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Abstract: The last two decades have witnessed an increasing interest in the use of the so-called rapid
analytical methods or high throughput techniques. Most of these applications reported the use of
vibrational spectroscopy methods (near infrared (NIR), mid infrared (MIR), and Raman) in a wide
range of samples (e.g., food ingredients and natural products). In these applications, the analytical
method is integrated with a wide range of multivariate data analysis (MVA) techniques (e.g., pattern
recognition, modelling techniques, calibration, etc.) to develop the target application. The availability
of modern and inexpensive instrumentation together with the access to easy to use software is
determining a steady growth in the number of uses of these technologies. This paper underlines and
briefly discusses the three critical pillars—the sample (e.g., sampling, variability, etc.), the spectra
and the mathematics (e.g., algorithms, pre-processing, data interpretation, etc.)—that support the
development and implementation of vibrational spectroscopy applications.
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1. Introduction

The last two decades have witnessed an increasing interest in the use of the so-called rapid
analytical or high throughput techniques [1–8]. Most of these applications are based on the use of
vibrational spectroscopy methods (near infrared (NIR), mid infrared (MIR), and Raman, visible (VIS))
in a wide range of samples (e.g., food ingredients, natural products, crops, animal and plant tissues,
medical and pharmaceutical applications; etc.) [9–13]. The number of references using words such as
“infrared”, “NIR”, “Raman”, “MIR”, “hyperspectral”, “green analytical methods”, “chemometrics” and
“multivariate data analysis” [9–17], are evidence of this steady increase in the number of applications
of these analytical methods.

In recent years, vibrational spectroscopy has been also considered for its potential as a high
throughput phenotyping tool in both animals and plants, where novel applications related with plant
breeding and selection, plant nutrition and physiology have been reported in the last 20 years [9–15].
More recently, vibrational spectroscopy (e.g., NIR, MIR, Raman and hyperspectral imaging systems)
techniques have shown their ability to qualitatively (e.g., classifying, identifying, and monitoring)
analyse several types of samples (e.g., wine, meat, coffee, condiments, etc.), targeting issues related
with origin, traceability, and provenance of foods and food ingredients [9–17]. Concomitantly, recent
developments in hardware (e.g., image techniques, optical sensors, handheld instrumentation, etc.)
are adding new analytical possibilities to the potential users of these technologies, making them very
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attractive to be implemented in the whole food value chain (e.g., the addition and use of objective tools
in blockchain and food traceability) [18–20].

Another field where vibrational spectroscopy demonstrated to have a great impact is in the
so-called process analytical technologies (PAT) [21–24]. This approach has not only been used to
collect chemical information about the process (e.g., spatial and temporal information) to monitor the
composition of the product, but also to provide information about the process itself, such as yield,
energy input, faults and quality assurance [21–24]. The implementation of vibrational spectroscopy
based on the utilization of different type of sensors has provided a platform for process data analysis
and process sensor technology [21–24]. The data collected by the sensor could be also utilised to
provide useful information about other aspects of the process, such as occupational safety, sustainable
protection of employees, plant safety, hazardous operating conditions, and to assure environmental
protection, providing feedback about the conditions of the industry [21–24]. The incorporation of
these technologies and the development of applications of PAT has increased the demands for a
knowledge-based approach [21–24]. According to the researchers in the field, the integration of
vibrational spectroscopy and other sensing techniques with multivariate data methods and techniques
(MVA) caused PAT to boost the multidisciplinary approach within the industry and research, where
the design of state-of-the-art sensors with high specificity and resolution have improved the amount
of data collected and therefore the information in order to manage the data generated by these
approaches [21–24].

This approach is not entirely strange to the industry where applications of these techniques also
attracted an increase in interest from the pharmaceutical, food and beverage industries, etc. [9–17].
The main reasons for the increasing use of this approach might be due to the main advantages that
these methods and techniques possess when compared with other routine analytical techniques or
methods, such as the non-destructive nature of these technologies, minimal or no sample preparation,
no chemical reagents required, easy and ready to use instrumentation, and availability of inexpensive
and portable devices [9–20].

One of the main analytical advantages of rapid analytical methods or high throughput techniques
is that they can evaluate/measure the biochemical and/or chemical characteristics of any given organic
compound [9–20]. This might be possible as chemical bonds present in the sample vibrate at specific
frequencies or wavelengths depending of their mass of the constituent atoms, the shape of the molecule,
and the stiffness of the bonds [9–20]. Therefore, the amount and the frequency of the absorbed light
and the total reflected or transmitted light can be used to infer the chemical composition of the sample.
The chemical and/or physical information derived from the use of vibrational spectroscopic methods
resides in the manifestation of peaks, band positions, intensities, and shapes [9–20].

In modern routine chemical analysis, scientist are often confronted with so much data that the
essential information may be not readily evident [11,25–31]. This is the case with spectral data for
which many different observations (peaks or wavelengths) have been collected during the analysis
of the sample. Each different measurement can be thought of as a different dimension [11,25–31].
Therefore, the success of the application will be highly dependent on the integration with the most
appropriate multivariate data analysis (MVA) method, such as pattern recognition and modelling
techniques, to develop the target application [11,25–31].

The advances and developments in modern analytical instrumentation and, in particular, those
observed in vibrational spectroscopy, have determined the increasing growth in the so called
high-dimensional data, where both the number of measured variables and samples can be high,
together with the high variety of data (e.g., multiple data sources are available) and high speed
during the collection of the data [32–34]. Thus, the increasing use of vibrational spectroscopy has
determined an increase in the volume, variety and velocity of data collected determining the so-called
“big data” [32–34]. The generation and use of big data becomes the reality in the routine life of analytical
chemists and every researcher [32–34]. Contradictory, although the time dedicated to analysing a
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single sample using vibrational spectroscopy has been reduced, the time dedicated to interpreting and
mining the data has exponentially increased, depending on the dataset [32–34].

Classical statistics are not able to handle the current increase in the volume of data generated
with this approaches. In this context, the scope of MVA is wide where its applications are found
in many fields and where the number of the so-called toolboxes or methods is diverse [11,25–31].
The integration of MVA into vibrational spectroscopy provides the means to move the analysis beyond
the one-dimensional (univariate) space, revealing constituents or properties that are important through
the various interferences and interactions in the matrix [11,25–31]. Today, many modern instrumental
measurement techniques are multivariate and based on indirect measurements of the chemical and
physical properties of the sample [11,25–31]. Figure 1 shows the theoretical and practical links between
the sample, the method or technique and the mathematics during the development of an application.
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Figure 1. The integration or link between the sample, the method or technique and the mathematics
during the development of applications based on vibrational spectroscopy.

Beyond the many advantages that the integration of vibrational spectroscopy with MVA offer,
the ability of providing a holistic view of the system or sample analysed (e.g., fingerprint analysis)
determines that these approaches are advantageous when compared with other analytical methods.
In addition, the availability of modern and inexpensive instrumentation together with access to
easy-to-use software is determining a steady growth in the number of applications of these technologies.
Please note that this paper does not intend to be “another” review of multivariate data analysis and/or
vibrational spectroscopy. The reader can find several excellent dedicated reviews already published in
the scientific literature. Instead, the intention is to discuss and provide a guide of the main issues that
can affect the successful implementation of these approaches.

Therefore, this paper underline and briefly discussed the three critical pillars—the sample (e.g., sampling,
variability, etc.), the spectra and the mathematics (e.g., algorithms, pre-processing, data interpretation,
etc.)—that support developments and implementations of vibrational spectroscopy applications.
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2. The Source of Information—The Experiment and the Sample

2.1. The Theory of Sampling and Uncertainty

Regardless of all the care taken during sampling, the sample always differs in composition from
the target intended [35–38]. Even the use of randomly replicated samples from the same target will
differ among themselves, determining the so-called sampling uncertainty [35–38]. Understanding the
uncertainty derived from both the sampling and the analysis will allow making rational decisions
about a given process, classification or calibration results [35–38]. It is worth noting that the final
application will be connected to making decisions about the target instead of about the sample [35–38].

Different authors have highlighted that one of the most important issues to be considered during
sampling is related to how good the uncertainty depending on the purpose is [35–38]. One important
issue to consider (and remember) is that the uncertainty of the measurement that arose from sampling
is non-negligible [35–39]. This is even more significant when raw materials (e.g., food ingredients)
and environmental samples (e.g., soil and water) are collected, where the uncertainty of the sampling
exceeds the analytical contribution [35–39]. Therefore, the theory of sampling becomes highly relevant
during the development of a given applications.

The theory of sampling (TOS) documents and details in a comprehensive means all aspects of the
mechanical structure and chemical variation within a target in relation to the procedure for obtaining
a primary sample from it [35–39]. Some of the main issues considered in the TOS are associated with
the characteristics and/or properties of the target, including the size range of the particles comprising
the target, the shapes of the particles, the compositional variation of the particles and the degree and
style of the heterogeneity of the target, among others [35–39]. The method of collecting or extracting
the sample and the degree of comminution/homogenisation/grinding at the different steps during the
sampling process are important aspects included in the TOS [35–39]. All of these previously summarised
issues and properties contributed to identifying the types of “error” of a given analysis or process [35–39].

The different sources and types of “errors” should be eliminated, and attention to detail will define
the procedure or sampling protocol that will deliver the “correct” sample [35–39]. Researchers and
practitioners in the field state that the interpretation of “correct” refers to “unbiased”, where sampling
bias is avoided in the definition [35–39].

During the application of the TOS, it has been reported that sampling uncertainty is ignored and
only the analytical uncertainty is considered [35–39]. The scientific literature in the field also suggested
that the heterogeneity in the population and the ways of counteracting its adverse influence due to
sampling/signal acquisition, sub-sampling and sample preparation/presentation processes, must be
considered and evaluated before analysis [35–39].

In summary, the TOS is the main framework that must be used as a guide during meta-analysis of
any application using vibrational spectroscopy [35–39]. It has been highlighted that the TOS emphasises
the fundamental sampling principle (FSP), which states that all potential units from an original material
must have an equal probability of being sampled in practice, and that samples are not altered in any
way after sampling [35–39]. In the context of model development (e.g., calibration/validation and
prediction), the main interactions between the sampling and the analysis (e.g., physical sampling),
or the sampling and the on-line application, must be evaluated and understood in order to avoid
inaccuracies and mistakes [35–39].

2.2. Samples

In any given application of vibrational spectroscopy, the sample itself plays an important role
in defining the success of such application. However, the importance of both the sampling and the
sample are usually overlooked. Two of the main characteristics or properties that define the success
of a given application using vibrational spectroscopy are associated with both the perturbation and
the observation of the sample [39–46]. The perturbation is usually associated with the experimental
conditions used to develop the application (e.g., dry vs. wet sample, temperature, whole vs. powder,
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etc.) while the observations/samples are associated with the sampling protocol and the property to be
measured (e.g., limit of detection, range in concentration, standard error of the laboratory, number of
samples etc.) [39–46].

2.3. Sample Properties and Pre-Processing

Preparing, pre-processing (e.g., grinding and homogenisation) and selecting the samples to be
incorporated into the application is not a trivial task [35–39]. During the process of preparing and
selecting samples for analysis, several inconsistencies or errors can be added into the overall error of the
method (e.g., multiplicative effects) [39–46]. For example, different pre-processing steps, such as drying
and grinding of the sample, can contribute to significantly exacerbating the analytical error [39–46].
This kind of interaction between the perturbation and the observation can be observed in most of the
applications using analytical methods, and they will define the success or lack thereof of the application
based on the systematic error [39–46].

2.4. Sample Variability

Probably one of the main questions asked during the development of the application is associated
with the selection of the most suitable sample to be used during calibration development [47]. It has
been agreed by several researchers that samples used to build a given calibration model have to
be selected from samples similar to those that will be analysed in the future [39–48]. In addition,
the samples have to be exposed to the same pre-processing and handling steps adopted, and this
should be maintained when future samples are incorporated into the calibration. Samples used in
calibration must be sourced from a wide-range composition, or at least considering the expected range
of the composition [39–47]. All sources of possible variation to be encountered in the future must be
considered and/or incorporated into the sample set [39–48]. If samples are used to represent a process
all potential variations in the system, factors such as temperature, changes in particle size, physical
changes in the sample, and equipment should be incorporated [39–47]. When dealing with biological
materials (e.g., plants, animal muscle or tissues), other variations must be evaluated, such as harvest
time and type of tissue (e.g., type of muscle), among others [39–48].

However, the selection of samples is not an arbitrary task and demands care. For example, during
calibration development, the aim is to obtain homogenous and representative samples well distributed
along the dataset. If there are too many samples available, it is recommendable to choose samples in
order to develop a well balance dataset. Although randomisation is the preferred method to select
samples to be included into the calibration, a better approach will be the utilization of robust techniques
based in either Mahalanobis and Euclidean distances or the Kennard–Stone algorithm [49,50]. Recently,
the use kernel distances have been reported as a robust method to objectively select samples [49,50].

3. Collecting the Information—The Spectra

A wide range of analytical methods and techniques based on vibrational spectroscopy are
available in the market nowadays (e.g., NIR, MIR, Raman, lab bench and handheld instrumentation,
hyperspectral imaging etc.) [51–53]. All of these techniques have in common the fact that they generate
large amounts of data. Munck and collaborators stated that most instruments based on vibrational
spectroscopy are extensively used a black box devices for the estimation of chemical compositions
based on calibrations [51–53]. Very few scientist are aware that black box technology can be expanded
for the physical–chemical characterisation of spectra [51–53]. Please note that it is not the objective of
this paper to provide a comprehensive and detailed description of the different vibrational methods
used as rapid or high throughput methods [54–64]. More detailed information about the different
methods and techniques available as well the different technical characteristics or properties of the
commercial instrumentation available in the market can be found elsewhere [54–64].

The selection of the most appropriate measurement technique or sampling mode/method is also of
importance. For example, the analysis of whole or powder samples (e.g., grains and forages) presents
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a much greater challenge than liquids (e.g., milk, wine, juice, etc.) when vibrational spectroscopy
methods are used (e.g., NIR and ATR-MIR), since the measurements are generally made in the reflectance
mode [39–47]. This is because reflectance measurements have lower energy collection efficiency than
transmission measurements [39–47]. In addition, when using NIR reflectance measurements, light
scattering efficiency is higher in the long wavelength region than at shorter wavelengths, which helps to
offset the less efficient light collection [39–47]. Most of the applications of reflectance use the scattered
light or energy from the sample, and they are used in the collection of NIR spectra [39–47]. The spectral
characteristics of the sample can be also dramatically altered due to the particle size. Other properties that
can have a large influence on the spectra might be related to suspended particles (e.g., fruit homogenates);
the shape, size and orientation of particles in powders; and the sample thickness [39–47].

4. Analysing and Interpreting the Information—The Maths

The use of vibrational spectroscopy generates large amounts of data, allowing for the simultaneous
analysis/measurement of several parameters, which provides a rapid and non-destructive quantification of
major components in many organic substances [65–78]. The integration of vibrational spectroscopy methods
with MVA has been the key for the success of the application of these techniques in many fields [65–78].

It has been stated (and sometimes is the believe by some of the users of MVA) that if the data already
contain information, then any MVA method will succeed [35–39]. Unfortunately, the data are not as clean
as expected when sampling and instrument noise and typing mistakes, among others have a greater
impact where the use or pre-processing or any other correction does not improve the accuracy of the
analytical results (e.g., inaccuracies can never be modelled) [35–39]. Therefore, a word of caution: MVA is
not a “black box” or “push button” approach where the modelling will automatically do the rest [35–39].

4.1. Data Pre-Processing

Before starting with the analysis, interpretation and model developing, data pre-processing
is a critical stage, as it affects the performance of the algorithms used and therefore the results
(e.g., calibration and classification) [79–83]. Different methods and/or techniques for data pre-processing
have been applied and developed specifically to different types of data and experimental designs [79–83].
For example, pre-processing of the spectra using the first and second derivatives, smoothing, multiple
scatter correction (MSC), standard normal variate (SNV) and other normalization techniques were
reported in most of the applications using vibrational spectroscopy [79–83]. Details about these
pre-processing methods and techniques can be found in reviews by other authors [79–83].

4.2. Mistakes and Error during Analysis and Interpretation of the Data

The analysis of large-scale data is a challenging task (e.g., big data), not so much because the
amount of data is large, but because large-scale measurement technologies possess high inherent
variability [81–84]. Sources of this variability contribute to defining the systematic errors (bias)
and the so-called stochastic effects (noise) [81–86]. Systematic effects influence all measurements
in a similar manner [81–86]. Therefore, they can be eliminated or reduced using different data
normalisation or pre-processing techniques [81–86]. However, stochastic effects cannot be corrected
by pre-processing, but can be quantified, in particular by the application of repeated measurements
(replicates) [81–86]. Depending on the modelling approach, further data manipulations might be
necessary [81–86]. Ultimately, pre-processing techniques used to remove any irrelevant information
that cannot be handled by the regression techniques [81–86]. Several pre-processing methods have
been proposed and developed for this purpose and several references can be found elsewhere [81–86].

4.3. Algorithms Used to Develop Models

The use of MVA, unlike classic statistics, can also allow for the simultaneous analysis of multiple
variables and takes collinearity into account (the variation in one variable, or group of variables,
in terms of co-variation with other variables) [65–78,87–95]. The analysis can mathematically describe
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the co-variation (degree of association) between variables, or find a mathematical function (regression
model) that calculates the values of the dependent variables from values of the measured (independent)
variables [65–78,87–95].

The most commonly used data analysis algorithms for performing regression include partial least
squares regression (PLS) and principal component regression (PCR) [65–78,87–95]. These regression
methods are designed to avoid issues associated with noise and correlations (collinearity) in the
data [65–78,87–95]. PLS has brought into the field an online analysis of plants for a variety of quality
attributes [65–78,87–95]. Besides PLS and PCR regression, other multivariate data analysis methods
have been applied either to explore datasets or to build calibration models, where principal component
analysis (PCA); cluster analysis (CA); linear discriminant analysis (LDA) [65–78,87–96]; machine
learning approaches, such as support vector machines, classification and regression (SVM) [97–101],
artificial neural networks (ANN) and other non-linear techniques [102–105]; and pattern recognition
methods are just few examples [63–76,85–105].

4.4. Validation

In practice, several applications of vibrational spectroscopy available in the scientific literature
report the use of cross-validation as the main technique used to test the models [105–121]. One of
the most important steps during the implementation of a calibration into a real-life situation is the
process of verification, validation and required testing [105–115]. What appears to have improved
in the last decades is the capability to manage the quality control, equation updates, and data
analysis [105–115,122,123]. As mentioned above, in order to assess the accuracy of a calibration
model and to avoid overfitting, validation procedures have to be applied; a calibration model without
validation is nonsense [105–115]. Although in feasibility studies cross-validation can be the best practical
method to demonstrate that a model can predict the measured property, the actual accuracy must
be estimated with an appropriate test set or validation set [105–115]. For feasibility studies, different
cross-validation techniques can be used [105–124]. For example, in leave-one-out cross-validation,
one sample is removed from the dataset, and a calibration model is constructed for the remaining
subset [104–114]. The removed samples are then utilised to calculate the prediction residual [105–115].
The process is repeated with other subsets until every sample has been left out once, and in the end, the
variance of all prediction residuals is estimated. In multifold cross-validation, a well-defined number of
samples (‘segment’) is left out instead of one [105–115]. In internal validation, the dataset is split into a
calibration set and a validation set. Calibration models are determined to be robust when the prediction
accuracy is relatively insensitive towards unknown changes of external factors [105–115,122–124].

A good validation method should include a dataset of a completely excluded set of samples
(not included in cross-validation) sourced from a separate sample regime with separate analysis.
An independent testing of the calibration models on an excluded validation set eludes several of the
most frequent mistakes in MVA, such as model overfitting [105–115,120–124].

Validation of classification models (e.g., discrimination) derived from the application of hyperspectral
imaging have their own challenges [105,117]. A recent tutorial revised the different validation methods
used in hyperspectral imaging analysis [105,117]. One of the main issues encountered is related with the
samples used to develop the models. If too many samples are used (e.g., oversampling), unconstrained
bootstrap and k-fold cross-validation might yield inaccurate results, failing to provide a realistic estimate
of the predictive performance of the model [105,117]. Factors that can have a large influence during the
analysis might be related to the range of data points (e.g., wavenumbers) used, the size of the image,
the distribution of pixels from the different classes in the image and the number of pixels included in the
training set [117]. The authors of the tutorial indicated that better results were obtained when randomised
samples were used to develop the calibration and validation datasets [117].

The development of discriminant models utilising image data acquired from a single sample is
highly risky, as the models might not take into consideration the effect of several sources inducing
variation in the IR signal (e.g., age, body mass index, collection dates, sample storage or instrument
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performance) [105,114]. Therefore, validation using an external validation set is necessary in order to
avoid overoptimistic results [105,116,117]. Other validation methods have been proposed during the
integration of discriminant approaches to hyperspectral image analysis [116,122–124]. A summary of
these applications can be found in a review by Guaita and collaborators [116,122–124].

4.5. Data Interpretation

One of the main issues is the comparison of results from the literature is usually complicated
by variations in the population size and structure with respect to the attribute of interest. It is
therefore critical to report the standard deviation (SD) of the population for the attribute of
interest [28,40,41,46,48,78,109,110,113]. In general, a range of statistics is required to be reported
in order to compare different calibrations, including the coefficient of correlation (R), root mean
square for the standard error in cross-validation (RMSECV), standard error of prediction (SEP),
SD, the number of samples used, the number of outliers removed, and the number of principal
components [28,40,41,46,48,78,109,110,113,116]. The report of marginal gains in the standard of
cross-validation or prediction after the use of several pre-processing methods should be avoided.
The same can be applied when different algorithms are used with no real improvements in the
predictive ability of the models. A summary of the main statistics to be considered during calibration
interpretation and reporting can be found in the report by Williams and collaborators [112].

Calibration models are often evaluated and/or reported using a combination of some of the statistics
presented above. However, the sole interpretation and evaluation of statistics is not enough, and the
loadings or coefficients of regression must be interpreted in the context of the property or the measured
chemical analyte [28,40,41,46,50,78,109,112,113]. For example, if a calibration was developed to measure
or predict protein, it is expected that wavelengths or frequencies that contain information about the N–H
bonds will be prevalent. In real-life applications of vibrational spectroscopy, the calibration or model
must be judged or considered in relation to their fit-for-purpose criterion [28,40,41,46,50,78,109,112,113].

5. Outliers, Overfitting and Underfitting

Typing errors; file transfer; interface errors; sensor malfunctions; and fouling, bad or incorrect
sampling or sample presentation of the instrument, among other factors [117–124], may induce
outliers. Samples can be considered as outliers according to the spectra, reference, or both [117–124].
During calibration development, outliers can be visualised using a principal component (PCA) scores
plot [117–124]. Outlier samples should be kept during the initial steps of calibration until further
investigation into their origin, and only the sample outliers that have an effect on the regression model
are to be removed [117–124]. In any case, excessive pruning of the dataset for outliers should be
avoided [117–124].

During the application of any of the MVA techniques presented above, it is important to select the
appropriate number of components or latent variables (optimization) [117–120]. In this process, there
is a delicate balance: if too many are used, there is too much redundancy in the independent variables
used during the development of the model, causing the model to become overfitted [117–120]. In this
case, the calibration model will be very dependent on the dataset and might provide poor prediction
results [117–124]. On the other hand, using too few components will cause underfitting and the model
will not be large enough to capture the variability in the data [117–120]. This “fitting” effect is strongly
dependent on the number of samples used to develop the model and, in general, more samples give
rise to more accurate predictions [117–124].

Overall, the use of MVA has the risk of overfitting (over-parameterization) determining a potential
increase in the risk of false discovery [121]. Overfitting can be reduced during exploratory applications
of vibrational spectroscopy by the use of rank optimization (e.g., based on pragmatic cross-validation),
or by the use of double cross-validation (cross-model validation) [121]. These approaches, although
not ideal, can be used until large, representative and independent test sets are obtained [121].
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The steps needed to develop an application combining the sample, the spectra and the reference
data are summarised in Figure 2.
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6. Concluding Remarks

The integration of vibrational spectroscopy with MVA to develop analytical applications
(e.g., calibration and classification) can be considered by the non-expert purely as a mathematical or
statistical exercise. This, however, could not be further from the truth—calibration development is a
complex process that implies the understanding of a system created by the sample and its inherent
characteristics (e.g., physical and chemical properties, variability, origin, pre-processing, etc.), the
origin of the spectra (e.g., instrument characteristics, sample collection mode, etc.) and all the aspects of
the multivariate data analysis (e.g., pre-processing, selection of samples for calibration and validation,
linear and non-linear algorithms, outliers, etc).

These developments require a basic understanding of the different variables that contribute to
the system and they include the sample, fundamentals of spectroscopy, data processing and analysis,
sampling protocols, and limit of detection (see Figure 3). The adaptation of vibrational spectroscopy to
efficiently and reliably contribute to the expansion in the number of applications related to analytical
chemistry, process analytical technologies, traceability of food ingredients, and natural products, makes
them an ideal set of methodologies towards sustainability along the food value chain. An increasing
number of research groups have investigated the use of vibrational spectroscopy, as shown in several
applications reported in the literature. However, commercial implementation of these techniques is
still under development in some industries.

Even though several articles have been published in the scientific literature, most of them describe
feasibility or potential applications of vibrational spectroscopy, where small datasets containing few
samples are analysed and cross-validation, rather than an independent dataset, is used to validate
the developed models (e.g., calibration). Adding to this is the little in-depth understanding of the
reference lab (e.g., standard error of the laboratory method). Most of the application of vibrational
spectroscopy are considered correlative methods, and their accuracy depends on the error of the
reference method. Therefore, knowledge of the extent to which results are repeatable using wet
chemistry or biochemical procedures is of paramount importance in judging the reliability calibration.
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It is important to remember that the wet chemistry or reference data with all their known inadequacies
are used to assess the performance of the calibrations; thus, before assessing the accuracy of a calibration
or model, the error associated with the reference method should be known, and this is a fact that is
often ignored. The lack of interpretation of loadings, significance of coefficients of regression, and
inter-correlations among measured variables and chemical compounds are usually missing from
the interpretation.Molecules 2020, 25, x FOR PEER REVIEW 10 of 17 

 

 

Figure 3. A schematic representation of the main components/variables that affect the sample, 
technique and data analysis. 

Even though several articles have been published in the scientific literature, most of them 
describe feasibility or potential applications of vibrational spectroscopy, where small datasets 
containing few samples are analysed and cross-validation, rather than an independent dataset, is 
used to validate the developed models (e.g., calibration). Adding to this is the little in-depth 
understanding of the reference lab (e.g., standard error of the laboratory method). Most of the 
application of vibrational spectroscopy are considered correlative methods, and their accuracy 
depends on the error of the reference method. Therefore, knowledge of the extent to which results 
are repeatable using wet chemistry or biochemical procedures is of paramount importance in judging 
the reliability calibration. It is important to remember that the wet chemistry or reference data with 
all their known inadequacies are used to assess the performance of the calibrations; thus, before 
assessing the accuracy of a calibration or model, the error associated with the reference method 
should be known, and this is a fact that is often ignored. The lack of interpretation of loadings, 
significance of coefficients of regression, and inter-correlations among measured variables and 
chemical compounds are usually missing from the interpretation. 

The use of MVA reveals interesting information about the system but important bits might 
remain undiscovered. The extent or the use of good MVA (e.g., new algorithms, new software, or 
mathematical pre-processing) is meaningless if we fail in evaluating the best sample presentation, 
processing or interactions of the sample collection and analysis. 

One of the interesting aspects of the modern integration of these technologies is that it requires 
and sources information and knowledge from many fields (e.g., spectroscopy, analytical chemistry, 
data analysis, biology, physics, etc.). This determines the unique multidisciplinary characteristic of 
this approach. A close collaboration between several researchers is therefore critical for the 
application and development of the technology. It is also important that everyone involved in the 
process understands and agrees upon the goals and requirements of the study beforehand to reduce 
the risk of weak links in the study. The definition of protocols for reporting the outcomes and results 
of any given study is also important. 

Knowing and understanding the reference laboratory method (such as the standard error of the 
lab method), the limitations of the method, the physics and chemical basis of the spectra, as well as 
knowing and interpreting the interactions that exist between the sample and the instrument, will 

Figure 3. A schematic representation of the main components/variables that affect the sample, technique
and data analysis.

The use of MVA reveals interesting information about the system but important bits might remain
undiscovered. The extent or the use of good MVA (e.g., new algorithms, new software, or mathematical
pre-processing) is meaningless if we fail in evaluating the best sample presentation, processing or
interactions of the sample collection and analysis.

One of the interesting aspects of the modern integration of these technologies is that it requires
and sources information and knowledge from many fields (e.g., spectroscopy, analytical chemistry,
data analysis, biology, physics, etc.). This determines the unique multidisciplinary characteristic of this
approach. A close collaboration between several researchers is therefore critical for the application and
development of the technology. It is also important that everyone involved in the process understands
and agrees upon the goals and requirements of the study beforehand to reduce the risk of weak links
in the study. The definition of protocols for reporting the outcomes and results of any given study is
also important.

Knowing and understanding the reference laboratory method (such as the standard error of the
lab method), the limitations of the method, the physics and chemical basis of the spectra, as well as
knowing and interpreting the interactions that exist between the sample and the instrument, will allow
the user to better interpret the calibration or obtained mathematical relationships. It is therefore
important that the individual that developed such calibrations has this knowledge in order to produce
a method that can be reliable.

Martens [121] has highlighted that the scientific process of boring into the solid “mountain of the
unknown” never stops, and that it is continuous. The author suggested that statistically valid claims
must be replicated independently, intuitive hunches should be chased and solid manmade theories
should be assessed critically.
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The advantages and ability of vibrational spectroscopy to predict multiple parameters and speed of
analysis mean that we have a powerful tool that can revolutionise the way we produce foods. The future
development of such applications will provide the industry with a very fast and non-destructive
method to monitor composition or changes and to detect unwanted problems, providing a rapid means
of qualitative rather than quantitative analysis. Moreover, the choice of measuring device(s) may
benefit from the experience in, e.g., multichannel diffuse near infrared (NIR) spectroscopy measuring
many properties—preferably more than necessary, (it usually does not cost much extra).

However, various hurdles still hinder the growth and development of vibrational spectroscopy
applications. Among them is the reluctance to accept the incorporation of vibrational spectroscopy
with new statistical tools, such as multivariate data analysis techniques, as routine analytical or quality
control methods. Besides, most of the current courses and training programmes in food still focus on
the so-called classical approach where several aspects related to the incorporation of new technologies,
sensors and programming are not yet incorporated in the curricula. The same can be said regarding
research and other aspects of informal training and extension. Together with the silo mentality that still
exist in the food industry, this hinders the possibility of exploiting the full potential of these systems by
the industry.

Finally, one of the most important and critical aspects of the development of vibrational
spectroscopy is the need for an appropriate level of training. For example, although knowledge of
the chemistry of a sample material is useful, routine analyses can be performed by analysts with a
high-school education. On the other hand, calibration development (interpretation, application and
monitoring) is by far the most critical aspect and thus requires a high level of expertise, particularly
in multivariate data analysis, in order to make an application successful. Where methods based on
vibrational spectroscopy have been applied in industry situations, the potential savings, reduction
in time and cost of analysis have been demonstrated. These methods show promising potential for
in-field and process analysis.
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