss issues arising from extracting biomedical knowledge from
multiomics data.

Keywords
knowledge, data science, data to knowledge, biomedical translation, multiomics, knowledge
graph, clinical data, electronic health records, EHR

1. Introduction
Knowledge Graphs (KGs) are abstract representations of available knowledge, encoding
entities as ‘nodes’, and the established relationships between these entities as ‘edges’,
supported by attributes denoting evidence, provenance, and confidence. KGs are networks that
can be described atomically by triples of ‘subject’, ‘predicate’, and ‘object’—also known as ‘head
entity’, ‘relationship’, ‘tail entity’ or ‘source node’, ‘relation’, ‘target node’. KGs are increasingly
used to model biomedical research data and to inform better predictions1–5. These models
capture prior data and can be used in conjunction with reasoning algorithms to answer
questions about these data. More formally, hypotheses can be tested by querying a KG. The
Biomedical Data Translator program (‘Translator’), funded by the National Center for Advancing
Translational Sciences (NCATS), aims to facilitate the transformation of data resulting from
basic science projects into clinically actionable knowledge to drive research innovations6–10.
Translator is being developed by a consortium of teams from two dozen institutions6, that are
constructing both KGs and developing autonomous relay agents (ARAs) to implement
integrative reasoning algorithms on KGs. The Translator is a federated system where KGs are
encoded in the same standard10 and exposed through an application programming interface
(API) following the Translator standard (TRAPI)11.

The fundamental basis to extract KGs that can be used in the Translator system is the massive
data and knowledge generated in the biomedical community. Data are units of information, often
numeric, gathered through observation or measurement that represent real-world phenomena12.
In the context of the KGs discussed here, knowledge is a human belief or machine assertion
justified by evidence that is likely to be true13. Knowledge can be generated by combining data
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and reasoning14. The sources of knowledge introduced into Translator can be classified into
three main categories: (1) preexisting knowledge easily and unambiguously extracted from
reliable sources, (2) preexisting knowledge extracted—ambiguously or uncertainly—from
sources of varying reliability, and (3) new knowledge derived from computational
analysis of large datasets. Reliable sources of the first kind are typically well curated
knowledge bases, but may include other publications and repositories. Sources of the second
kind include knowledge text-mined from scientific publications, and from registries with limited
curation of data provided by researchers. Excitingly, new knowledge lies latent (yet to be
perceived by humans) in large collections of clinical and scientific data; we discuss here several
approaches to unearth this knowledge and store the results in accessible KGs, with particular
focus on analysis of multiomic datasets and electronic health records (EHRs).

KGs extracted from different data resources, including multiomics data from cancer and
wellness, large scale real world clinical data, and clinical trial data, provide rich resources to
understand and explain the relationship among diseases, genes and drugs in different contexts.
Despite the different resources each KG consumed, we present a general pipeline—in the
context of Translator—for production of KGs from multiomic data and knowledge resources. We
describe five KGs that we make accessible through the Translator infrastructure.
BigGIM-DrugResponse KG is derived from large multiomics data, ex vivo drug response data,
and accumulated knowledge resources to capture relationships among diseases, molecular
features, and drugs or chemicals. Clinical Trials KG and Drug Approvals KG encode
relationships between interventions and conditions, as mined from three registries:
clinicaltrials.gov, DailyMed15, and the FDA’s Adverse Event Reporting System (FAERS)16.
Clinical Connections KG is derived from massive electronic medical record databases that
connect concepts (such as diseases) with other clinical concepts such as outcomes. Finally,
Wellness Multiomics KG is derived from a large longitudinal healthy cohort and encodes
relationships between omics analytes and clinical variables.

Reasoning from Data to Knowledge. We use several automated epistemological approaches
from data science to automatically reason upon large multiomic and EHR datasets, and so
produce knowledge from these data. Data science17 encompasses the creation of principles and
algorithms that enable extraction of information and knowledge from data18,19. Humans use
multiple categories of reasoning to extract knowledge from data20. In bioscience, these
categories have been termed “Hill’s criteria”21, and include statistical significance, effect size,
analogy, specificity, time dependence, dose-response, consistency, reversibility, validation,
coherence, and biological plausibility. A data-science perspective is to use these categories
systematically in a framework to extract useful knowledge from data. For purposes of
machine-automatable KG construction designed for wide use in the biological community, we
generally require that our data-science framework be understandable, explainable, and
reproducible—with solid provenance. Therefore we focus on statistics and explainable machine
learning for edges based on newly generated knowledge in the KGs reported here. We avoid
inference based on categories of reasoning that are currently better implemented by humans
such as analogy and biological plausibility. However, one of the main purposes of these KGs is
to facilitate exactly those kinds of reasoning, making it easier for humans to go beyond basic
retrieval of facts. A utility of these and other KGs is to provide a compilation of pre-existing
knowledge that humans can use for reasoning based on Hill’s criteria, Bayesian inference,
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and/or other preferred epistemological approaches. KGs are a structured form of prior
knowledge.

Automated data mining and statistical analysis largely create knowledge by first identifying
correlations or associations among concepts. Data mining may reveal unexpected
relationships—fostering new conceptualizations and fostering innovative knowledge22.

KGs also provide more mundane benefits that are profoundly important for biomedical research.
KGs provide an efficient, computer-readable structure for sharing data. In some cases, this
method of sharing enables private (e.g., HIPAA) data to be shared as public knowledge by
aggregating, reasoning upon, or de-identifying raw data. KGs provide pre-computed analyses
(e.g., correlations) that are likely to be interesting and/or would have to be performed by many
users in parallel downstream of the data; it makes sense to pre-compute these analyses for
efficiency and accessibility. KGs also can be comprehensive, losing little to no information from
a data system and therefore avoid self-imposed limitations that might arise from use of a more
lossy or limited (often manually curated) data structure.

2. Results

2.1. Overview
We analyzed and curated evidence from EHR data, multiomics data from normal tissue23 &
cancers24,25, a wellness cohort26, and public knowledge resources, and generated KGs
representing connections observed in the data (Table 1). These KGs result from a
workflow—described in Methods—that transforms multiomics data to knowledge including (1)
collection of data resources, (2) data pre-processing; (3) statistical modeling, (4) standardization
using the Biolink Model10; and (5) implementation of APIs to expose the KGs to users and the
Translator ecosystem (Figure 1). We constructed five KGs: BigGIM-Drug Response KG,
Wellness KG, Clinical Trials KG, Drug Approvals KG, and Clinical Connections KG.

Figure 1. Workflow Overview. Conceptual overview of the pipeline for translating multiomics & EHR
data and knowledge resources to Translator standard KGs and Application Programming Interfaces
(APIs). KGs are standardized using the Biolink Model to facilitate reasoning leveraging multiple KGs.
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Table 1. Characteristics of the five Knowledge Graphs.

Knowledge
Graph

Relationship
Type

KG Source Data
Node Categories (and CURIE

prefixes)
Biolink Predicates

BigGIM -
Drug
Response

Gene expression
to gene
expression

GTEx; TCGA Gene expression (NCBIGene)
positively/negatively
correlated with

Gene to gene BioGrid Gene (NCBIGene)
genetically interacts
with

Protein to protein BioGrid, HuRI Gene (NCBIGene) physically interacts with

Gene mutation to
drug response

GDSC
Gene mutation (NCBIGene),
Drug/Chemical (PUBCHEM)

associated with
sensitivity/resistance to

Gene expression
to drug response

GDSC
Gene expression (NCBIGene),
Drug/Chemical (PUBCHEM)

associated with
sensitivity/resistance to

Drug to target

Publicly available
knowledge
resources
(Drug Central,
TTD, Pubmed)

Gene (NCBIGene),
Drug (PUBCHEM)

physically interacts with

Cell to gene CellMarker
Gene (NCBIGene)
Cell (CL)

expressed in

TCGA Mutation
Frequency

TCGA
Disease (MONDO),
Gene (NCBIGene)

gene associated with
condition, has
biomarker

Wellness
Multiomics

Statistical
association

ISB Wellness data
on clinical labs,
proteins,
metabolites

ClinicalFinding (LOINC, NCIT,
MESH),
Protein (UniProtKB),
SmallMolecule (PUBCHEM, HMDB,
EFO, CAS, KEGG, CHEBI, UMLS)

correlated with

Clinical
Connections

Risk factors for
chronic diseases

Providence Health
& Services EHRs

ChemicalEntity (CHEBI, RXCUI,
UNII),
Disease (MONDO, SNOMEDCT),
PhenotypicFeature (HP, NCIT)

associated with
increased/decreased
likelihood of

Clinical
Trials

Intervention to
condition

ClinicalTrials.gov

Disease (UMLS, MONDO, EFO,
DOID, NCIT, OMIM, MESH),
PhenotypicFeature (HP, UMLS, NCIT,
EFO, MESH),
SmallMolecule/MolecularMixture
(CHEBI, PUBCHEM, CHEMBL),

in clinical trials for,
treats
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ChemicalEntity (UNII)

Drug
Approvals

Intervention to
condition

DailyMed, FAERS

Disease (UMLS, MONDO, EFO,
DOID, NCIT, OMIM, MESH),
PhenotypicFeature (HP, UMLS, NCIT,
EFO, MESH),
SmallMolecule/MolecularMixture
(CHEBI, PUBCHEM, CHEMBL),
ChemicalEntity (UNII)

treats,
applied to treat

The metagraph for the merged KGs (Figure 2, and detailed in Supplementary Table 1) indicates
the general categories of concepts and relationships in each KG, and not only summarizes the
value of each individual KG, but also provides a strategic map of how these concepts
interconnect. This map can guide application of a federated system of KGs, such as Translator,
for specific use cases.

Figure 2. Joint metagraph of the KGs described in this manuscript. Cyan: Clinical Connections, all edges
use Biolink predicate “associated with”. Magenta: Clinical Trials, edges use Biolink predicates “in clinical
trials for” and “treats”. Black: Drug Approvals, edges use Biolink predicates “treats” and “applied to treat”.
Green: BigGIM-DrugResponse, edges as labeled. Red: Wellness Multiomics, all edges use Biolink
predicate “correlated with”. See Methods for the definitions of the Biolink classes used. For simplicity, in
this figure we depict together the three Biolink classes ‘SmallMolecule’, ‘ChemicalEntity’, and
‘MolecularMixture’.

2.2. BigGIM-DrugResponse KG Hub
BigGIM-DrugResponse KG integrates several smaller KGs encompassing diseases,
genes/proteins, and drugs/chemicals by statistical modeling and machine learning from large
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public datasets, as well as collecting publicly available knowledge resources. As such, it may be
considered a “KG hub”. BigGIM-DrugResponse KG includes assertions about drug-target and
gene-gene interactions, disease-gene associations, and drug-gene associations, focusing on
response and resistance to drugs (Table 1). The genes are quantified at the levels of genetic
variants, gene expression, and protein level. Knowledge assertions are derived from public
knowledge resources or learned from specific contexts such as different disease types, tissue
types, and patient cohorts through statistical approaches. Multiomic cancer data sources include
The Cancer Genome Atlas (TCGA)24,25, Genomics of Drug Sensitivity in Cancer (GDSC)25,27, and
gene expression in normal tissues from the Genotype-Tissue Expression (GTEx) project23.

2.3. Clinical Trials KG
The basic question that may be asked of this KG is, “what interventions have been clinically
evaluated for a given condition/disease?” Clinical Trials KG encodes assertions derived from the
descriptions of clinical trials in the ClinicalTrials.gov database. We created a KG derived from
the clinical trials dataset Aggregate Analysis of ClinicalTrials.gov (AACT)28. AACT includes
information about each study registered with ClinicalTrials.gov, including protocol information,
disease or condition investigated, study design, subject eligibility criteria and/or exclusion, and
outcomes.

A total of 514,498 clinical trials were available for extraction as of November 3, 2024, of which
we modeled 115,086 based on their characteristics. We used Babel29 to map the interventions
and conditions to 22,337 biomedical concepts. These concepts are clinical and/or biological
ideas, with a distinct meaning given by reference to a terminology or vocabulary identifiable by
unique ID or code (CURIEs). Nodes at this stage consist of five types in Biolink Model:
interventions, which are represented by the SmallMolecule (n=957), ChemicalEntity (n=6,525),
or MolecularMixture (n=35) classes, and the conditions/diseases for which the interventions
were tested, represented by the Disease (n=13,045) or PhenotypicFeature (n=1,775) classes.
Edges (n=176,656) are expressed using the “biolink:in_clinical_trials_for” predicate. Additional
edges (n=13,450) using the “biolink:treats” predicate are generated when an intervention is
being evaluated in the context of a Phase 4 trial (after FDA approval). Edges are further
annotated with multiple attributes, including trial phase, status, cohort size, age range for
eligibility, etc.

2.4. Drug Approvals KG
The basic question that may be asked of this KG is, “what interventions have been approved for
a given condition/disease?” Drug Approvals KG encodes assertions derived from the product
indications in the DailyMed database15. Since the drug indications are provided as descriptive,
long-form, unnormalized texts as provided by the product manufacturers, and frequently contain
mentions of non-indicated conditions (including side effects and contraindications), we identify
the most likely target(s) of the indication by cross-referencing with indications provided in the
FDA’s Adverse Event Reporting System (FAERS)16 database.

As of November 1, 2024, DailyMed included information on labels for 152,812 products. FAERS
included information on 20,407,479 adverse event reports (dated from the first quarter of 2004
and through the third quarter of 2024, inclusive), from which we extracted 35,571,841
non-redundant assertions on prescribed treatments and their associated indications. We used
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Babel29 to map the interventions and conditions to biomedical concepts. We then
cross-referenced the content extracted from the two sources (DailyMed and FAERS) to
determine the approval status of interventions for their reported indications. Based on this
classification, we generated 4,117 edges connecting 919 subjects (approved drugs) to 847
objects (indicated conditions), using “biolink:treats” as predicate. We similarly generated 92,056
edges connecting 1,059 drugs to 5,828 conditions, using “biolink:applied_to_treat” as predicate
to indicate absence of formal approval for these indications.

2.5. Clinical Connections KG
Electronic health records provide potentially rich, but realistically sparse, longitudinal histories of
patient data. Researchers have devised methods for extracting clinical and biological research
value from these datasets, in the form of distributions and co-occurrence of clinical features
such as medications, adverse drug events, phenotypes, risk assessment, outcomes, etc.,
amongst and between diseases, whilst maintaining patient confidentiality and privacy30,31.

Clinical Connections KG encodes connections among diseases, laboratory results and
medication orders observed per patient at Providence Health & Services and affiliates (PHSA),
which is an integrated healthcare system which serves patients in 51 hospitals and 1,085 clinics
across seven US states: Alaska, California, Montana, Oregon, New Mexico, Texas, and
Washington. We use logistic regression machine learning (ML) on EHR medical data to develop
multivariable classification models. This approach constructs a single large KG, with directed
edges, linking baseline factors (patients’ conditions from the past year) to specific outcomes,
including common chronic diseases and rare diseases.

We constructed a KG derived by performing 148 logistic regression models on EHR data from
years [01/01/2008 - 05/01/2024]. Nodes consist of medical concepts from the EHR including
age, sex, conditions, medications, and labs. These were mapped to CURIEs using the OMOP
CDM. Nodes were categorized by the following Biolink Model classes: Disease,
PhenotypicFeature, ChemicalEntity, and Procedure. Edges are expressed by one of the
opposite Biolink Model predicates: “associated with increased/decreased likelihood of”. Edges
between these nodes are annotated by attribute types, including provenance, the analysis
method used (logistic regression), the AUCROC, p-value, log odds ratio, 95% confidence
interval, sample size with the condition, and sample size without the condition.

2.6. Wellness Multiomics KG
The Wellness Multiomics KG encodes extensive phenotyping of the Institute for Systems
Biology’s (ISB) Wellness cohort32, expanding on ISB’s original wellness study of 108
individuals26 and integrating many data types including genetics (whole-genome sequencing
and/or SNP genotyping), clinical blood tests, salivary cortisol, weight and body-mass index
(BMI), blood pressure, health assessments, gut microbiome, blood metabolomics, blood
proteomics, activity tracking, sleep tracking, and heart rate.

We have analyzed the ISB Wellness dataset, which represents extensive phenotyping of ISB’s
Wellness cohort, and affords many types of correlations and connections to be uncovered. This
deep phenotyping data set integrates many data types including genetics (whole-genome
sequencing and/or SNP genotyping), clinical blood tests, salivary cortisol, weight and
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body-mass index (BMI), blood pressure, health assessments, gut microbiome, blood
metabolomics, blood proteomics, activity tracking, sleep tracking, and heart rate. The cohort
includes 4,879 individuals with at least one blood draw. Integrative analysis of this
multidimensional data set has already led to significant novel findings, e.g., on the connection
between blood metabolites and the microbiome32 and how this reflects on aging33.

Based on this dataset, we have created and deployed the Multiomics Wellness KG. This KG
includes pairwise correlations among clinical labs, metabolites and proteins within the ISB
Wellness dataset. The resulting KG includes 679,420 statistically significant correlations
involving 101 clinical labs, 264 proteins, and 830 metabolites, under 27 different stratification
modes (see Methods).

2.7. Use case
A researcher has an overarching question: “What might be some new ideas for treating type 1
diabetes (T1D)?” or one of many other imaginable biomedical questions. A formal or informal
step in the path to an answer is to create a subgraph from a larger KG (or federation of KGs and
other knowledge sources) that contains all nodes and edges relevant to a particular form of logic
chosen to answer the question. Indeed, if such a subgraph is sufficiently intuitive, then the
subgraph itself may serve as the ‘answer’ to the question. We show in this use case that
disparate knowledge from federated KGs, including the five KGs presented here, can be used to
create subgraphs useful for responding to biomedical queries. A key to providing a pathway to
deeper insights is to have disparate types of data considered as part of the reasoning
process34,35, which can be evaluated with a metagraph such as shown in Figure 2.

To illustrate, we show how such a subgraph might be created to address the diabetes question
in the preceding paragraph. The researcher (human, or possibly machine) may break the
question down into a general two-step approach for reasoning: (1) first, identify mechanisms
that cause or influence diabetes, and then (2) identify interventions that influence those causes.
At this level of logic, it becomes natural to leverage a KG for reasoning, both to identify
mechanisms and to identify interventions. There are many approaches to identify mechanisms;
for the purposes of this vignette we mention three: (a) identify an existing drug known to treat
diabetes, and conclude that the molecular physiological subsystem it influences also influences
diabetes, (b) identify a candidate drug posited to treat diabetes, and conclude that drug is a
candidate because an expert hypothesizes that the molecular physiological subsystem it
influences also influences diabetes, (c) identify knowledge in the KG that connects a molecular
subsystem to diabetes. There are many approaches to identify interventions; for the purposes of
this vignette, we mention three: (i) identify drugs or lifestyle interventions that target identified
molecular subsystems, (ii), identify drugs that are bioinformatically similar to other drugs that
target identified molecular subsystems, and (iii) identify drugs already known to target diabetes.
The various categories of reasoning mentioned are neither necessarily mutually exclusive nor
guaranteed to be error proof; rather, they represent an automated approach to hypothesis
generation. A full review of KG reasoning is outside the scope of this article; Chen et al.36

provide an entry into this literature, including deductive, inductive, and abductive reasoning. In
Figure 3, we show a simple subgraph designed to capture some of the elements that could be
used to support logic through the above approaches. Figure 3 is designed to show only some
example nodes and edges; in practice, most power users would create a subgraph with many
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more nodes and edges to enable stronger logical inferences. Figure 3 is constructed to provide
a subgraph that supports reasoning to produce the already empirically known result that
teplizumab can treat or prevent the progression of T1D37, and could be used for logic related to
understanding that empirical result (possibly reproducing the original inspiration for
experimentation38) and/or extending that understanding to identify new drugs that might be used
based on similar reasoning upon KG knowledge.

Figure 3. Combining knowledge from multiple diverse KGs can lead to integrative insight in
biomedical research. In this example use case, leveraging KGs to investigate causes and treatments for
type 1 diabetes (T1D), permits both obvious logical inferences (such as “T1D is an autoimmune disease”)
and other inferences such as potential drug treatments for T1D. Colored arrows denote edges sourced
from our various KGs (cyan: Clinical Connections; green: BigGIM-DrugResponse; red: Wellness
Multiomics; magenta: Clinical Trials), as in Figure 2. Gray arrows denote edges from other Translator
KGs. Dotted arrows represent inferences.

Some of the intermediate reasoning steps or conclusions that might be supported from
reasoning on this or a larger but similarly inspired subgraph might include (1) T1D is an
autoimmune disease, (2) treatments influencing both adaptive and innate immunity may be
useful in treating autoimmune diseases, (3) C-reactive protein (CRP) is a biomarker for some
autoimmune disease and might be a biomarker for others, (4) some drugs targeting a particular
autoimmune disease might also be useful for treating another autoimmune disease, (5) many
autoimmune diseases are associated with reduced CD3 counts, presumably in response to
therapy, and (6) therapies that reduce CD3 counts might work in T1D. Types of logical
inferences from KGs may be general, such as "Treatments targeting both innate and adaptive
immunity may benefit T1D" or be specific, such as, "Toclizumab might benefit early stage T1D".
Inferences may be based on many underlying edges, each contributing a small amount to a
conclusion (e.g., "T1D is an autoimmune disease") or may be based on one or few edges (e.g.,

10

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.623648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.14.623648
http://creativecommons.org/licenses/by-nd/4.0/


"Teplizumab treats T1D"). Inferences may require “single hop” or multistep “multiple hop” logic
on the KG. A general single-hop inference might be: “inflammation causes T1D”. A specific
multi-hop inference might be “defects in NLRP3 impair inflammasome function, decrease
inflammation, and therefore protect against T1D”. The generality and complexity of inquiries to a
KG should depend on the needs of the user and the richness of the data pertinent to the inquiry
stored in the KG. A user interface that has customizable parameters and constraints, such as
that provided by Translator at https://ui.transltr.io/, can facilitate scoping in or out to find useful
subgraphs to motivate and support further investigations.

3. Discussion

Many types of biological data can be transformed automatically into knowledge, stored in KGs,
and analyzed integratively using systems like the Biomedical Data Translator. KGs provide an
important source of information for human or automated biomedical and translational reasoning.
There is increasing recognition of a need for automated extraction of knowledge from data.
Thanos et al.39 describe a framework for "knowledge creation based on the exploitation of the
knowledge hidden in huge data volumes of research data", including (1) creation of linked
information spaces; (2) services to make these information repositories discoverable,
accessible, understandable and reusable; (3) navigational services; and (4) workflow services
providing APIs and user interfaces. Translator provides an infrastructure that integrates all these
features. KGs provide a fundamental base of knowledge underlying the Translator ecosystem.
In this paper, we have documented how five biomedical KGs were inspired and produced.
These KGs can be used stand alone, as part of Translator, or as part of any federated reasoning
system (e.g., KGAREVION40) capable of drawing upon knowledge stored in KGs.

There is considerable prior art in the generation of KGs from EHRs. A full review is beyond the
scope of this paper. Notably, Morris et al. created Scalable Precision Medicine Oriented
Knowledge Engine (SPOKE)41. Notably SPOKE also automatically generated knowledge with
unsupervised machine-learning to create vectors encoding the importance of each EHR code42.
Liu et al. used ontology mapping and natural-language-processing (NLP) to create a
rare-disease KG (OARD)43. Rotmensch et al. automated a workflow to link diseases and
symptoms from EHR44. Chandak et al. developed PrimeKG which integrates multiple resources
that describe diseases with relationships representing ten major biological scales45. Santos et al.
developed a Clinical Knowledge Graph (CKG) focused on proteomics data46. Our present work
provides additional approaches to knowledge generation and KG creation, expanding the
ecosystem of biomedical KGs.

Production of a KG may require addressing specific challenges, including handling large
datasets, ensuring privacy, selecting appropriate cohorts, managing data errors and missing
values, and achieving concept standardization. BigGIM required considerable compute
infrastructure to process very large data sets. Wellness KG required considerations of privacy,
cohort selection, and concept mapping. The Clinical Trials and Drug Approvals KGs required
concept mapping and data cleaning for user-entered data. The Clinical Connections KG
required considerations of differential privacy, computational expense, need for domain
knowledge, missingness, and mapping associations based on implicit knowledge. Such
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challenges should be documented as appropriate in individual KG nodes or edges, but also in
overall published methods for KG construction.

Each of the edges in the Wellness Multiomics KG encodes a correlation based on a particular
stratification (subpopulation) of the data, as described above. In many cases these
stratifications represent ordered classes (such as age ranges: “less than 35”, “between 35 and
55”, “more than 55”), and in some cases unordered classes (“male”, “female”). These may aid in
certain types of logical inference, particular mechanistic or causal inference, that may leverage
dose-response logic. An alternative data structure for encoding these stratified edges would be
to provide each as an annotation to a single KG edge; however, that would defeat the efficiency
of many potential downstream graph-based algorithms. An example of such
stratification-empowered detail is the relationship between CRP and IL6 (Figure 3). Individuals
who never use alcohol have a correlation of 0.60; those with daily alcohol use have a correlation
of 0.53. The range of correlation is even greater across populations, from 0.57 (Hispanic/Latino)
to 0.70 (South Asian). These KG edges and logic performed on them suggest that specific
relationships between immune subsystems depend on both environment (alcohol use & culture)
and genetics (genetic ancestry). A conclusion might be that immunomodulatory therapies
directed at autoimmune diseases such as T1D should take into account such influences in a
personalized approach to medicine.

KGs are a natural fit for many types of biological data and reasoning—particularly across
biological pathways and networks. KGs are compact, human understandable, and machine
interpretable. Lots of algorithms can perform computations on KGs, and there is an active
coding community (e.g., Neo4j). Trees are a form of graph, so many graph algorithms and tree
algorithms are similar—if not identical. However, there are limitations to KGs in general, as well
as to specific KGs. For example, certain types of knowledge are difficult to store in KGs,
including conditional logic and multi-step conditional dependencies (e.g., the citric acid cycle).
These issues can be addressed by using different types of knowledge storage (e.g., relational
databases) within a larger federated ecosystem, such as Translator. Ultimately, we predict that
the best reasoners (such as Translator) will reason on knowledge stored in multiple different
types of data structures, including KGs. Within each specific KG, there are tradeoffs between
choices of ontologies, context (e.g., adult or pediatric), resolution/scale (e.g., encoding SNPs or
genes or both as nodes), and many other choices that also should be reflected in node and
edge provenance, as well as overall published methods for KG construction. All KGs should be
validated before deployment for internal consistency, faithful representation of underlying data,
and correct knowledge inferences from data. However, this does not guarantee the utility of a
particular KG for a particular purpose; additional use-specific (e.g., drug repurposing) validation
should be performed for any critical end-use. Many biomedical knowledge graphs have many
edges and multitudes of paths between distant nodes. Many of these paths are distracting due
to the low quality (i.e., high uncertainty) of many edges in most KGs. Scoring these paths is
beyond the scope of this manuscript, but approaches include excluding low quality edges,
employing better quality metrics, and logic algorithms robust to distractions.

Human expertise should never be lost, even as automated intelligence tools are increasingly
leveraged. Currently, most automated knowledge generation tools used to populate KGs are
simple. Algorithms are chosen because they are straightforward and parsimonious. More
complex and nuanced insights based on complex chains of reasoning may be missed by
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automated tools22. Large sets of data can be transformed into lossy KGs by these simple tools.
These can be very useful, but may fail certain uses. Therefore, even as large sets of raw data
are transformed into KGs, these raw data should not then be discarded or disregarded—they
might be useful for certain nuanced investigations, including some types of hypothesis-driven
inquiry. If possible (e.g., allowed by privacy considerations), multiple KGs can be constructed
from the same data set using different choices and parameters for extracting knowledge from
data. Increasingly sophisticated knowledge extraction is a future of KG construction.
Large-language model (LLM) based artificial intelligence (AI) algorithms were not used in the
creation of knowledge for the KGs described here, but are and will be used for generating a next
generation of biomedical KGs.

Theories of knowledge and the relationship of data to knowledge date back to the earliest
philosophical discourses, such as Plato’s Theaetetus. Modern informatics has driven an urgency
for more precision and uniformity in definitions of specific concepts such as “data” and
“knowledge”, but uniformity of definitions has yet to be implemented. However, even in the
current epoch of unclear or fuzzy boundaries between the concepts of ‘data’ and ‘knowledge’, a
hierarchy of knowledge can be conceptualized, ranging from atomic bits of data to deeply
profound integrative understanding held in common by most human minds. Each KG represents
a particular level (or may bridge several levels) in this hierarchy of knowledge. Of the KGs
presented here, some reflect basic elements of data—with minimal transformation. For example,
Drug Approvals and Clinical Trials KGs largely reflect a Boolean value of whether or not a drug
has been approved or simple ‘drug is in trial’ triple. Knowledge added is largely limited to checks
for validation, consistency, and coherency. BigGIM-DrugResponse, Clinical Connections, and
Wellness Multiomics KGs climb this hierarchy higher, using machine learning to produce
‘knowledge assertions’ or outright knowledge not readily apparent in large raw datasets. Other
KGs may include even higher levels of knowledge, such as facts generated by advanced
artificial intelligence or extracted by human readers from highly acclaimed and time-tested
review articles. Whether any given KG truly enshrines knowledge depends to some extent on
continuing evolving definitions of ‘knowledge’. However, all KGs—including the five presented
here—are steps on the hierarchy of enlightenment, and can aid basic and translational
biomedical research.

4. Methods

Our data-to-knowledge pipeline starts with data extraction, transformation, and loading (ETL)
into intermediary data structures, followed by statistical analysis and mapping to relevant
ontologies and to the Biolink Model. Biolink provides an open-source data model that formalizes
relationships between biomedical data structures10. The resulting KGs consist of nodes
(concepts) linked by edges (relationships). The nodes represent well-identified biomedical
concepts, mapped to terms from suitable ontologies. These ontologies encompass diseases,
genes, clinical measurements, and other biomedical concepts. The edges represent
relationships between concepts encoded in the nodes. Both nodes and edges are annotated
with ‘attributes’ that provide additional information beyond their label, including links to
databases and descriptive information as well as provenance (Figure 1).
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4.1. General overview of KG development
The framework for our pipeline to generate and deploy KGs consists of (1) ETL/extraction, (2)
statistical analysis, (3) semantic standardization through Biolink modeling10, (4) KG generation,
and (5) deployment as an open source web service that implements a standard API. In addition
to the semantic standardization, each KG can be represented as a pair of Knowledge Graph
Exchange (KGX) tab-separated value (TSV) text files47 with nodes and edges, which permits
export to other programs such as Cytoscape48 (cytoscape.org) and facilitates quality validation,
as described below.

Data standardization across KGs and the Translator ecosystem. For reasoning to occur on
a concept, a human or machine reasoner must make connections between multiple data
incorporating that concept. This requires the reasoner to recognize that distinct data refer to the
same concept. In a data universe awash in synonyms and parasynonyms, a good KG must
standardize synonymous concepts with ontology-derived nomenclature. Depending on the
coarseness of these ontologies and data sources, parasynonyms must also be mapped to
ontology terms with nearby meanings. Multiple KGs providing information to a reasoner should
unify these nomenclature mappings; if they did not, the burden of recognizing synonyms would
fall upon the reasoner—which would be inefficient. For the KGs discussed here, nodes were
mapped to names from standard ontologies including: NCBIs Gene (www.ncbi.nlm.nih.gov/
gene) &   HUGO Gene Nomenclature Committee (HGNC) (www.genenames.org) for genes;
UniProt (www.uniprot.org) for proteins; Pubchem (pubchem.ncbi.nlm.nih.gov), Chemical Entities
of Biological Interest (ChEBI) (www.ebi.ac.uk/chebi), the Human Metabolome Database
(HMDB)49, Chemical Abstracts Service (CAS) (www.cas.org), Kyoto Encyclopedia of Genes and
Genomes (KEGG)50, RefMet51, & Experimental Factor Ontology (EFO)52 for chemicals and
metabolites; Drugbank (go.drugbank.com) & Chemical Database of Bioactive Molecules with
Drug-Like Properties (ChEMBL) (www.ebi.ac.uk/chembl) for drugs; Mondo Disease Ontology
(MONDO) (mondo.monarchinitiative.org) for diseases; Logical Observation Identifiers Names
and Codes (LOINC) (loinc.org) for clinical labs, & Human Phenotype Ontology (HPO) for clinical
labs outside of reference range. Nodes with synonymous names from multiple ontologies were
assigned a single unified (preferred) compact universal resource identifier (CURIE), as specified
in Biolink Model10. Each node is identified with a single unified CURIE using Babel29, a relational
database underlying Translator’s Name Resolver/Node Normalizer
(name-resolution-sri.renci.org/docs). Additional synonyms were annotated to that node along
with other annotations including those necessary for provenance. For clinical KGs, for the
analytes that have significant correlations with other analytes, we performed a detailed manual
curation of LOINC codes for the attributes in the chemistries table, and modified the Biolink
concepts of a subset of nodes to ClinicalFinding to retain LOINC codes that best preserve the
identity of a node. Any nodes that failed to map to any CURIE were excluded from the KGs, as
they could not be called by the Translator API. At this time, the Translator ecosystem allows
gene and protein concepts to be conflated; gene names are synonymous with their gene
product (e.g., proteins); the unified concept is primarily identified by its NCBI Gene symbol.

Definitions of Biolink Classes represented in our KGs. ChemicalEntity: physical entity that
pertains to chemistry or biochemistry. SmallMolecule: molecular entity characterized by
availability in small-molecule databases of SMILES, InChI, IUPAC, or other unambiguous
representation of its precise chemical structure; for convenience of representation, any valid
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chemical representation is included, even if it is not strictly molecular (e.g., sodium ion).
ClinicalFinding: this category is currently considered broad enough to tag clinical lab
measurements and other biological attributes taken as 'clinical traits' with some statistical score,
for example, a p value in genetic associations. Disease: disorder of structure or function,
especially one that produces specific signs, phenotypes or symptoms or that affects a specific
location and is not simply a direct result of physical injury. A disposition to undergo pathological
processes that exists in an organism because of one or more disorders in that organism. Drug:
substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of
disease. Gene: region (or regions) that includes all of the sequence elements necessary to
encode a functional transcript. A gene locus may include regulatory regions, transcribed regions
and/or other functional sequence regions. MolecularMixture: chemical mixture composed of two
or more molecular entities with known concentration and stoichiometry. PhenotypicFeature:
combination of entity and quality that makes up a phenotyping statement. An observable
characteristic of an individual resulting from the interaction of its genotype with its molecular and
physical environment. Protein: gene product that is composed of a chain of amino acid
sequences and is produced by ribosome-mediated translation of mRNA.

4.2. BigGIM-DrugResponse KG
BigGIM-DrugResponse KG connects diseases, genes, proteins, and drugs or chemicals by
statistical and machine learning modeling on large public datasets, as well as including
knowledge from publicly available resources. Data and knowledge sources include:
protein-protein interactions from the human reference protein interactome53–58 and BioGRID59;
drug-target interactions in DrugCentral60, Therapeutic Target Database61; text mining of scientific
literature; genetic interactions from Biogrid62; gene-gene coexpression; disease associated
genes; gene - drug response relationships; and cell type - gene signatures relationships.

Disease associated gene/proteins. Disease-gene associations highlight genes that are highly
frequently mutated in each tumor type (> 5% samples, and mutated in at least 5 samples in the
TCGA dataset), and at the same time, those genes that have been predicted as cancer driver
genes in the literature63. We also included reported disease associated variants for other
diseases27. The disease-gene edges also provide cancer type specific gene expressions
extracted from cancer cell lines. We extracted cancer type specific highly expressed genes from
the gene expression data from GDSC25,27. We compared the cell lines for each cancer type to
the other cancer types using T-test followed by Benjamini–Hochberg multiple testing correction.
Effect size was measured to quantify the difference of gene expression between one cancer
type vs others. Genes that show significant up-regulation in one cancer type compared to the
other cancer types were selected (FDR < 0.05, Effect size > 0). We further ranked the
expression of one gene for all the GDSC samples, and got the rank of one gene expression
from samples in one cancer type. We filtered genes with median rank greater than 0.75 as the
final marker genes for each cancer type.

Gene-gene interaction extraction. We measured co-expression with Spearman correlation
coefficients and defined, as positively correlated or negatively correlated gene pairs, those with
correlation coefficient > 0.5 or < -0.5, with p-value (Benjamini-Hochberg adjusted) < 0.05. For
tissue-specific gene co-expression analysis, we used Genotype-Tissue Expression (GTEx)
project data (version 8) to determine the co-expression of two genes in different tissue types.
For tumor-type specific gene co-expression analysis, we used TCGA Pancancer Atlas data. We
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collected protein-protein interactions from BioGRID and from The Human Reference Protein
Interactome Mapping Project (HuRI/HI-union) (www.interactome-atlas.org)53. BioGRID includes
physically interacting gene products and genetically interacting genes59.

Drug Response extraction. We focused on Gene (expression) associated with sensitivity to
Drug (Small Molecules). Drugs with IC50 <= 0.5 µM in at least 3 cell lines in one cancer type
were used for analysis. We defined the resistance group and sensitive group of cells using the
threshold of 1st quartile and 3rd quartile: sensitive group: IC50 < 1st quantile (IC50), and resistant
group: IC50 > 3rd quantile (IC50). Student T-test was used to compare the gene expression
values between the resistant group and the sensitive group, followed by Benjamini-Hochberg
adjustment. Results with FDR < 0.25 were selected and presented in the API. We also analyzed
the gene mutation that may alter the drug sensitivity by testing the difference of drug sensitivity
by comparing the wild-type group and the mutated group. Drugs with IC50 <= 0.5 µM in at least
3 cell lines in one cancer type were used for analysis.

CellMarker extraction. CellMarker interactions were constructed from the CellMarker 2.0
human cell types table64. The table was converted to a csv file by treating the Gene as the
subject and the Cell Type as the object, with an expressed_in relation. Only entries with both
NCBI Gene IDs and Cell Ontology IDs were included. UBERON identifiers for the tissue types
were used.

4.3. Clinical Trials KG
Clinical trials evaluate the effectiveness of interventions—including lifestyle changes,
procedures, and medications—on clinical conditions (diseases). The ClinicalTrials.gov registry
solicits collection of protocol information and result summaries for registered studies65. We
extracted data on interventions and their target conditions from the Aggregate Analysis of
ClinicalTrials.gov (AACT) database28. The Clinical Trials KG currently transforms the information
in the registry into a convenient KG format, but does not generate new knowledge from data.

Data selection and processing. We obtained from AACT information on interventions,
conditions, and related tables from 514,498 studies (access date: November 3, 2024) and
merged the tables using the National Clinical Trial identifier (NCT ID) as shared key. We select
those studies for which the “primary purpose” field is either “Treatment” or “Prevention”; which
have at least one intervention of type “Drug”, “Biological”, “Dietary Supplement”, or
“Combination Product”; and which have at least one stated condition.

KG building. Core triples consist of a node representing an intervention (chemical compound,
drug, procedure, or other therapies) to a node representing a condition, via an edge annotated
with the NCTID of the clinical trial where that intervention was tested for that condition. Nodes
are categorized into Biolink classes using Babel29. We classify each listed intervention by
whether it is used in experimental arms, in control arms, or in both. For interventions used solely
in experimental arms, an edge is created with it as ‘subject’, “biolink:in_clinical_trials_for” as
‘predicate’, and each condition as ‘object’. If more than one intervention is used in experimental
arms, the resulting edges are annotated to indicate the reduced confidence level in the
assertion that the interventions were tested for the conditions. If there are multiple edges with
the same subject, predicate, and object, they are combined into a single edge that collects
details about all studies that yielded such edges. Finally, if a high-confidence edge exists with
maximal study phase of 4, an extra edge is generated with the same subject and object, with
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predicate “biolink:treats”, and with the supporting data pertinent to the underlying phase 4
trial(s).

4.4. Drug Approvals KG
Information on FDA drug approvals can be obtained from DailyMed15, which includes structured
product labels (SPL) in parsable extensible markup language (XML) format. The drug
indications are provided as descriptive, long-form, unnormalized texts as provided by the
product manufacturers, and frequently contain mentions of non-indicated conditions (including
side effects and contraindications). We implemented a procedure for identifying the most likely
target(s) of the indication by cross-referencing with indications provided in the FDA’s Adverse
Event Reporting System (FAERS)16 database.

Data selection and processing. We obtained from DailyMed information on labels for 152,812
products (access date: November 1, 2024) as zip files spanning the prescription (RX),
over-the-counter (OTC), homeopathic, animal use, and remainder sections. We extracted from
the zip files SPL descriptions in XML format, and then identified in each product’s XML file
information about new drug approval (NDA) codes, active ingredients, indications, and boxed
warnings. We separately obtained from FAERS information on 21,964,449 adverse event
reports (dated from the first quarter of 2004 and through the third quarter of 2024, inclusive);
dropped cases as indicated; de-duplicated the cases based on identifiers, retaining for each
case the most recent report, which yielded a final list of 13,995,777 unique cases; extracted the
information on prescribed treatments and their associated indications, yielding 35,571,841
assertions connecting drugs to indications, which we mapped to CURIEs using Babel29. Finally,
we used the names of the indications in FAERS, and any of their synonyms, to evaluate their
presence in the DailyMed-extracted indication texts.

KG building. Core triples consist of a node representing an intervention (drug, supplement) to a
node representing a condition, via an edge annotated with relevant NDA and SPL codes from
DailyMed, and the number of supporting unique FAERS cases. Nodes are categorized into
Biolink classes using Babel29. For interventions matching between DailyMed and FAERS, an
edge is created with the intervention as subject, “biolink:treats” as predicate, and the indicated
condition as object. For interventions linked to indicated conditions in FAERS but without a
matching approval in DailyMed, an edge is generated with the treatment as subject,
“biolink:applied_to_treat” as predicate, and the indicated condition as object.

4.5. Wellness Multiomics KG
The Wellness Multiomics KG generates knowledge from data by extracting relationships from
dense data collected on a large cohort of well individuals.

Data selection and processing. We included in this study the ‘chemistries’, ‘metabolomics’,
and ‘proteomics’ tables in the ISB Wellness dataset26, version snapshot May 31st, 2019. These
tables respectively include data on clinical labs, metabolites, and proteins. To focus on healthy
individuals, we excluded from analysis any individuals for which disease-specific assays were
performed, as these individuals were likely to not be well (i.e., they had a disease). We further
excluded all clinical chemistries labeled as ‘reflexive’ in the dataset; ‘reflexive’ testing is blood
testing that was performed depending on whether the previous test result for the same analyte
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was out of range, and inclusion of reflexive tests leads to biases. We retained only baseline data
for each individual, before any wellness interventions. Cohort stratification: We stratified the
cohort based on multiple self-reported demographic and lifestyle parameters. These included
age range (using 35 years old and 55 years old as cutoffs), self-reported biological sex,
self-reported race/ethnicity, alcohol use frequency, tobacco exposure status, marijuana use,
other illicit drug use, and family structure (number of children). See Supplementary Table 2 for
full details. We produced joint analyte tables for the entire cohort of healthy individuals
(N=4,234), and separately for each stratification.

Data analysis. We computed all-against-all analyte Spearman correlations for the entire cohort
and, separately, for each stratification. We used Spearman (rank) correlations since
relationships between the analytes are not always linear. For each joint analyte table, we (1)
identified analyte pairs where both analytes had non-null values for at least ten individuals, (2)
computed a Spearman correlation for each such pair of analytes, (3) considered the count of
such pairs as the number of tests performed, (4) retained the resulting Spearman rho and the
uncorrected p-value, for analyte pairs where p-value times number of tests was < 0.05. This
computation step yielded a list of significantly correlated analyte pairs, and the number of tests
performed, for each stratification. Based on the number of resulting correlations, we dropped
underpowered stratifications including Middle Eastern ancestry (42 correlations), Native
American ancestry (86 correlations), and drug use other than marijuana (57 correlations). We
then computed the total number of tests performed across all remaining stratifications
(N=1,189,745) and retained Bonferroni-corrected p-values < 0.05 as significant (N=653,226).

KG building. We generated a KG for the Wellness dataset, representing each analyte (clinical
lab, protein, or metabolite) as a node and each significant correlation as an edge. For the
nodes, we used Biolink classes: biolink:ClinicalFinding, biolink:Protein, and
biolink:SmallMolecule for clinical labs, proteins, and metabolites, respectively. For the edges, we
used biolink:correlated_with, corresponding to RO:0002610 in the Relations Ontology66. Each
edge is annotated with attributes denoting the statistical test used (Spearman correlation,
NCIT:C53236), the effect size estimate (STATO:0000085), the sample size used to compute the
correlation (GECKO:0000106), the Bonferroni-corrected p-value (NCIT:C61594), and the
stratification used, if any (Supplementary Table 2).

4.6. Clinical Connections KG
The Clinical Connections KG generates knowledge by extracting relationships from EHR data.

Data selection and processing. We analyzed Providence Health & Services (PHS) electronic
health records within a secure data enclave, and only exported the final analysis results (nodes
and edges, see Figure 4 for the pipeline). Theoretically, tens of thousands of medical conditions
could be included. To keep costs in scope for this proof-of-concept research work, a curated
subset of disease concepts were selected by people with medical training, considering chronic
conditions with higher relative prevalence in the United States, as well as several rare diseases.
Based on medical relevance to the selected conditions, 148 conditions, 366 relevant
medications and 115 laboratory tests were included. For conditions/diseases and medications
status, we use the EHR-reported status to determine whether a patient has a history of those
features. For continuous laboratory results, we use the EHR-reported reference range to
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determine whether a particular result is high or low. and used LOINC2HPO67 to map results to a
phenotype (for example, sodium below reference range was mapped to hyponatremia and
above reference range was mapped to to hypernatremia). To support privacy, age was binned
(0-17, 18-49, 50-74, >= 75 years).

Figure 4. Overview of the workflow to generate the Clinical Connections KG from real world data in
electronic health records.

Concept mapping. Data were mapped to concepts in the Observational Medical Outcomes
Partnership Common Data Model v6.0 (OMOP CDM) in July 2023 by mapping to the
Observational Health Data Sciences and Informatics (OHDSI) vocabulary list (athena.ohdsi.org/
vocabulary/ list). SNOMED data was derived from the United States Edition of the SNOMED CT
Browser (browser.ihtsdotools.org), and RxNorm data was derived from the NIH RxNav browser
(mor.nlm.nih.gov/RxNav). Concepts with less than 10 patients/encounters were excluded to
focus on concepts with broader applicability and to protect privacy. Additionally to protect
privacy, in the result edge file, patient/encounter count for each concept has been rounded to
the nearest hundreds. The nodes of the core-triple for the KG thus constructed consist of the
predicted condition/disease from the model, and the independent or feature variable for that
model. One of two predicates formalized directed edges between nodes according to the Biolink
Model10: “associated with increased likelihood of” or “associated with decreased likelihood of”.
These edges are annotated with the following information from each model, constituting the
attributes of these edges: the AUROC (area under the receiver operating characteristic),
p-value, 95% confidence interval, feature importance, feature coefficient, and sample size of
patients with and without the condition/disease. The end result: over 39,553 edges representing
predictive factors of disease.

Model training and concept association analyses. We trained 148 multivariate logistic
regression models, with the outcome predicted being one of the 148 conditions/diseases, and
independent variables being the combination of those 148 conditions/diseases, 366
medications, 115 lab measurements, and 5 demographic features. Age, sex, and ethnicity were
included in all logistic regression models; however, we excluded these demographic features
from the resulting KGX files. The Clinical Connections KG uses log odds ratios derived from the
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logistic regression models to quantify associations between concepts. The AUROC for each
model is provided, along with the 95% confidence intervals and p-values. We did not conduct
false discovery rate (FDR) adjustment because in the FDR method, p-values are multiplied by
m/k (k is the position and m is the number of independent tests) and ranked in an ascending
sorted vector of p-values. It potentially rejects true positives among false positives.

4.7. Quality Control (QC) and Testing

Steps for evaluating the technical quality and robustness of these KGs are similar. We
implemented four layers of quality control, as follows.

Preliminary KG evaluation. To evaluate for internal consistency, we implemented a
domain-agnostic QC method similar to the method we previously described for BDQC68. We
perform basic tests of data types and consistency, including checks for repetitions of values &
relationships and for missingness on both the node and the edge TSV files. We also evaluate
the consistency between nodes and edges: whether declared nodes have no associated edges,
and whether edges refer to undeclared nodes. All tests are summarized in a compact JSON
format report. We then evaluate any QC flags in the report and make a domain-informed
assessment of whether they are justified (e.g., nodes can have no associated edges), or
alternatively whether they reflect computational or representation failures (e.g., multiple nodes
with identical identifiers, edges linking undeclared nodes). We also used well-known interactions
for domain-informed verification. For example, for the BigGIM-Drug Response KG, we use the
drug-target interaction as a cross checking of the KG by examining whether the target gene
itself is a predictor or biomarker for its targeted drugs. The comparison of evidence such as
p-values between the newly generated KG and gold-standard interactions provides an overall
metric of confidence.

Basic validation. Edges were sampled randomly from KGs and reviewed by subject matter
experts for biologic plausibility. For most KGs, ~40-100 edges are sampled by experts, who also
evaluate edge & node metadata including evidence and provenance69,20.

Internal querying. To perform testing of querying new KGs in-house, we implemented an
internal queryable endpoint using fastAPI. Since KGs can be very large, we selected
representative edges to assess the integrity of the entire KG. For example, this procedure
selected 939 edges out of the 229,614 edges in version 1.3 of the Multiomics Wellness KG.
Queries are tested on the internal endpoint to ensure that expected results are returned
speedily and to ensure the integrity of the KG. The internal endpoint is similar to a Translator
TRAPI endpoint, so passing internal tests minimizes the risks of failures upon external
deployment.

External querying. KGs are deployed (see next section) for testing by users via virtual
knowledge graph interfaces or through the Translator ecosystem (https://ui.transltr.io/).
Feedback is then collected from users via Github tickets.
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4.8. Deployment
KGs available to Translator automated reasoners and to public querying through SmartAPI
(smart-api.info)70, BioThings (REST API), and TRAPI endpoints. URLs and API documentation
can be found at github.com/NCATSTranslator/Translator-All/wiki/ Multiomics- Provider.

APIs. We set up BioThings APIs that can be queried directly as REST APIs. API development
and deployment consists of the following steps: (a) Generate knowledge from correlation
analysis, machine learning model predictions, etc. and structure it in the form of nodes and edge
relationships following the KGX format, (b) store the TSV files on a file server, (c) write a parser
script and manifest file as described in the BioThings Studio documentation (docs.biothings.io/
en/latest/ tutorial/ studio.html) and store these files in a GitHub repository, and (d) use BioThings
Studio to deploy to the Translator’s Service Provider server. A CI/CD flag can be enabled by the
Service Provider group for step (d) so that updated KGX files stored on a file server can easily
be loaded and merged with the existing KG. Parsers, SmartAPI yaml files, and other utilities are
also available in our Github repositories.

TRAPI endpoints. We set up TRAPI endpoints that can be queried by Translator’s automated
reasoning tools via BioThings Explorer71, Plover (https://github.com/RTXteam/PloverDB), and
Plater (https://github.com/TranslatorSRI/Plater). The BioThings Explorer tool uses the semantic
annotation in a KG’s SmartAPI Registry registrations to check if TRAPI queries may be
answerable with knowledge from the KG, to set up queries to a KG’s BioThings APIs, and to
transform the responses into the TRAPI standard. The BioThings Explorer tool’s
/v1/smartapi/{smartapi_id}/query endpoint can be used to access KGs individually. Plover is an
in-memory Python-based platform designed to host and serve Biolink-compliant KGs as TRAPI
APIs; it automatically performs Biolink predicate/class hierarchical reasoning and concept
subclass transitive chaining, among other tasks. Plater is a web server powered by Neo4j that
exposes Biolink compliant KGs as TRAPI APIs; it automatically performs Biolink predicate/class
hierarchical reasoning and concept subclass transitive chaining.

Privacy. The Translator Consortium has created novel approaches for hosting clinical data and
observational patient data including HIPAA Safe Harbor Plus (HuSH+) clinical data, clinical
profiles, Columbia Open Health Data (COHD), and the Integrated Clinical and Environmental
Exposures Service (ICEES)6,30,72,73. Translator is developed to comply with HIPAA guidelines.
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Live and updated versions of the Knowledge graphs are available via SmartAPI.
● Clinical Connections KG: https://smart-api.info/ui/eb4e66886fe5c178ae41977cea2c6307
● BigGIM-Drug Response KG: https://smart-api.info/ui/adf20dd6ff23dfe18e8e012bde686e31
● Clinical Trials KG: https://smart-api.info/ui/e51073371d7049b9643e1edbdd61bcbd
● Drug approvals KG: https://smart-api.info/ui/edc04feaf16c12424737988ce2e90d60
● Wellness Multiomics KG: https://smart-api.info/ui/02af7d098ab304e80d6f4806c3527027

Code availability
The code and instructions to perform the EHR prevalence analysis and other analyses are
publicly available on GitHub with no restrictions to access.
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● Clinical Trials KG: https://github.com/multiomicsKP/clinical_trials_kp
● Drug approvals KG: https://github.com/multiomicsKP/drug_approvals_kp
● Wellness Multiomics KG: https://github.com/Hadlock-Lab/multiomics_wellness_kp
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