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Abstract: The topic of uremic toxicity has received broad attention from the nephrological community
over the past few decades. An aspect that is much less often considered is the possibility that the
metabolic pathways that generate uremic toxins also may produce molecules that benefit body
functions. Here, we discuss this dualism based on the example of tryptophan-derived metabolites,
which comprise elements that are mainly toxic, such as indoxyl sulfate, kynurenine and kynurenic
acid, but also beneficial compounds, such as indole, melatonin and indole-3-propionic acid, and
ambivalent (beneficial for some aspects and harmful for others) compounds such as serotonin.
This dualism can also be perceived at the level of the main receptor of the tryptophan-derived
metabolites, the aryl hydrocarbon receptor (AHR), which has also been linked to both harm and
benefit. We hypothesize that these beneficial effects are the reason why uremic toxin generation
remained preserved throughout evolution. This duality is also not unique for the tryptophan-derived
metabolites, and in this broader context we discuss the remote sensing and signaling theory (RSST).
The RSST proposes that transporters (e.g., organic anion transporter 1—OAT1; ATP-binding cassette
transporter G—ABCG2) and drug metabolizing enzymes form a large network of proteins interacting
to promote small molecule remote communication at the inter-organ (e.g., gut–liver–heart–brain–
kidney) and inter-organismal (e.g., gut microbe–host) levels. These small molecules include gut
microbe-derived uremic toxins as well as beneficial molecules such as those discussed here. We
emphasize that this positive side of uremic metabolite production needs more attention, and that this
dualism especially needs to be considered when assessing and conceiving of therapeutic interventions.
These homeostatic considerations are central to the RSST and suggest that interventions be aimed at
preserving or restoring the balance between positive and negative components rather than eliminating
them all without distinction.

Keywords: uremia; uremic toxins; kidney disease; tryptophan; metabolism; indoles; kynurenines;
aryl hydrocarbon receptor; remote sensing and signaling theory; gut microbiome

Key Contribution: Based on the example of tryptophan, we illustrate that the pathways leading to
the generation of uremic toxins also produce compounds that are beneficial. This duality of uremic
toxicity may have a therapeutic impact, as treatment options maintaining or restoring the balance
between beneficial and noxious compounds might be preferred to therapies removing both. This
aspect deserves more in-depth analysis.

1. Introduction

The expected remaining lifetime for people with advanced chronic kidney disease
(CKD) is more than halved across all age strata [1]. The average five-year survival of
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patients starting dialysis is lower than that of cancer, upon diagnosis [2]. The majority of
CKD patients will die, mostly from cardio-vascular complications, before they reach the
stage of dialysis or transplantation [3]. The calculated annual health care cost in Europe for
CKD is higher than that of cancer or diabetes [2]. Acute kidney injury (AKI) only adds to
outcome burden and cost [4,5].

This dismal picture can, to a considerable extent, be attributed to the accumulation of
toxic metabolites (uremic toxins) that are eliminated by healthy kidneys via the urine [6].
These uremic toxins have been related to many of the lethal complications of kidney
disease, especially cardio-vascular and infectious diseases and the progression of kidney
insufficiency [6], but also to a number of distressing patient-related outcomes, such as cogni-
tive dysfunction or itching [7,8], which are not fatal but affect quality of life substantially [2].
The pathophysiologic mechanisms defining uremic syndrome have received ample attention
from the nephrologic community over the past few decades [6,9].

However, each shadow has a bright side. This duality exists throughout biology. Bacte-
ria and yeasts cause killer diseases but are also used for the production of relatively benign
foods, drinks or ingredients such as kombucha, yoghurt, soybean sauce and cheese. Duality
has in antiquity been symbolized by the door deity Janus, who marked the separation
between the inside and the outside of the house.

As we repetitively reviewed and ranked solutes for their toxicity [6,10,11], we realized
that some metabolically related compounds were not toxic and even beneficial. However,
the question as to how far the biologic ambiguity mentioned above also exists for uremic
toxin metabolism has rarely been addressed or reviewed in depth: what if our tunnel
vision disregards related compounds with beneficial impacts or if the so-called toxins
are not unequivocally toxic? This question may be critical if successful efforts to reduce
toxin concentrations have as a downside diminishing the benefits. We will consider this
dilemma based on a detailed analysis of the functional effects of the metabolic cascade
of tryptophan, including consideration of the recently described interleukin 4-induced-1
(IL4I1) pathway [12] (Figure 1). After having reviewed the functional properties of the
main tryptophan metabolites, we will consider why the generation of potentially lethal
molecules such as indoxyl sulfate, kynurenine, or indole-3-acetic acid [13–15] has not been
switched off by natural selection or reproductive isolation.
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Figure 1. Global metabolic pathways of tryptophan according to the most recent insights. Different
enzymes are involved in the generation of uremic toxins and activators of aryl hydrocarbon receptor
(AhR). (1) Tryptophanase; (2) indoleamine-2,3-dioxygenases (IDOs) and tryptophan-2,3-dioxgenase
(TDO) and (3) the newly identified interleukin 4-induced-1 (IL4I1). Indole is further metabolized in
the liver (green arrows) by cytochrome P450 family 2 subfamily E member 1 (CYP2E1), resulting
in indoxyl and indoxyl sulfate (sulfotransferase) and indole-3-acetic acid (acetate transferase). Both
the IDOs/TDO (red arrows) and IL4I1-dependent pathways (purple arrows) are involved in the
generation of kynurenic acid. The end-metabolites are excreted by the kidneys (yellow arrows). For
the sake of completeness, in grey, (4) the serotonin pathway.
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Our journey will lead us to consider biochemistry, (patho-)physiology, evolutionary
biology, history, lifestyle and genetics, in order to propose a comprehensive hypothesis on
solute metabolism in CKD. This will also lead to the consideration of the remote sensing and
signaling theory (RSST) of small molecule inter-organ and inter-organismal communication
mediated by drug transporters (e.g., organic anion transporter 1—OAT1; ATP-binding
cassette transporter G—ABCG2) and drug metabolizing enzymes [16,17]. However, the
field of uremic toxicity is rapidly advancing and encompasses many disciplines, and the
viewpoint presented here might need to be fine-tuned in the future as novel information
and interpretations emerge.

2. Tryptophan Metabolites: The Good, the Bad, and the Ambivalent

In what follows we will, based on the collected information, tentatively subdivide
tryptophan metabolites (Table 1) into mainly toxic, mainly beneficial, and essentially
ambivalent (or mixed) molecules (Figure 2). We make these categorizations with the
understanding that simple subdivisions may need to be reconsidered; for instance, even
those molecules we currently refer to as “toxic” are increasingly believed to also play roles
in signaling through their influence upon nuclear receptors, G-protein coupled receptors
(GPCRs) and kinases. After discussing selected molecules below, we provide a conceptual
framework for a more nuanced interpretation of the roles of these molecules in local
and systemic homeostasis and pathophysiology: the RSST. We then turn to evolutionary
concerns, asking the question of why uremic toxins have persisted throughout evolution.

Table 1. Metabolites of the tryptophan pathway with their chemical structures and the involved enzymes.

Metabolite Structure Formula Enzymes Involved

Tryptophan
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Table 1. Cont.

Metabolite Structure Formula Enzymes Involved

Kynurenic acid
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2.1. The (Mainly) Toxic Molecules
2.1.1. Indoxyl Sulfate

Few uremic retention solutes have received as much attention as indoxyl sulfate.
Hundreds of studies have pointed to its effects contributing to uremic syndrome [6].
Although the correctness of the concentrations analyzed has been questioned for some
studies [18,19], a considerable number of high-quality studies underscore its multifunc-
tional burden [13], including its roles in cardio-vascular disease, kidney and heart fibrosis,
thrombogenicity, metabolic and hormonal dysfunction, inflammation and chronic kid-
ney disease-mineral and bone disorder (CKD-MBD) [6]. More recently reported func-
tional defects include neurotoxicity [20–22], intestinal epithelial [23] and hematologic
alterations [24–26], sarcopenia [27], loss of muscle mass [28], disturbed drug removal [29],
and accelerated cell senescence [30]. Undeniably, indoxyl sulfate is responsible for a
plethora of negative effects, and it is ranked among the most important uremic toxins [6].
However, these generally negative effects can be supportive in specific conditions such as
breast cancer, in which tryptophan metabolism is suppressed. Supplementation of indoxyl
sulfate to restore concentrations to the normal reference range exerted cytostatic properties
via a reduction in cell proliferation and the induction of oxidative and nitrosative stress [31].
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Figure 2. Main metabolites of tryptophan. Extracted from Kyoto Encyclopedia of Genes and
Genomes) (KEGG) pathways). The compounds with a colored background are discussed in the
paper. Green background: mainly positive effect; red background: mainly negative effect; orange
background: ambiguous data. Black frame: kynurenic acid pathway. Upper part: intestinal lumen;
lower part: inside the body. Indole-3 propionic acid and Indole-3-(carbox)aldehyde are not mentioned
in the KEGG pathways.

2.1.2. Indoxyl Glucuronide

Indoxyl glucuronide has rarely been studied. One study showed inhibition of hypoxia-
inducible factor (HIF)-dependent erythropoietin expression [32]. Indoxyl glucuronide is
also one of the uremic solutes inhibiting organic cation transporter-2 (OCT-2), which plays
a role in the kidney excretion of drugs and environmental toxins [33].

2.1.3. Kynurenine and Kynurenic Acid

The kynurenine pathway follows a separate metabolic route from that of the indole
derivatives (Figures 1 and 2) [34]. This axis is mainly active in the liver but, especially
after immune activation, also in other tissues [34]. Biologic studies essentially focused on
kynurenine and kynurenic acid.

Kynurenine and/or kynurenic acid have been linked to cardio-vascular disease, in-
flammation, thrombogenicity, metabolic dysfunction and neurotoxicity [6]. Kynurenic
acid has especially been studied as a regulator of neurologic function, whereby it acts
as an N-methyl-D-aspartate (NMDA) receptor antagonist and functionally equilibrates
with quinolinic acid, an NMDA receptor agonist [34]. A targeted metabolomic study in
CKD found a significant relationship between kynurenine concentration and thrombotic
events [14]. Other studies reported an impact on bone quality and strength [35,36]. Thus,
kynurenine and kynurenic acid have a large array of negative effects, and have also been
ranked among the most important uremic toxins [6].

2.1.4. Anthranilic Acid

Other metabolites of the kynurenic pathway have received less attention. One of these,
anthranilic acid, has shown a positive correlation with fibrinolytic parameters in early CKD,
while this relationship was inverted in more advanced stages [37]. Anthranilic acid is, at
different stages of CKD, associated with markers of endothelial dysfunction [38]. However,
direct causation has not been proven.
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2.1.5. Quinolinic Acid

Quinolinic acid is especially known as a brain excitotoxin [39], but has also been
linked to inflammation and inhibition of erythropoiesis [6], and more recently to a species-
dependent effect on hemostasis, being prothrombotic in mice but the opposite in rats [40].
As with anthranilic acid (see above), in CKD, quinolinic acid is also associated with markers
of endothelial dysfunction [38]. In addition, quinolinic acid is also related to intima-media
thickness [38].

2.2. The (Mainly) Beneficial Molecules
2.2.1. Tryptophan

Tryptophan cannot be generated by the body and is thus an essential amino acid.
There is limited evidence of an antidepressive effect of tryptophan-containing food sup-
plements [41], although excessive intake has been linked to potentially lethal toxicity
(eosinophilia-myalgia syndrome). Whether this complication is attributable to tryptophan
as such or to a contaminant metabolite remains a matter of debate [41,42]. A diet rich in
L-tryptophan preserved the secretion of insulin and delayed the progression of hereditary
type 2 diabetes in rats [43]. It may, however, be questioned whether this effect should be
attributed to tryptophan per se or to its downstream metabolites.

2.2.2. Indole

Indole is the mother compound of a large array of metabolites, which are generated
in several organ systems, but mainly in the liver. Studies of intestinal indole genera-
tion observed no changes in generation at all stages of CKD, including kidney failure
treated by dialysis [44]. Indole is known as a promotor of intestinal wall integrity and
repair [45–47], and acts as an anti-inflammatory agent in enteropathy induced by non-
steroidal anti-inflammatory drugs (NSAID) [47] and by counteracting the detrimental
effects of lipopolysaccharides in the liver [48]. Indole also attenuates the virulence of
several pathogens, such as Candida albicans, Staphyloccus aureus and Salmonella [49,50].

Alongside these positive effects, one single study reported portal hypertension, be
it after supranormal doses [51], and in another study, indole administration to rats was
associated with faster progression of kidney dysfunction and glomerular sclerosis [52]. As
these two studies are isolated reports compared to a broad consensus on the advantages,
we categorized indole as a beneficial compound. In addition, here also it can be questioned
whether the responsible compound is indole or one of its downstream metabolites.

2.2.3. Indole-3-propionic Acid

Indole-3-propionic acid concentration in the serum is decreased in CKD [53]. This
compound has mainly been labelled as neuroprotective [54,55], with stronger anti-oxidative
capacities than melatonin, and the potential to counteract Alzheimer’s [54]. Furthermore,
indole-3-propionic acid attenuates steatohepatitis [56], restrains the progression of can-
cer [57], improves the intestinal epithelial barrier [56,58], regulates endothelial function [59],
and has been associated with a lower risk of type 2 diabetes [60]. Indole-3-propionic acid
reduced weight gain in rats [61], but did not protect against the cardio-metabolic effects of
Western diet in mice [62]. Indole-3-propionic acid was also identified as a modulator of car-
diomyocyte mitochondrial function and overall cardiac function; however, it also showed
an acute benefit but a negative chronic effect, thus exemplifying in this case setting-specific
dualism [63].

2.2.4. Indole-3-(carbox)aldehyde

Indole-3-aldehyde is best known for its ability to promote gut epithelial barrier
functions [64], but it also alters immune function, e.g., by the expression of interleukin-
22, helping to stabilize gut mucosa immune homeostasis and intestinal microbial con-
tent [65]. It also modulates inflammatory injury induced by respiratory syncytial virus
(RSV) in vitro [66], and displays antimicrobial activities, e.g., against both non methicillin-
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resistant and methicillin-resistant Staphylococcus aureus, and Candida [67]. Finally, studies in
a murine model suggest protection against the metabolic syndrome [68].

2.2.5. Melatonin

Melatonin is essentially secreted at night by the pineal gland and controls the sleep–
wake rhythm [69]. Several systematic reviews pointed to a positive effect of exogenous
melatonin on sleep disturbances [70–72], although administration to healthy volunteers
late in the evening when natural melatonin secretion was at its maximum had no impact,
in contrast to administration early in the evening [73]. Additional attributed effects include
immunoregulation [74,75] and analgesia [76]. Melatonin improved mitochondrial function,
glycolytic metabolism and proliferation of mesenchymal stromal and stem cells collected
in mice with CKD [77]. In a murine model of acute kidney injury, melatonin inhibited
transition to chronic kidney disease [78]. In a randomized controlled cross-over study in
hemodialysis patients, melatonin had an immunoregulatory and an anti-inflammatory
effect [79].

2.2.6. Nicotinic Acid and Nicotinamide

Nicotinic acid (also referred to as niacin, although the term niacin is also used for
both nicotinic acid and nicotinamide together) is generated downstream in the kynurenic
pathway. About 60 mg of tryptophan is needed to generate 1 mg of nicotinic acid [80].
Also catalogued as vitamin B3, a niacin deficit has historically been linked to pellagra, a
currently exceptional dermatologic disease, also characterized by diarrhea and dementia,
that mainly occurs in impoverished populations with deficient meat consumption living
on maize [81]. However, nicotinic acid and nicotinamide more recently gained new mo-
mentum as lipid metabolism regulators [82], although most randomized controlled trials
could not demonstrate their benefit on hard outcomes [83,84]. Nicotinamide acts against
endothelial oxidative stress, which links it to an anti-inflammatory and vasculoprotec-
tive effect [85]. In mice, nicotinamide supplementation prevented CKD progression by
reducing kidney inflammation and fibrosis [86]. It also protected against acute kidney
proximal tubule damage induced by metabolic acidosis [87] and against ischemic AKI [88].
In hemodialysis patients, nicotinic acid and nicotinamide have also been attributed a
phosphate lowering effect [89,90]. However, one of the metabolites, 1-methyl-2-pyridone-
5-carboxamide (2PY) [80,91], is dramatically increased in dialysis patients supplemented
with these compounds, and has been linked to a number of both positive and negative
effects [92] (see below).

2.3. The Ambivalent Molecules
2.3.1. Serotonin

Serotonin is primarily known as a neurotransmitter, low brain levels of which are
linked to poor memory and depression [93]. However, most serotonin is found outside the
central nervous system. Experimental data suggest that intestinally generated serotonin
impacts central nervous serotonin levels and behavior [94]. Furthermore, serotonin also
functions as a regulator of cardiovascular function, bowel motility, ejaculation, and bladder
control [95]. However, it also has a pro-coagulant effect [96] and is linked to itching [97,98].
Circulating serotonin is increased in CKD patients and is dramatically high during dialy-
sis [99,100]. In an experimental CKD study, serotonin was indirectly linked to loss of bone
quality [100], and, in two clinical studies successfully administering a serotonin receptor
antagonist, to the relief of itching [101,102]. However, the latter two studies were not
placebo controlled and the used drug also neutralized histamine, making it impossible to
attribute the drug effect to serotonin antagonism [101,102].

2.3.2. Indole-3-acetic Acid

Indole-3-acetic acid is directly produced by the intestinal microbiome. It has been
linked to inflammation, cardiovascular disease, thrombogenicity, fibrosis and metabolic
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dysfunction [6], and more recently cognitive dysfunction [103]. On the other hand, indole-
3-acetic acid has also been positively associated with the activation of stem cell factor
(SCF), which plays a role in tissue repair, hematopoiesis and cell proliferation [104]
and with anti-inflammatory and anti-oxidant activity on lipopolysaccharide stimulated
macrophages [105], albeit at concentrations exceeding more than 30 times those observed in
uremia. Indole-3-acetic acid is decreased in the feces of patients with inflammatory bowel
disease and in mouse models of inflammatory bowel disease [106]. Inoculation of affected
mice with microbiota generating tryptophan metabolites including indole-3-acetic acid
improved inflammatory bowel disease in these mouse models [106]. Administration of
indole-3-acetic acid to mice also attenuated non-alcoholic fatty liver induced by high-fat
diet [107].

2.3.3. 1-Methyl-2-pyridone-5-carboxamide

1-Methyl-2-pyridone-5-carboxamide at uremic concentrations has been linked to ge-
nomic instability and anemia [92,108]. Another study, however, pointed to a protective
effect against endothelial oxidative stress [85].

2.4. Remote Sensing and Signaling Theory (RSST) and Its Relation to Uremia

As discussed above, uremic molecules can be largely or somewhat toxic (especially in
the setting of kidney dysfunction), largely or somewhat beneficial, or both (Figure 3). We
have emphasized the theme of “balance” in normal local and/or systemic physiology, or in
helping to restore the system after injury—in other words: homeostasis. Many tryptophan-
derived molecules, often originating from gut microbes and labeled uremic solutes or
toxins, play key roles in metabolism, redox state, and signaling, and act upon nuclear
receptors (transcription factors), G-protein coupled receptors, kinases, or directly affect key
metabolic pathways.
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Figure 3. Summary of the biological effects of the tryptophan metabolites discussed in this publication.
Red: negative effect; green: positive effect; orange: conflicting data. CKD: chronic kidney disease.
IxS: indoxyl sulfate; IxG: indoxyl glucuronide; KYN: kynurenine/kynurenic acid; AA: anthranilic
acid; QA: quinolinic acid; Trp: tryptophan; Ind: indole; IPA: indole-3-propionic acid; IA: indole-3-
(carbox)aldehyde; Mel: melatonin; Nic: nicotinic acid/nicotinamide; Ser: serotonin; IAA: indole-3-
acetic acid; 2PY: 1-methyl-2-pyridone-5-carboxamide.
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Nigam and coworkers proposed that about 600 transporters (e.g., organic anion
transporters such as OAT1), “drug” metabolizing enzymes (e.g., cytochrome P450s—CYPs)
and nuclear receptors (e.g., aryl hydrocarbon receptor—AHR (see below)) collaborate across
organs and organisms (gut microbes–host) in a “remote sensing and signaling network”
to maintain small molecule homeostasis (Figure 4) [16,17,109]. In this way, transporters,
drug metabolizing enzymes (DMEs) and nuclear receptors regulate metabolic pathways,
signaling, and oxidative state within and between cells, tissues, organs and organisms (e.g.,
gut microbes–host). Although the focus in this article as well as in other reviews on the
RSST as applied to CKD [17,110] is on understanding the central role of transporters, DMEs
and nuclear receptors in uremic metabolism, it is to be emphasized that the RSS theory
is a general theory of small molecule communication between cells, tissues, organs, and
organisms (Figure 4) [16].
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Figure 4. Normal and abnormal (uremic) remote sensing and signaling. Please see text for a detailed
explanation of the remote sensing and signaling theory of interorgan and inter-organismal (gut
microbe–host) communication via small molecules that regulate metabolism, signaling, and oxidative
state. The proteins mediating these effects of small molecules include transporters, drug metabolizing
enzymes, and nuclear receptors. Some of the regulated molecules include gut microbe-derived
uremic toxins.

This transporter and DME-based small molecule remote communication system oper-
ates in parallel with, and supports, the neuroendocrine and other classic homeostatic sys-
tems. For example, thyroid hormones, sex steroids, bioactive lipids, tryptophan derivatives,
and bile acids are key players in multiple homeostatic systems, including the RSS [16,111].

Many genes in the remote sensing and signaling network seem to have been conserved
throughout evolution [112]. A large number of these genes or their homologs can be found
in fish and flies. Many have been shown in model organisms to subserve key functions [113].
Most of these genes are highly expressed in ducts and tubules in organs throughout the
body, or at other interfaces with body fluids.

If ducts or tubules fail in one organ, the ducts and tubules of other organs try to restore
the system. This occurs through the regulation of genes in the remote sensing and signaling
system (e.g., transporters, DMEs) in an attempt to bring gut microbe products, uremic
toxins, bile acids, fatty acids, signaling molecules, urate, energy metabolites, and other
molecules back into some kind of balance/compromise [16,17].

OAT1 (solute carrier 22A6—SLC22A6) and OAT3 (SLC22A8), multi-specific members
of the SLC22 transporter family, are well-known for their role in kidney drug elimina-
tion [114]. They also provide examples of how the remote sensing and signaling system
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operates. OAT1 and OAT3 are not only the key proximal tubule transporters involved
in kidney elimination of gut microbe-derived uremic toxins; they are also central to the
kidney “remote sensing” of tryptophan-derivatives, which play important roles in local
and systemic metabolism, signaling and redox state regulation [115–117].

In the case of indoxyl sulfate, there appears to be a pathway from gut microbes to
liver DMEs to RSS in proximal tubule cells in the service of maintaining homeostasis via
effects on metabolism, redox state and signaling events [17,118]. This suggests how uremic
compounds, while potentially toxic at high concentrations in the setting of kidney disease,
may otherwise subserve important normal physiological functions [14,110–113].

Declining kidney function is linked to a disturbance of the homeostatic balance main-
tained by the remote sensing and signaling system (Figure 4). Nevertheless, in the setting
of kidney disease, an interesting example of a homeostatic correction by RSS has also
been uncovered. As kidney function declines, intestinal ABCG2, an ABC transporter
which extrudes urate and possibly indoxyl sulfate into the gut, becomes more active [119].
It has been suggested that this increased intestinal activity of the ATP-binding cassette
G2—ABCG2 transporter is mediated by urate and/or indoxyl sulfate [120,121]. Thus, the
kidney with declining function, unable to properly eliminate urate and indoxyl sulfate
due in part to the loss of OAT function, may remotely signal the intestine to eliminate
them via the ABCG2 transporter, to help restore homeostasis. This example of inter-organ
communication in the face of injury is unlikely to be an isolated one, and the field awaits
detailed studies of how transporters and DMEs in different organs help to stabilize multi-
organ physiology in the face of kidney injury—and the resulting effect on uremic solutes
and toxins [122]. Multi-omics analysis in humans and animal models will likely provide
important clues.

2.5. Summary

Tryptophan has a substantial number of metabolites, some mainly toxic, some mainly
beneficial (although to our knowledge not unequivocally supported by controlled studies),
and some playing an ambivalent role. This is reviewed concisely in Figure 3, which allows
to see at a glance that there are as many harmful (red background) as beneficial (green
background) effects, while several molecules harbor both positive and negative effects.
Apart from thrombogenicity, which is negatively impacted by most involved solutes, and
insulin resistance, depression and intestinal alterations that are in the majority of cases
positively influenced, most effects seem to be modified to more or less equivalent degrees in
both directions (Figure 3). However, even some notorious pathogens, such as kynurenine,
still may play a physiological role, e.g., by outbalancing quinolinic acid, whereas niacin at
the end of the essentially negative kynurenic metabolic chain has a largely positive impact.
In addition, several of the tryptophan metabolites exert their activities through transport
via OAT1 and activation of the multifunctional AHR. Although one should be cautious in
extrapolating animal data to humans [123], it is generally accepted that the AHR not only
activates the thrombogenic tissue factor [124–126], but also is both a positive and negative
immunomodulator [127,128], and has likely regulated the detoxification of xenobiotics
since long before the appearance of humans [127,129,130] (see below).

Thus, the harms and benefits of the solutes generated by the tryptophan metabolic
chain cannot be unequivocally classified as negative or positive. However, whereas the
shadow side of this group of molecules has mainly drawn the attention of nephrology
researchers and clinicians because of its involvement in uremic toxicity, the benefits have
unfortunately often been overlooked. The RSST provides something of a remedial frame-
work, as it considers the physiological impact of remote inter-organ (e.g., gut-liver-heart-
brain-kidney) and inter-organismal (microbe-host) communication via transported small
molecules, including those labeled as uremic toxins [16,17]. While the theory accepts the
potential toxic nature of protein-bound uremic toxins handled by proximal tubule trans-
porters such as OAT1 and OAT3, the RSST emphasizes their roles in the regulation of
metabolism, signaling and redox events in normal and pathophysiological settings [17,109].
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3. The Dualism of the Aryl Hydrocarbon Receptor

Aryl hydrocarbon receptor was first described as the dioxin receptor in the 1970s [131].
Since then, several ligands activating this transcription factor have been described [132].
AHR is an 848-amino acid protein with a nuclear localization sequence (NLS), a DNA-
binding domain close to a basic helix-loop-helix (bHLH) domain, and two domains, per-
Arnt-sim (PAS) A and B. PAS A plays an important role in AHR dimerization and PAS
B functions as a ligand binder [133]. Finally, there is a Q-rich domain that plays a role in
the activation of transcription. After ligand binding in the cytoplasm, AHR is released
from its stabilizing complex (AHR-interacting protein (AIP), cellular-sarc (c-Src), P23
and heat shock protein (HSP90)) into the nucleus and heterodimerize with AHR nuclear
translocator (ARNT) [134]. This heterodimer will bind to xenobiotic response element
(XRE) regulatory sequences in the promoters of many genes, mainly molecules involved
in detoxification such as cytochrome P450 family 1 subfamily A member 1 (CYP1A1),
CYP1A2, and CYP1B1 [135]. AHR also has a ubiquitin ligase (E3), which may play a
role in the negative feedback of AHR signaling [136]. In addition to the activation of the
traditional genomic pathway, AHR can play the role of a signaling molecule and activate
a so-called inflammatory or non-genomic pathway that will lead to the activation of the
nuclear factor-kappa-light-chain enhancer of activated B cells (NF-kB) pathway [137].

From an evolutionary point of view, AHR is one of the rare genes with a variation in
the coding phase between homo sapiens (Val381) and homo neanderthalensis (Ala381), with
the sapiens variant responding less well to activation by xenobiotics, an effect proposed to
protect modern humans from a too strong activation of AHR by environmental pollutants
such as smoke [138]. However, this hypothesis has been contradicted by recent data [139].

Activation of AHR by dioxin is associated with multiple complications. These can be
either acute complications, such as chloracne [140], or long-term complications, such as
lymphoma and malformative syndrome [141]. The long-term effects of AHR activation
by dioxin are well known from the massive use of the herbicide Agent Orange during
the Vietnam War [141]. The activation by dioxin is peculiar, as it is not degraded by
the organism and leads, contrary to other agonists, to a permanent activation of AHR
which is not eliminated by the physiological response. Additionally, activation of AHR by
benzo(a)pyrene (BaP) has deleterious effects because it promotes the formation of oncogenic
adducts by activating the expression of CYP450 [135]. During chronic kidney disease, AHR
is activated and plays an important role in the pro-thrombotic [142], vasculotoxic [143] and
neurotoxic [21] activities of tryptophan-derived uremic toxins [123]. AHR also induces
or aggravates autoimmune diseases [144] and cancer [135], and has more recently been
implicated in infectious diseases affecting the central nervous system, such as Zika [145].
Inhibition of AHR could be a key to the management of many diseases [146].

Besides these negative aspects of AHR activation, mice lacking activity of this transcrip-
tion factor show multiple phenotypic alterations, confirming its important physiological
role outside the response to xenobiotics. Rodents that have lost AHR show vascular ab-
normalities, persistence of ductus venosus, a tendency towards hypertension, hepatic
abnormalities, fibrosis, small liver abnormalities and immune system abnormalities mainly
associated with the mucosa [147]. Animal models confirmed the necessary role of AHR
in physiology. Loss of AHR studies in multiple species ranging from Caenorhabditis ele-
gans to Drosophila and mice show that the loss of AHR elicits a decrease in healthy life
expectancy [148]. A lack of activation reduces the physical capacity of these animals with
age, whereas supplementation with indole has a beneficial effect by increasing healthy life
expectancy. A defect of AHR activation plays an important role in ageing [149]. Hence,
activation of AHR during CKD could protect against the complications related to uremic
syndrome. Furthermore, it has been shown that AHR plays a crucial role in keeping the
digestive epithelium healthy, and that the lack of activation of AHR by bacterial trypto-
phan metabolites is associated with an aggravation of inflammatory bowel diseases [150].
Similarly, defective activation of AHR in the digestive tract plays a role in the development
of metabolic syndrome [151], in gluten intolerance [152] and in liver alcohol toxicity [153].
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Thus, if tryptophan-derived uremic toxins are dual in their activity, this is also the case
for their main receptor AHR, which can have both beneficial and deleterious effects (Table 2),
depending on the cell type, the ligand [154] and the time in the life of the organism [147].
This duality of action justifies understanding the pathways activated by AHR signaling to
specifically block the deleterious pathways while maintaining the beneficial ones, mainly
in cardiovascular disease, the main complication of CKD [155]. In the same way as for
uremic toxins, AHR could be the Pharmakon of chronic kidney disease, at the same time
being a cure and a poison [156].

Table 2. Duality in the response to activation of aryl hydrocarbon receptor.

Positive Negative

Detoxification Pro-inflammatory effect

Preservation vascular structure Chloracne

Closure ductus venosus (post-partum) Lymphoma

Normalization blood pressure Malformative syndrome

Preservation liver function Carcinogenicity

Prevention fibrosis Prothrombotic effect

Prolongation healthy life Vascular toxicity

Forestalls ageing Neurotoxicity

Preservation digestive epithelial function Auto-immune diseases

Prevention inflammatory bowel disease Zika infection

Prevention metabolic syndrome

Prevention gluten enteropathy

Prevention alcohol toxicity

4. Why Did the Body Continue Producing Toxic Tryptophan Metabolites
throughout Evolution?

An intriguing question is why the generation of the noxious uremic toxins has per-
sisted despite control mechanisms such as natural selection, reproductive isolation, and
developmental plasticity. Of note, in this process, humans are not an isolated entity, but
closely interact with the intestinal microbiome that generates a large array of uremic tox-
ins or their precursors [157]. Due to developmental symbiosis, symbionts can impact
phenotypic adaptation that subsequently may lead to genotypic accommodation [158].
Whatever the mechanism, the metabolic cascade leading to uremic toxins has not been
switched off, nor has this been prevented by adapting gut microbial composition or function
during evolution.

In this context, it is important to note that many of the ~600 genes that have been
identified as potentially critical to the remote sensing and signaling network are found in
gene families that have high evolutionary conservation [112]. Indeed, SLC22 transporters—
the family in which OAT1 (SLC22A6) and OAT3 (SLC22A8) are found—are conserved
in lower organisms and play an essential role in protecting fruit flies from oxidative
injury [113]. Thus, it is conceivable that if selection tended to preserve the functioning
of the remote sensing and signaling network, a key aspect of that functioning may be
to optimize interorgan and inter-organismal small molecule communication in normal
and perturbed states. The molecules necessary for optimal remote sensing and signaling
include key metabolites, signaling molecules and antioxidants. Although some of these
molecules also happen to be uremic toxins or other uremic molecules of the sorts already
discussed, they and/or their biosynthetic pathways might be expected to be conserved
throughout evolution.

In addition, one must consider the possibility that the changes leading to uremic toxin
generation came relatively late on the evolutionary timescale, so that there was not enough
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time for biologic correction. However, sulfotransferases, which are responsible for the
conjugation of endo- and xenobiotics [159] including the sulfation of indoxyl to indoxyl
sulfate, are present in mammals that made a much earlier evolutionary appearance than
men [159,160], and even in more primitive organisms [161]. Thus, sulfotransferase has a
long ancestral history originating many years before homo sapiens (Figure 5A).
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Figure 5. Evolutionary time scale of the main elements at play in uremic toxin generation on a 24 h
scale. (A) Evolution starting with the vertebrates up to now; (B) enlargement of the boxed section in
(A), starting with the hominins until now. If the vertebrates appear at time 0, homo sapiens appear
only during the last minutes, and the agricultural revolution is only a fraction of the homo sapiens
period. Whereas sulfotransferases appear long before the animals and the intestinal microbiome
appears with the invertebrates (i.e., for both before this scale starts), the current conditions leading to
an epidemic propensity of CKD appear only very late, with the agricultural revolution. However,
this period is long enough to cover several hundreds of generations. The red section in panel (A) and
the blue section in panel (B) are enlarged out of proportion to the other sections to allow visibility.

Furthermore, symbionts, which include the intestinal microbiota, are ubiquitous across
animals and plants and are in many cases essential for the functionality of the host [158].
The intestinal microbiome has been shown to be relatively consistent even across related
species in conditions where dietary habits were similar [162], e.g., showing close similarities
between non-human primates, Neanderthal men and hunter-gatherers [163], conforming
to the thesis that symbiont microbiomes are relatively resilient [164]. The intestinal micro-
biome is also flexible depending on environment and lifestyle [165]. Additionally, CKD
has an environmental impact [166–168], although the gut metabolome of hemodialysis
patients also shows striking similarities with that of their household contacts without
CKD [166], and the progression of CKD up to the stage of kidney failure treated by dialysis
has no quantitative impact on the intestinal generation of toxins and their precursors [44].
Thus, also the intestinal microbiome processes generating uremic toxins seem to have been
relatively well preserved over time.

Obviously, the risk of developing kidney disease itself, as we know it today [2],
came latest of all. Although kidney disease must have existed since kidneys became
functionally active, the circumstances promoting the current epidemical propensity were
probably generated essentially with the agricultural revolution some 12,000 years ago,
due to the transition to a more sedentary lifestyle [169–171] (Figure 5B), although the
current exponential growth probably only started when obesity as a risk factor for diabetes
overshadowed malnutrition as a nutritional problem [169,172]. However, such a period,
although proportionally short compared to the other mechanisms at play in uremic toxin
generation, still amounts to several generations. Given that adaptive variation due to
environmental changes can occur relatively quickly [173–175], it might thus be assumed
that, even when accounting for the history of CKD, timing may be less likely an explanation
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for the evolutionary persistence of uremic toxin production, and that other factors are
more important.

It might also be that the involved mechanisms have other functions that are useful
or even indispensable for preserving the hosting species, its symbionts or, according to
the holobiont concept, the interaction between both. Conjugation mechanisms such as
sulfation and glucuronidation are nonspecific and play a role not only in the generation of
uremic toxins but also in the detoxification of xenobiotics, such as phenolic food compo-
nents [159]. The gut microbiome is essential for the development of an efficacious immune
system [176,177], gastro-intestinal motility [178], platelet function [178], brain function-
ing [179,180] and psychological health [179–181], and not only produces uremic toxins but
also many beneficial compounds, as particularly exemplified by the tryptophan metabo-
lites. In addition, some of these metabolites (indole-3-acetic acid, indole-3-propionic acid),
which in plant physiology act as growth hormones [182,183] (auxins), may also stabilize
the intestinal microbiome and preserve it against pathogen intrusion [56,184]. The AHR,
which is activated by several toxic tryptophan metabolites resulting in a thrombogenic
response [124,126], but also by non-toxic tryptophan metabolites [68], is also essential for
detoxification [127,129,130] and immune regulation [127,128]. Thus, the metabolic system
generating the tryptophan metabolites may be too valuable to be discarded, especially since
the production of uremic toxins does not matter to most people, in whom kidney function
is normal or close to normal. In addition, uremic retention solutes are probably only toxic at
increased concentrations, causing no or only little harm for a host in good health. Finally, in
most people developing kidney disease, this problem only occurs at a relatively advanced
age, thus precluding reproductive isolation [158]. This does not, however, exclude the
possibly of the occurrence of other, possibly more limited, phenotypic changes such as
partial resistance to biological effects.

5. Is the Example of Tryptophan Metabolites Representative for Uremic Retention
at Large?

Tryptophan metabolism may be unrepresentative for other uremic toxin families or
mechanisms, but it may also be that other uremic patho-mechanisms are counterbalanced
as well. This is biologically plausible, as it provides a fine-tuning mechanism preventing
amplification or overly damaging effects.

For example, pro-inflammatory peptides including cytokines, which are retained
and generated in uremia [185], are counteracted by their circulating receptors or anti-
inflammatory cytokines (Table 3). The anorexigen desacyl-ghrelin counterbalances the
orexigen ghrelin [186]. Despite many arguments in favor of a negative cardio-vascular
impact [187], trimethyl amine-N-oxide is also known as a protein stabilizer [188]. The
toxicity of urea [189] may be neutralized by another group of uremic retention solutes, the
methylamines [190]. Uric acid can act both as a pro-oxidant and an antioxidant [191,192].
Finally, among the larger peptides (middle molecules) that are retained in uremia, along-
side compounds with toxic potential, some, such as adrenomedullin, atrial natriuretic
peptide, glomerulopressin and visfatin, have a positive rather than a negative biological
impact [6,185]. Admittedly, the toxic effect of uremic retention solutes is supported by more
scientific evidence than the potentially positive effects, but these alternative routes may
have been explored insufficiently and the potential for publication bias cannot be ruled out.

Some may argue that this reasoning does not apply for many other groups of in-
testinally generated uremic toxins, such as the cresols and the phenols, which are largely
classified as toxic [6,193]. However, to the best of our knowledge, very few metabolites
of these pathways have been fully evaluated from the perspective of potentially bene-
ficial effects. It is possible that if research were to be extended to a broader array of
metabolites of the mother compounds in the same way as for tryptophan, this would
allow for detecting some yet insufficiently understood substances. Interestingly, different
steric variants of cresyl glucuronide had an opposite impact on human embryonic kidney
cells [194]; whereas m- and p-cresyl glucuronide were toxic, o-cresyl glucuronide slightly
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stimulated cell growth [194]. Dihydroxy phenyl propionic acid has been characterized as an
anti-inflammatory agent [195]. Phenyl aldehyde had a damaging effect on Candida albicans.

Table 3. Opposite mechanisms in families of peptidic uremic retention compounds.

Toxic Neutral or Non-Toxic

Complement factor D Complement factor Ba

Interleukin-1β Interleukin-1 receptor antagonist

Tumor necrosis factor-α Soluble tumor necrosis factor receptor

Interleukin-6 Interleukin-10

Cholecystokinin Ghrelin

Desacyl Ghrelin Ghrelin

Leptin Orexin A

Peptide YY Neuropeptide Y

Whatever the pathophysiologic impact of a broader array of compounds than those
we usually consider, the same argumentation as the one held above—in other words, that
the mechanisms leading to uremic toxin production were not switched off because the
preservation of the species was not (sufficiently) endangered—still applies.

6. Summary and Future Outlook

The message conveyed in this publication is that solutes emanating from the same
origin as uremic toxins may be beneficial or even essential for body functioning. The RSST
is a useful construct for thinking about small molecule communication between organs
and organisms to preserve normal physiology and counteract pathophysiological states.
Likewise, AHR, the main receptor of the tryptophan metabolites, also has been linked both
to harms and benefits. In addition, as for other poisonous compounds, uremic poisons
might also, under certain conditions and at certain concentrations, have positive effects,
as exemplified in this text for the solutes that were labelled as ambivalent, but also for an
accepted toxin such as indoxyl sulfate.

As this text proposes a hypothesis, it is by definition provocative and formulates
a number of as yet not consolidated viewpoints, and parts of what is formulated may
be refuted in the future when new knowledge appears. On the other hand, this text
was formulated only after ample literature search and involves elements related to several
different biological pathways and systems. Additionally, this publication essentially focuses
on tryptophan metabolism, as acknowledged in Section 5, although also a limited number
of other examples that are not related to tryptophan are illustrated. However, the focus on
tryptophan is unavoidable in view of the scarcity of data on other pathways and factors.

More important than the question of why the production of uremic toxins has been
preserved is to consider the consequences of this functional dualism for further analysis
and treatment of uremic toxicity (Table 4). The baby should not be thrown away with the
bath water. Specifically for tryptophan metabolites, a complete mapping of the evolution
of concentrations of all involved compounds throughout the progression of kidney disease
should offer a clear insight in the basic condition without therapeutic intervention. This
infers that such analysis would not only include the usual suspects (presumed toxins), but
also beneficial and ambiguous compounds, as depicted above, to assess in what direction
their concentrations change as kidney dysfunction progresses. Additionally, research on
biological effects in CKD should be extended to a broader array of metabolites. This im-
plies that any study assessing treatment options to decrease uremic toxin concentration
should consider the impact on the complete metabolite balance—with special attention
to the molecules with a favorable effect, to clarify whether or not beneficial compounds
are removed or affected in the same way as the toxins. Maybe a simultaneous removal of
compounds with positive and negative effects explains the deceiving results of several con-
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trolled studies comparing high efficacy dialysis strategies such as on-line hemodiafiltration
compared to standard treatment [196,197].

Table 4. Recommendations for future consideration.

Tryptophan metabolites

Provide a complete mapping of the evolution of compounds with positive and negative biological
impacts throughout all CKD stages.

Extend biological research to a broader array of compounds than the usual suspects

Assess the effect of therapeutic strategies on molecules with as well positive as negative
biological effects.

Consider choosing therapies that maintain or restore the balance between components with
positive and negative impact, rather than removing toxins as well as beneficial compounds.

Promote the publication of suitable studies showing atypical results of uremic toxin actions.

Researchers should not shelve uremic toxin research with atypical results.

Other than tryptophan metabolites

Develop extensive reviews and studies on a broader array of metabolites than the ones frequently
considered now.

Based on this knowledge, extend the analysis and development of therapeutic options.

In the context of the RSST, one can envision a homeostatic system attempting to
restore itself via small molecule interorgan (and inter-organismal) communication in the
setting of CKD and between dialysis sessions. Dialytic removal of some small molecules
that are beneficial to this endogenous restoration effort (remote sensing and signaling)
may partly defeat the purpose, especially if these beneficial molecules tend to decrease
inflammation, cardiovascular and endothelial damage, or fibrosis. It follows, then, that
therapeutic options which maintain or restore the balance between positive and negative
effects are to be preferred over those aimed only at eliminating toxins but at the expense of
worsening the imbalance. In this sense, pre-, pro-, syn- or postbiotics [198] or strategies
preserving kidney function may be more physiological than removal strategies; in terms
of the RSST, such strategies may be more prone to promoting beneficial inter-organismal
(e.g., gut microbe–host) communication via small molecules, and this question should be
answered. Finally, it is desirable that scientific journals actively solicit reports of suitable
quality on the neutral or beneficial effects of apparent uremic toxins, even if these results
conflict with existing knowledge. Likewise, it is the responsibility of researchers not to
shelve such atypical results.

In addition, a more extended metabolic review and study of the metabolites of other
intestinally generated precursors (cresol, phenol, hippurates) might also reveal as yet
insufficiently explored perspectives. In particular, the dualism of the metabolites of other
amino acids than tryptophan (e.g., tyrosine and phenylalanine for p-cresol) should be
explored with an open mind for counterbalancing elements dampening toxic effects. For
all metabolic pathways, determination of concentration thresholds determining toxicity vs.
benefit might also be relevant. As our understanding of the remote sensing and signaling
network becomes more detailed, it may also be possible to assess the impact of “non-
normal” levels of these uremic small molecules on communication pathways between cells,
organs, and organisms. The results might in turn lead to reconsidering therapeutic options,
e.g., by stimulating certain specific pathways and inhibiting others, or by trying not only to
affect intestinal generation but also absorption by intestinal epithelial cells.

Another intriguing but unanswered question is whether a relative increase in uremic
toxins with normal kidney function has a clinical impact or not. Although observational, a
study by Glorieux et al. including the entire spectrum of CKD stages whereby the link of
free p-cresyl sulfate to cardio-vascular disease remained significant after adjustment for
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several risk factors, including estimated glomerular filtration rate [199], may point in this
direction, but this should be further analyzed.

Author Contributions: Conceptualization, writing and coordination, R.V.; writing and editing,
S.K.N., S.B. and G.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Griet Glorieux. and Stéphan Burtey are beneficiaries of the European Union’s
Horizon 2020 research and innovation programme under grant agreement No [860329] (“STRATEGY-
CKD”). Raymond Vanholder, Stéphan Burtey and Griet Glorieux are members of the European
Uremic Toxins Workgroup (EUTox). Raymond Vanholder and Griet Glorieux thank Alain Goossens
(VIB-UGent) and Anne De Paepe (UGent) for the discussion and for sharing their expertise in relation
to this review.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kramer, A.; Boenink, R.; Noordzij, M.; Bosdriesz, J.R.; Stel, V.S.; Beltrán, P.; Ruiz, J.C.; Seyahi, N.; Farnés, J.C.; Stendahl, M.; et al.

The ERA-EDTA Registry Annual Report 2017: A summary. Clin. Kidney J. 2020, 13, 693–709. [CrossRef] [PubMed]
2. Vanholder, R.; Annemans, L.; Bello, A.K.; Bikbov, B.; Gallego, D.; Gansevoort, R.T.; Lameire, N.; A Luyckx, V.; Noruisiene, E.;

Oostrom, T.; et al. Fighting the unbearable lightness of neglecting kidney health: The decade of the kidney. Clin. Kidney J. 2021,
14, 1719–1730. [CrossRef] [PubMed]

3. Vanholder, R.; Annemans, L.; Brown, E.; Gansevoort, R.; Gout-Zwart, J.J.; Lameire, N.; Morton, R.L.; Oberbauer, R.; Postma, M.J.;
Tonelli, M.; et al. Reducing the costs of chronic kidney disease while delivering quality health care: A call to action. Nat. Rev.
Nephrol. 2017, 13, 393–409. [CrossRef] [PubMed]

4. A Silver, S.; Long, J.; Zheng, Y.; Chertow, G.M. Cost of Acute Kidney Injury in Hospitalized Patients. J. Hosp. Med. 2017, 12, 70–76.
[CrossRef] [PubMed]

5. Susantitaphong, P.; Cruz, D.N.; Cerda, J.; Abulfaraj, M.; Alqahtani, F.; Koulouridis, I.; Jaber, B.L. World incidence of AKI: A
meta-analysis. Clin. J. Am. Soc. Nephrol. CJASN 2013, 8, 1482–1493. [CrossRef] [PubMed]

6. Vanholder, R.; Pletinck, A.; Schepers, E.; Glorieux, G.L. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A
Comprehensive Update. Toxins 2018, 10, 33. [CrossRef]

7. Bugnicourt, J.-M.; Godefroy, O.; Chillon, J.-M.; Choukroun, G.; Massy, Z.A. Cognitive disorders and dementia in CKD: The
neglected kidney-brain axis. J. Am. Soc. Nephrol. 2013, 24, 353–363. [CrossRef]

8. Martin, C.E.; Clotet-Freixas, S.; Farragher, J.F.; Hundemer, G.L. Have We Just Scratched the Surface? A Narrative Review of
Uremic Pruritus in 2020. Can. J. Kidney Health Dis. 2020, 7, 2054358120954024. [CrossRef]

9. Vanholder, R.; Argiles, A.; Jankowski, J.; European Uraemic Toxin Work Group. A history of uraemic toxicity and of the European
Uraemic Toxin Work Group (EUTox). Clin. Kidney J. 2021, 14, 1514–1523.

10. Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; de Deyn, P.P.; Deppisch, R.;
et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943.
[CrossRef]

11. Duranton, F.; Cohen, G.; De Smet, R.; Rodriguez, M.; Jankowski, J.; Vanholder, R.; Argiles, A.; European Uremic Toxin Work
Group. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. JASN 2012, 23, 1258–1270. [CrossRef]
[PubMed]

12. Sadik, A.; Patterson, L.F.S.; Öztürk, S.; Mohapatra, S.R.; Panitz, V.; Secker, P.F.; Pfänder, P.; Loth, S.; Salem, H.; Prentzell, M.T.; et al.
IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell 2020, 182, 1252–1270.e34.
[CrossRef]

13. Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A
systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [CrossRef] [PubMed]

14. Kolachalama, V.B.; Shashar, M.; Alousi, F.; Shivanna, S.; Rijal, K.; Belghasem, M.E.; Walker, J.; Matsuura, S.; Chang, G.H.;
Gibson, C.M.; et al. Uremic Solute-Aryl Hydrocarbon Receptor-Tissue Factor Axis Associates with Thrombosis after Vascular
Injury in Humans. J. Am. Soc. Nephrol. 2018, 29, 1063–1072. [CrossRef] [PubMed]

15. Gondouin, B.; Cerini, C.; Dou, L.; Sallée, M.; Duval-Sabatier, A.; Pletinck, A.; Calaf, R.; Lacroix, R.; Jourde-Chiche, N.; Poitevin, S.;
et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway.
Kidney Int. 2013, 84, 733–744. [CrossRef] [PubMed]

16. Nigam, S.K. What do drug transporters really do? Nat. Rev. Drug Discov. 2015, 14, 29–44. [CrossRef] [PubMed]

http://doi.org/10.1093/ckj/sfaa048
http://www.ncbi.nlm.nih.gov/pubmed/32897277
http://doi.org/10.1093/ckj/sfab070
http://www.ncbi.nlm.nih.gov/pubmed/34221379
http://doi.org/10.1038/nrneph.2017.63
http://www.ncbi.nlm.nih.gov/pubmed/28555652
http://doi.org/10.12788/jhm.2683
http://www.ncbi.nlm.nih.gov/pubmed/28182800
http://doi.org/10.2215/CJN.00710113
http://www.ncbi.nlm.nih.gov/pubmed/23744003
http://doi.org/10.3390/toxins10010033
http://doi.org/10.1681/ASN.2012050536
http://doi.org/10.1177/2054358120954024
http://doi.org/10.1046/j.1523-1755.2003.00924.x
http://doi.org/10.1681/ASN.2011121175
http://www.ncbi.nlm.nih.gov/pubmed/22626821
http://doi.org/10.1016/j.cell.2020.07.038
http://doi.org/10.1681/ASN.2013101062
http://www.ncbi.nlm.nih.gov/pubmed/24812165
http://doi.org/10.1681/ASN.2017080929
http://www.ncbi.nlm.nih.gov/pubmed/29343519
http://doi.org/10.1038/ki.2013.133
http://www.ncbi.nlm.nih.gov/pubmed/23636172
http://doi.org/10.1038/nrd4461
http://www.ncbi.nlm.nih.gov/pubmed/25475361


Toxins 2022, 14, 221 18 of 25

17. Nigam, S.K.; Bush, K.T. Uraemic syndrome of chronic kidney disease: Altered remote sensing and signalling. Nat. Rev. Nephrol.
2019, 15, 301–316. [CrossRef] [PubMed]

18. Sirich, T.; Meyer, T.W. Indoxyl sulfate: Long suspected but not yet proven guilty. Clin. J. Am. Soc. Nephrol. CJASN 2011, 6, 3–4.
[CrossRef]

19. Leong, S.C.; Sirich, T.L. Indoxyl Sulfate—Review of Toxicity and Therapeutic Strategies. Toxins 2016, 8, 358. [CrossRef]
20. Adesso, S.; Magnus, T.; Cuzzocrea, S.; Campolo, M.; Rissiek, B.; Paciello, O.; Autore, G.; Pinto, A.; Marzocco, S. Indoxyl Sulfate

Affects Glial Function Increasing Oxidative Stress and Neuroinflammation in Chronic Kidney Disease: Interaction between
Astrocytes and Microglia. Front. Pharmacol. 2017, 8, 370. [CrossRef]

21. Bobot, M.; Thomas, L.; Moyon, A.; Fernandez, S.; McKay, N.; Balasse, L.; Garrigue, P.; Brige, P.; Chopinet, S.; Poitevin, S.; et al.
Uremic Toxic Blood-Brain Barrier Disruption Mediated by AhR Activation Leads to Cognitive Impairment during Experimental
Renal Dysfunction. J. Am. Soc. Nephrol. 2020, 31, 1509–1521. [CrossRef] [PubMed]

22. Sun, C.-Y.; Li, J.-R.; Wang, Y.-Y.; Lin, S.-Y.; Ou, Y.-C.; Lin, C.-J.; Wang, J.-D.; Liao, S.-L.; Chen, C.-J. Indoxyl sulfate caused behavioral
abnormality and neurodegeneration in mice with unilateral nephrectomy. Aging 2021, 13, 6681–6701. [CrossRef] [PubMed]

23. Adesso, S.; Ruocco, M.; Rapa, S.F.; Dal Piaz, F.; Di Iorio, B.R.; Popolo, A.; Autore, G.; Nishijima, F.; Pinto, A.; Marzocco, S. Effect of
Indoxyl Sulfate on the Repair and Intactness of Intestinal Epithelial Cells: Role of Reactive Oxygen Species’ Release. Int. J. Mol.
Sci. 2019, 20, 2280. [CrossRef] [PubMed]

24. Hamano, H.; Ikeda, Y.; Watanabe, H.; Horinouchi, Y.; Izawa-Ishizawa, Y.; Imanishi, M.; Zamami, Y.; Takechi, K.; Miyamoto, L.;
Ishizawa, K.; et al. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney
disease. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2018, 33, 586–597. [CrossRef] [PubMed]

25. Dias, G.F.; Bonan, N.B.; Steiner, T.M.; Tozoni, S.S.; Rodrigues, S.; Nakao, L.S.; Kuntsevich, V.; Filho, R.P.; Kotanko, P.;
Moreno-Amaral, A.N. Indoxyl Sulfate, a Uremic Toxin, Stimulates Reactive Oxygen Species Production and Erythrocyte Cell
Death Supposedly by an Organic Anion Transporter 2 (OAT2) and NADPH Oxidase Activity-Dependent Pathways. Toxins 2018,
10, 280. [CrossRef]

26. Wu, C.-J.; Chen, C.-Y.; Lai, T.-S.; Wu, P.-C.; Chuang, C.-K.; Sun, F.-J.; Liu, H.-L.; Chen, H.-H.; Yeh, H.-I.; Lin, C.-S.; et al. The role of
indoxyl sulfate in renal anemia in patients with chronic kidney disease. Oncotarget 2017, 8, 83030–83037. [CrossRef]

27. Rodrigues, G.G.C.; Dellê, H.; Brito, R.B.O.; Cardoso, V.O.; Fernandes, K.; Mesquita-Ferrari, R.A.; Cunha, R.S.; Stinghen, A.;
Dalboni, M.A.; Barreto, F.C. Indoxyl Sulfate Contributes to Uremic Sarcopenia by Inducing Apoptosis in Myoblasts. Arch. Med.
Res. 2020, 51, 21–29. [CrossRef]

28. Lin, Y.-L.; Liu, C.-H.; Lai, Y.-H.; Wang, C.-H.; Kuo, C.-H.; Liou, H.-H.; Hsu, B.-G. Association of Serum Indoxyl Sulfate Levels
with Skeletal Muscle Mass and Strength in Chronic Hemodialysis Patients: A 2-year Longitudinal Analysis. Calcif. Tissue Res.
2020, 107, 257–265. [CrossRef]

29. Santana Machado, T.; Poitevin, S.; Paul, P.; McKay, N.; Jourde-Chiche, N.; Legris, T.; Mouly-Bandini, A.; Dignat-George, F.;
Brunet, P.; Masereeuw, R. Indoxyl Sulfate Upregulates Liver P-Glycoprotein Expression and Activity through Aryl Hydrocarbon
Receptor Signaling. J. Am. Soc. Nephrol. JASN 2018, 29, 906–918.

30. Han, Y.S.; Kim, S.M.; Lee, J.H.; Lee, S.H. Co-Administration of Melatonin Effectively Enhances the Therapeutic Effects of
Pioglitazone on Mesenchymal Stem Cells Undergoing Indoxyl Sulfate-Induced Senescence through Modulation of Cellular Prion
Protein Expression. Int. J. Mol. Sci. 2018, 19, 1367. [CrossRef]

31. Sári, Z.; Mikó, E.; Kovács, T.; Boratkó, A.; Ujlaki, G.; Jankó, L.; Kiss, B.; Uray, K.; Bai, P. Indoxylsulfate, a Metabolite of the
Microbiome, Has Cytostatic Effects in Breast Cancer via Activation of AHR and PXR Receptors and Induction of Oxidative Stress.
Cancers 2020, 12, 2915. [CrossRef] [PubMed]

32. Asai, H.; Hirata, J.; Watanabe-Akanuma, M. Indoxyl glucuronide, a protein-bound uremic toxin, inhibits hypoxia-inducible
factordependent erythropoietin expression through activation of aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun. 2018,
504, 538–544. [CrossRef] [PubMed]

33. Cheung, K.W.K.; Hsueh, C.-H.; Zhao, P.; Meyer, T.W.; Zhang, L.; Huang, S.-M.; Giacomini, K.M. The Effect of Uremic Solutes on
the Organic Cation Transporter 2. J. Pharm. Sci. 2017, 106, 2551–2557. [CrossRef] [PubMed]

34. Badawy, A.A.-B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res.
2017, 10, 1178646917691938. [CrossRef] [PubMed]

35. Kalaska, B.; Pawlak, K.; Domaniewski, T.; Oksztulska-Kolanek, E.; Znorko, B.; Roszczenko, A.; Rogalska, J.; Brzóska, M.M.;
Lipowicz, P.; Doroszko, M.; et al. Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney
Disease. Front. Physiol. 2017, 8, 836. [CrossRef] [PubMed]

36. Mor, A.; Pawlak, K.; Kalaska, B.; Domaniewski, T.; Sieklucka, B.; Zieminska, M.; Cylwik, B.; Pawlak, D. Modulation of the
Paracrine Kynurenic System in Bone as a New Regulator of Osteoblastogenesis and Bone Mineral Status in an Animal Model of
Chronic Kidney Disease Treated with LP533401. Int. J. Mol. Sci. 2020, 21, 5979. [CrossRef] [PubMed]

37. Kaminski, T.W.; Pawlak, K.; Karbowska, M.; Mysliwiec, M.; Grzegorzewski, W.; Kuna, J.; Pawlak, D. Association between uremic
toxin-anthranilic acid and fibrinolytic system activity in predialysis patients at different stages of chronic kidney disease. Int.
Urol. Nephrol. 2017, 50, 127–135. [CrossRef]
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