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Experimentally attacking quantum 
money schemes based on quantum 
retrieval games
Kateřina Jiráková   1*, Karol Bartkiewicz1,2*, Antonín Černoch3 & Karel Lemr   1*

The concept of quantum money (QM) was proposed by Wiesner in the 1970s. Its main advantage is 
that every attempt to copy QM unavoidably leads to imperfect counterfeits. In the Wiesner’s protocol, 
quantum banknotes need to be delivered to the issuing bank for verification. Thus, QM requires 
quantum communication which range is limited by noise and losses. Recently, Bozzio et al. (2018) have 
demonstrated experimentally how to replace challenging quantum verification with a classical channel 
and a quantum retrieval game (QRG). This brings QM significantly closer to practical realisation, but still 
thorough analysis of the revised scheme QM is required before it can be considered secure. We address 
this problem by presenting a proof-of-concept attack on QRG-based QM schemes, where we show that 
even imperfect quantum cloning can, under some circumstances, provide enough information to break 
a QRG-based QM scheme.

All payment methods are potential targets of thieves and counterfeiters. Over the course of history, we have wit-
nessed a race of arms between the counterfeiters and issuers of various currencies. Remarkably, Sir Isaac Newton, 
who became the master of Royal Mint, enforced laws against counterfeiting. Nevertheless, the methods used by 
Newton become obsolete when it comes to modern payment methods. With the rapid technological progress, 
we are beginning to consider a situation where counterfeiting is no longer limited by the available technology, 
but rather by the laws of nature. An example of such fundamental limitation is the no-cloning theorem1,2, which 
guaranties security of quantum money3–7.

In a recent paper, Bozzio et al.8 reported on an implementation of a QM scheme based on QRGs9–11. While 
this result brings QM closer to practical implementation, here we demonstrate that QRG-based QM schemes are 
still vulnerable to a new kind of attack (for some typical attacks see ref. 12–16) which can be considered a quantum 
version of sniffing (a hacking method used to monitor clasical information). The general idea of our attack can 
be used against a broader range of QM schemes based on QRG17–19 and potentially on other quantum communi-
cation protocols. Thus, our results can facilitate future practical implementations of QM by providing a method 
for exploring the security limits allowed in QRG-based protocols. For the purpose of our research we have 
experimentally recreated the original scheme of ref.8. Its working principle can be described as follows: the bank 
encodes QM (as a quantum token) using a secret sequence of qubit pairs chosen from the list of eight options:

= | + 〉 | − 〉 | + 〉 | − 〉 | + 〉 | − 〉 | + 〉 | − 〉S { 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 } , (1)

where |0〉, |1〉 are logical qubit states, and | ± 〉 = | 〉 ± | 〉( 0 1 )1
2

 stand for their superpositions. The tokens and 
their serial number are then stored on a quantum credit card8,20,21 subsequently given to a client of the bank. Upon 
payment, the credit card is inserted into the vendor’s terminal which is supposed to perform projection measure-
ments on these pairs in a measurement basis requested by the bank (randomly chosen to be either 0/1 or +/− for 
an entire pair). Then, the terminal sends the classical outcomes of those measurements to the bank. The main 
advantage of this scheme is that the terminal measurement itself is sufficient for authentication of the credit card, 
so quantum states do not have to be sent to the bank for verification. The bank just checks the results knowing the 
specific encoded states and either accepts or denies the payment. A small amount of errors is expected to appear 
in the verification procedure to account for implementation imperfections. The acceptable amount of errors 
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needs to be small enough to ensure that payment by a cloned quantum credit card is denied. In contrast to the 
original Wiesner QM scheme3, no on-line quantum channel has to be used for payment. Thus, the verifiability 
problem as defined by Aaronson and Christiano22 is at least partially solved.

This protocol is secure against a dishonest terminal only if each quantum sequence is generated using a truly 
random encoding. However, such condition would give rise to a giant database problem, as discussed in22 and23. 
The random sequence approach is highly impractical or even infeasible. In practice, there has to be one secret 
encoding function shared by a certain number of quantum banknotes or tokens (i.e., sequences of quantum states 
and their serial numbers). Hence, in our research we test limitations of sharing a secret encoding by multiple 
tokens. The tokens are therefore encoded using a prescription based on the output of a classical algorithm. Inputs 
to this algorithm are the publicly known serial numbers (SN) and secret salt (a secret number).

The aim of suggested attack is not to copy single banknotes but to be able to generate new banknotes that 
pass as genuine. Note that by employing the studied attack strategy, a terminal can collect in principle unlimited 
data during its operation. This attack can be run in parallel while having many wiretapped terminals. Moreover, 
we show that by using optimal quantum cloning we can learn the secret faster than by limiting the attack only to 
classical data processing.

Although quantum cloning has been already used to counterfeit QM4, the purpose of quantum cloning here 
is completely different and as such is virtually undetectable by the bank because we copy only parts of quantum 
tokens (i.e., quantum sequences). In terms of QRG-based QM protocol, the attacker utilises a compromised 
payment terminal enabling quantum cloning of an input qubit (see Fig. 1). The terminal performs measurements 
on both copies of a qubit providing the attacker with some information on the encoding used by the bank, if two 
consecutive qubits from a sequence are cloned. The frequency of cloning can be arbitrarily small and therefore 
made unrecognisable from noise. After gathering enough data, the attacker reveals the secret encoding used by 
the bank for preparing credit cards. Since then, they can issue fake quantum credit cards indistinguishable from 
the original ones issued by the bank.

Quantum cloning has been proposed and tested as a means of attack on quantum communications proto-
cols12–14,24,25. There is, however, a significant conceptual difference between cloning attack on quantum cryptog-
raphy and the quantum money scheme discussed in this paper. The necessary condition for successful attack 
on quantum cryptography protocol is having ideally 100% of the quantum key eavesdropped. Otherwise, the 
security can be attained by privacy amplification arbitrarily lowering the attacker’s probability of decoding the 
shared message26. On the other hand, attack on QM based on QRG described in this paper only requires to clone 
a small fraction of the money tokens. Such infrequent cloning is basically undetectable in the noise, albeit gath-
ering data would proceed slowly. A typical obstacle in cloning-based QM attacks is requirement of high cloning 
success rate as at least half of the token needs to be cloned successfully (i.e. not destroyed)4. This fact needs to be 
dealt with on probabilistic platforms such as linear optics. The method discussed in this paper is completely free 
of this limitation.

Results
We have implemented the quantum sniffing attack on the platform of linear optics, where qubits are encoded as 
polarisation states of single photons. The optimal cloning strategy (i.e., maximizing single-copy cloning fidelity) 
for copying qubits from the set S is implemented as the symmetric phase-covariant cloning (SPCC)4,12,27. In the 
experiment, pairs of input qubits |ψ1ψ2〉in ∈ S were subjected to SPCC procedure obtaining two clones 

⊗ ⊗ˆ ˆ ˆ ˆand1A 2A 1B 2B     of the input qubit pair. These clones were then measured in the same but random basis. 
In a QRG-based QM protocol the basis is selected by the bank. Due to limitations of linear optics based imple-
mentations of quantum cloners28, the SPCC process is probabilistic and sometimes it fails to deliver the clones. 
The probability of successful cloning of one input qubit is denoted P. Therefore the probability of cloning the 
entire qubit pair is P2. Quality of the clones is expressed in terms of fidelity F defined as ψ ψ= = 〈 | | 〉ˆF Fij i ij iin in, 
where i = 1, 2 and j = A, B denote the first and the second clone, respectively. The probability of finding both 
clones ̂iA and îB  in a given state |ψi〉in reads F2. An example of an attack on a particular qubit pair is shown in 
Fig. 1.

The theoretical limit for SPCC fidelity27 is = + ≈ .( )F 1 0 8541
2

1
2

 and on the platform of linear optics the 
cloning succeeds with probability =P 1

3
. While the limit on fidelity is fundamental in its nature, P depends on the 

physical platform used in a given implementation and can be arbitrarily close to 1. However, even on the platform 
of linear optics, it is possible to clone at arbitrarily high values of P but at the expense of reaching lower than opti-
mal fidelity F (see hybrid quantum cloners12,29).

The terminal registers two measurement outcomes per input qubit corresponding to the clones. If the two 
clones of one input qubit yield identical results, while for the other yield opposite results, the attacker gains infor-
mation about the encoding. With the probability Ptot = Pc + Pe the attacker eliminates six of the original eight 
encodings (see Eq. 1). One of the two remaining encodings have actually been used by the bank. The probability of 
obtaining correct information from the attack is =P P Fc

1
2

2 2, whereas = − + −P P F P F F(1 ) (1 )e
1
2

2 2 2  stands for 
the probability of getting an erroneous result due to limited cloning fidelity. Similarly, if the two clones of each input 
qubit yield identical results, the attacker knows that only one of four encodings might have been sent by the bank.

The attacker is able to learn the method of encoding tokens by accumulating measurement results provided 
that the fidelity is ≠F 1

2
. The cloning operation inherently introduces errors in the measurement outcomes1,2. 

Hence, the terminal might send to the bank incorrect results. If the error rate surpasses a given limit (25% in 
ref.8), the bank will reject the payment. Thus, it is necessary to introduce a strategy of attack considering all cir-
cumstances of the measurement (i.e., if cloning failed or not) and its outcomes to minimise the error rate. There 
are generally three distinct strategies: (i) to provide the bank with measurement outcome every time cloning takes 
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place and even if it fails, send a random value, (ii) to send measurement outcome, only if it is registered by the 
terminal and report a lost qubit when cloning fails and (iii) to measure qubits after their extraction from the credit 
card in given measurement basis but do not perform cloning at all.

Figure 1.  Attack on a quantum credit card utilising a hacked terminal. During a transaction a pair of states (e.g., 
|+1〉) is extracted from the card and cloned. Here, for simplicity, we depict only the situation where all the qubits 
are perfectly copied (the probability of such event is proportional to F2). Then, measurements are performed on 
all four copies in the basis randomly chosen by the bank (e.g. 0/1). If the measurements on copied qubit pairs 
produce one of two results from the bottom block of the table of outcomes, the attacker learns the originally 
encoded state (in this case |?1〉). This procedure is repeated until a relation between the quantum states and 
serial numbers is learned. Since then, the attacker can issue perfectly counterfeit quantum credit cards.

https://doi.org/10.1038/s41598-019-51953-9
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To quantify the correlations between the attacker and the genuine token we use mutual information Isec, which 
expresses how many bits of information can the attacker obtain upon cloning one qubit pair. The exact value of 
mutual information depends on the strategy used, cloning success probability P and fidelity F. In case of the third 
strategy (without cloning), its value is 1

2
. For more details on this strategy refer to section Methods.

Simultaneously, we denote  the probability of an error being reported to the bank. The expressions for error 
rates  for the two above-mentioned strategies can be obtained by direct calculations based on analysis of proba-
bilities of all possible scenarios and read

= − + −P P F(1 ) (1 ), (2)i( )
1
2



 = − .F1 (3)ii( )

Equation (2) takes into account two situations. In the first case, one or both qubits are lost during cloning and, 
therefore, random results are reported to the bank (50% chance of error). In the second case, even if cloning suc-
ceeds, non-unit fidelity may cause the measurement to yield an incorrect result. The error rate in case of strategy 
(ii) depends only on imperfect cloning fidelity.

The relation between mutual information Isec (between the bank and the attacker) and the error rate  for all 
strategies is shown in Fig. 2. In the figure, quantities Isec and  are functions of cloning fidelity for ≤ ≤F 11

2
 for 

two cloning success rates =P 1
3
 (linear optics limit4,28,29) and P = 1 (deterministic cloning4,29–31). In case of deter-

ministic cloning the two attack strategies coincide, but for probabilistic cloning the second strategy provides 
better results. It is fair to note that the mutual information of any simple linear-optical cloning strategy is lower in 
comparison with the no-cloning strategy (iii). On the other hand, with deterministic cloning, one can reach even 
higher values of mutual information and therefore cloning strategies need to be considered for security implica-
tions. Additionally, machine learning-based algorithms may require data with as little noise as possible even at the 
expense of the overall quantity. Post-selection on successful cloning events allows to distil such sample. 
Corresponding conditional mutual information yields a significantly higher value when both qubits are success-
fully cloned than for the no-cloning strategy (iii) (Fig. 3).

To prove the working principle of the quantum sniffing attack, let us consider a specific encoding of the quan-
tum tokens and demonstrate the attacker’s approach to learning the encoding. Here, we assume that the bank uses 
a hash function to encode the tokens. Since the hash functions have become a worldwide standard for encryp-
tion and basis of many classical cryptosystems they would be easily deployable by the bank. Hash functions are 
designed to return very distinct results even for similar inputs making their output unique. Another advantages 
are, for instance: irreversibility, (i.e. impossibility to retrieve original message from a given hash), or their repeat-
ability (they yield the same hash for the same message).

The input can be additionally modified by using a specific secret number (salt). In this case the hash function 
is often referred to as salted. For simplicity, let us now assume that the hash function is known to the attacker, but 
the salt is secret. For each token passing through the terminal, the attacker calculates hashes (outputs of the hash 
function) of its serial number salted by numbers from a certain range. This way the attacker investigates various 
encodings each corresponding to one secret number (or salt). Using the information gained by quantum sniffing, 
the attacker calculates the number of agreements (matching qubit pairs) between the predictions of the tested 
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Figure 2.  Mutual information Isec versus error rate  for two fixed probabilities = { }P ;11
3

. Vertical black dotted 
line represents error rate associated with security threshold discussed in refs17,18. Crosses mark the smallest 
average error introduced by optimal cloning for a fixed value of P. Error rates below these optimal values cannot 
be reached by any physical operation (greyed curves). Circles stand for limit of classical copying (F = 0.75). 
Thus, the segments of curves between circles and crosses mark the regime of quantum copying. It follows from 
Eq. 3 that classical copying limit in strategy (ii) always corresponds to intersection between the relevant curve 
and the security threshold. For more details on strategy (iii) refer to section Methods.
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encoding and the measurement outcomes on real tokens. The encoding with highest number of agreements is 
most probably the one used by the bank, hence the one corresponding to the correct salt.

To showcase the attack, we have implemented token encoding using several known hash-based func-
tions, i.e. HMAC-MD532, HMAC-SHA512, HMAC-SHA256, and HMAC-SHA1 (HMAC–Hash-based 
Message Authentification Code33). Typical example of encoding using SHA512 is depicted in Fig. 4. In our 
proof-of-concept experiment, the salt has been sought only among three-digit numbers. To distinguish the secret 
number from noise originating from random matches, a sample of 4 040 successfully cloned photon pairs (cor-
responding to 101 serial numbers used in the experiment) has been evaluated. To optimise the computational 
resources of the attacker, the algorithm gradually refines the set of evaluated secret numbers. Periodically it 
removes secret numbers with low number of agreements from the list of evaluated numbers. Once the number of 
agreements for one secret number surpasses the average number of agreements by selected multiple of standard 
deviation, the algorithm ends and returns that number. Note that due to some error tolerance, the attacker does 
not necessarily need to recreate the original hash function. It would be enough if they found a function which 
error rate is below the security threshold.

The size of HMAC output of all used hash functions was set to be 40 bytes. As a consequence, the number of 
tokens necessary for guessing the secret number was independent on the number of digits of their serial number. 
For each hash function we have established how many photon pairs need to be successfully cloned in order to 
reveal the secret number with sufficient certainty. The results are summarised in Table 1. The number of cloned 
pairs needed does not scale with the length of the salt. The salt length only increases the classical computing time. 
According to our numerical simulation, number of photon pairs necessary for correct guess is linearly increasing 
with the number of output hash bits. However, with the length of output hash the frequency of cloning (number 
of cloned pairs/total number of transmitted photon pairs) does not change because the length of the token is also 
increasing. The output hash and the token have to have the same length in order to avoid incidents such as two 
inputs to the hash function yielding the same output. Longer hash output would, therefore, result in increase of 
computer search time, however, it would not prevent the attacker from retrieving the secret number since the 
searching process is performed in parallel with the cloning attack. Note that these results were obtained using our 
experimental results where the average cloning fidelity was found to be above 80%.

We have also performed a generalised attack in which the attacker did not know what hash function had been 
used for encoding. The attacker only assumes the hash function is one from a given set. In this situation, the 
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Figure 4.  Dependence of number of agreements on all possible three-digit secret numbers evaluated for 4 040 
successfully cloned photon pairs. The revealed secret number (salt) is marked by a red circle.
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attacker has to calculate hashes using all hash functions in this set to encode serial numbers and count numbers 
of agreements as described above. The plot in Fig. 5 shows the search for the secret number among four hash 
functions. The tokens were encoded using MD5. Our results indicate that the correct secret number and hash 
function can be revealed assuming the hash function is a member of a finite set. The size of which is limited by the 
available time and computing power.

Methods
Photonic qubits were encoded as four polarisation states located on the equator of Poincaré sphere: |D〉, |A〉, |R〉 
and |L〉 (i.e. diagonal linear, anti-diagonal linear, right-handed and left-handed circular polarisations). Thus, the 
set of possible qubit pairs (1) is given as

′ = | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 .S DR DL AR AL RD LD RA LA{ , , , , , , , } (4)

Experimental setup used in our experiment is shown in Fig. 6. Photon pairs at λ = 710 nm are generated in 
a process of type-I spontaneous parametric down-conversion (SPDC) in a BBO (β-BaB2O4) crystal. The crystal 
was pumped by Paladine (Coherent) laser operating at λ = 355 nm. One photon from each SPDC-generated pair 
served as one qubit of the cloned banknote. We used a sequence of half and quarter wave plates (HWP and QWP, 
respectively) to implement encoding. The second photon from the SPDC-generated pair was meanwhile used as 
a cloning ancilla (kept horizontally polarised as it is the theoretically known optimum for SPCC).

Given the nature of the attacked scheme, phase-covariant cloning is the optimal form of cloning attack. It has 
been used to attack distinguished quantum cryptography protocols such as BB8434 or RO435,36. The attacked QM 
scheme uses equatorial qubits in the state

ψ| 〉 = | 〉 + | 〉ηe1/ 2 ( 0 1 ) , (5)s
i

where |0〉 and |1〉 denote logical qubit states and η the phase. For this class of states, the phase-covariant cloner 
reaches fidelity of 0.854. Equatorial states can be unitarily transformed into states laying on the intersection of 
Bloch sphere and the plain running through the centre of the sphere for which the optimal cloning transforma-
tion is defined in Eq. 6.

Cloning is performed by an unbalanced polarisation-dependent beam splitter (BS) which implements the 
optimal SPCC process (for detailed theoretical description see refs27,28,37, for experimental implementation see 
also ref.38). Particular splitting ratio for horizontal and vertical polarisations accounted for 0.21 and 0.79, respec-
tively. During the experiment signal and ancillary photons overlap at the BS which results with success probability 
of 1

3
 in the cloning transformation:

ψ

ψ

| 〉 | 〉 → | 〉

| 〉 | 〉 → | 〉 + | 〉

0 00 ,

1 1
2

( 01 10 ),
(6)

a

a

in

in

where |ψa〉 denotes the state of ancilla.

Hash-based function Number of pairs

HMAC-MD5 1 400 ± 16

HMAC-SHA512 1 192 ± 14

HMAC-SHA256 1 060 ± 14

HMAC-SHA1 1 272 ± 13

Table 1.  Minimal number of photon pairs cloned for correct guess of the secret number (salt).

Figure 5.  Dependence of number of agreements on all three-digit secret numbers. Four different hash 
functions are tested. The bank used MD5 for encoding. In this plot, 4 040 successfully cloned photon pairs were 
analysed. The revealed secret number (salt) is marked by a red circle.
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Subsequently, each photon is projected in the D/A or R/L measurement basis as requested by the bank (using 
HWPs, QWPs, and polarisers). The process of cloning is successful only if each photon leaves BS by different 
output port. Therefore, we are interested in coincidences between both output arms. The detection is handled 
by single-photon detectors operating with detection efficiency of around 60% and subsequent electronics. In the 
experiment, we have registered individual coincident detections one by one thus genuinely implementing the 
protocol described in the text.

Quality of the clones was quantified by fidelity for both clones and each possible sequence qubit state (Fig. 7) 
by evaluating statistics of observed individual coincidence events. The average cloning fidelity was calculated to 
be (80.3 ± 0.3)% while some clones in the two output arms had slightly different fidelities. Typical detection rate 
was 120 pairs per second.

In order to quantify the correlation between the attacker and the information encoded as a pair of qubits, we 
enter the value of mutual information I. This value determines how many bits of information an attacker can get 
after cloning one pair of qubits and depends on the strategy used, success probability of cloning P and its fidelity 
F. Mutual information is calculated as

∑=
=

I p
p

p p
log ,

X Y
X Y

X Y

X Y, 000

111

, 2
,

where = ∑ =p p ,X Y X Y000
111

,  = ∑ =p p ,Y X X Y000
111

,  and X, Y = 000, 001, 010, 100, 110, 101, 011, 111. The technical 
details on calculating probability distributions needed for calculating mutual information for all the considered 
strategies are given in the Supplement. Here we provide a brief introduction into the working principle of strategy 
(iii). Without performing quantum cloning, the attacker measures the qubits as requested by the bank and 
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Figure 6.  Laboratory setup for the quantum sniffing experiment. The setup operates as the compromised 
terminal from Fig. 1. Its components are labelled as follows: BS–partially polarising beam splitter, QWP–
quarter-wave plate, HWP–half-wave plate, PBS–polarisation beam splitter, PC–polarisation controller, D–
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simultaneously uses this information to obtain some knowledge about the encoding used. While this approach 
enables to rule out some of 8 encodings, these eliminated encodings depend on the order of encoding bases. The 
attacker can assume that the order of encoding bases for the received qubit pair is either Z/X or X/Z, where 
Z ∈ {0;1} and X ∈ { +;−}. This order must be random because there is no way of gaining this information. Thus, 
maximum information to gain in this strategy is Imax = 2 instead of Imax = 3 when the order is known. Depending 
on the measurement outcomes, with probability 1

2
 the attacker can exclude some encodings and can guess the 

order of bases correctly only in half of the cases. Only if successful, half of 4 encodings can be eliminated. This 
makes = =I Isec

1
4 max

1
2

.

Conclusion and Discussion
We have successfully attacked a QM scheme based on QRG8. This scheme has been implemented in a form of 
quantum credit card containing quantum tokens. We retrieved the secret number (salt) used for preparing quan-
tum tokens purely by means of imperfect quantum cloning and computational analysis of measured data (see 
Figs. 4 and 5). By learning the exact algorithm for encoding quantum tokens, the attacker is, in principle, able to 
produce perfect quantum money counterfeits. It is worth noting that the optimal strategy of our attack depends 
mainly on a particular implementation of bank’s security tolerances (e.g., losses) and chosen physical platform for 
implementing the attack. For instance, if the attacker uses deterministic optimal cloning even less qubit pairs is 
needed to perform the attack (see Fig. 2).

However, the attack was feasible because the bank encoded sufficiently high number of photon pairs using the 
same secret number (salt) and the same hash function. From the data summarised in Table 1 we can deduce that 
if the bank changes, e.g., the secret number after less then 1000 photon pairs, the attacker is not able to reveal the 
bank’s secret with sufficient certainty. This leads to further vital questions regarding tolerance of the bank to noise 
and threshold value losses.

We hope that our results will stimulate further research on security of QM schemes based on QRG bringing 
this concept closer to becoming a fully fledged quantum technology. Our results indicate that the correct secret 
number and hash function can be revealed assuming the hash function is a member of a finite set. The size 
of which is limited by the available time and computing power. However, this is not a fundamental limitation 
which might be lifted if more advanced cryptanalysis or more computing power is applied. Our results indicate 
that while the idea of using hash functions might be tempting, it would be ultimately more secure to store truly 
random sequences since only these are not vulnerable to the attack described in this paper. The recent progress 
in data storage technologies and quantum computing with its fast searching algorithms (e.g. Deutsch-Jozsa algo-
rithm39) may in future enable this. With current technology, the most secure strategy would depend on particular 
implementation of the protocol by the bank.
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