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Abstract

Extracting features of retinal vessels from fundus images plays an essential role in com-

puter-aided diagnosis of diseases, such as diabetes, hypertension, and cerebrovascular

diseases. Although a number of deep learning-based methods have been used in this field,

the accuracy of retinal vessel segmentation remains challenging due to limited densely

annotated data, inter-vessel differences, and structured prediction problems, especially in

areas of small blood vessels and the optic disk. In this paper, we propose an ARN model

with a atrous block to address these issues, which can avoid the loss of data structure, and

enlarge the receptive field, so that each convolution output contains a larger range of infor-

mation. In addition, we also introduce residual convolution network to increase the network

depth and improve the network performance.Some key parameters are used to measure

the feasibility of the model, such as sensitivity (Se), specificity (Sp), F1-score (F1), accuracy

(Acc), and area under each curve (AUC). Experimental results on two benchmark datasets

demonstrate the effectiveness of the proposed methods, which accuracy are 0.9686 on the

DRIVE and 0.9746 on the CHASE DB1. The segmentation structure can assist the doctor in

diagnosis more effectively.

Introduction

Diseases such as diabetes, hypertension, and diseases of the retina are shown in retinal vascular

images [1]. The analysis of the number, angle, branch, and curvature of retinal blood vessels

can provide a valuable basis for clinical diagnosis [2], for the purpose of early prevention, diag-

nosis, and treatment. With the development and popularity of optical coherence tomography

(OCT) imaging technology and the increasing emphasis on early disease diagnosis, the num-

ber of fundus images is increasing rapidly, and their analysis will require much time and effort

[3]. In addition, differences in image acquisition procedures between machines and institu-

tions may lead to huge differences in resolution, noise, and tissue appearance, which increase

the difficulty of analysis [4].

To meet the need of this work, a fast and automatic segmentation method for retinal vascu-

lar images came into being [5,6]. It can improve the cutting efficiency and accuracy, reduce
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the waiting time of patients and save medical resources [7,8]. It can also provide basis for fun-

dus image registration, arteriovenous classification and biometric recognition [9]. Notably,

deep learning methods have performed better than traditional methods [10–13].

Among the unsupervised methods, filtering, morphological transformation and model-

based algorithms are dominant [14]. The method was evaluated on DRIVE and STARE data-

bases and returned accuracies of 0.945 and 0.9486 respectively.Wavelet transform was used by

Akram et al. and Soares et al. in retinal vascular segmentation [15], and they achieved 94.4%

accuracy in STARE. 2D Gabor Wavelet and Gaussian mixture models are used in their

approach. In particular, this approach is heavily influenced by the quality of the image. The

entropy of some particular antennas with a pre-fractal shape, harmonic sierpinski gasket and

weierstrass-mandelbrot fractal function were studied, and the result indicated that their

entropy is linked with the fractal geometrical shape and physical performance [16,17], and

they achieved 94.3% and 94.4% accuracy in DRIVE and STARE. This method is a kind of

unsupervised technique, and the calculation is fast, but the accuracy is limited. Frangi et al.

proposed a multi-scale enhanced-vessel filtering method to enhance vascular and vascular-like

patterns, in which second-order local structural features were used [18]. Sato et al. applied

three-dimensional (3D) multi-scale line filtering to the segmentation of cerebrovascular, bron-

chial and liver vessels [19]. This method can improve the continuity of the circuit structure

and reduce the noise, but the calculation is large and slow. Jiang et al. proposed a universal ves-

sel segmentation framework based on adaptive local threshold and applied it to retinal vessel

segmentation [20], they observed 65% true positive rate, and This method has more parame-

ters and slower operation. Zhang et al. proposed a filter based segmentation method for retinal

vessels, which uses a locally adaptive derivative filter [21], and they achieved 94.76% and

95.54% accuracy in DRIVE and STARE. Azzopardi et al. improved COSFIRE operator detec-

tion and applied it in retinal segmentation [22], and they achieved 94.27% and 94.11% accu-

racy in DRIVE and CHASE_DB1. Zhao et al. designed a new retinal vessel segmentation

model using an infinite parameter active contour model with mixed regional information [23],

and they achieved 95.4% and 95.6% accuracy in DRIVE and STARE. Liang et al. proposed a

level set method for vessel segmentation based on regional energy fitting information and

shape prior probability [24] and they achieved 95.03% and 95.36% accuracy in DRIVE and

STARE. The framework of unsupervised segmentation method always uses the filtering

method which is sensitive to blood vessels or vessel-like, which will lead to the incomplete

blood vessels and the misidentification of vessel-like parts. Moreover, the parameter setting

has great influence on the final segmentation result.

For the supervised methods, ground truth must be used to train the classifier, and then the

classifier can be used to extract the blood vessels. The features of retinal blood vessels can be

extracted by multiple methods [25,26]. Traditional machine learning methods for training

classifiers use k nearest neighbors, adaboost, random forest and other methods [27], and they

achieved 92.9% accuracy in DRIVE. Orlando et al. proposed a fully connected conditional ran-

dom field model for retinal vascular segmentation, using structured output support vector

machine learning model parameters as an example to improve the effect [28], and they

achieved 0.8741 and 0.8628 G-mean value in DRIVE and STARE. Zhang et al. applied retinal

vascular segmentation through filtering and wavelet transform strategy, and used random for-

est training strategy [29], and they achieved 94.66% and 95.47% accuracy in DRIVE and

STARE. In the above methods, the key feature selection has a great influence on the final seg-

mentation result, such as whether features are independent or easy to identify. However, these

features must be selected through people’s experience, The features need to be selected manu-

ally according to the experiment; so there is still much work to be done to perfect their

shortcomings.
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Benefiting from the rapid development of computer hardware, convolutional neural net-

works (CNNs) [30] have become the main machine learning method. Many CNN-based clas-

sification and detection methods have been proposed, which have facilitated the rapid

development of medical assisted diagnosis methods. In the process of retinal vascular segmen-

tation, the proportion of vascular areas, especially capillaries, is relatively small. To achieve a

better segmentation effect, it is necessary to increase the number of training sets and the

amount of training time. However, the number of training sets is limited in existing public

datasets. To solve this problem, Ronneberger et al. proposed U-Net [31], which combines

coarse and fine features through skip connections, can achieve better accuracy(95.34% and

95.78% accuracy in DRIVE and STARE) with fewer training sets. Many methods based on

U-Net have achieved good results, but there are still problems such as low accuracy, poor sen-

sitivity, and segmentation area error, especially the loss of vessel branch points, intersection

points, and small vessels.The results by other authors are summarized in Table 1.

We propose ARU-Net, a deep learning model to automatically segment retinal blood vessels

in fundus images. The model leverages the strengths of U-Net, cascaded atrous convolution,

and residual blocks enriched with squeeze and excitation. Residual blocks [32] are used as

building units to simplify the training process and help extract coarse and fine features from

source images. Squeeze and excitation units are added to each remaining block for channel

attention, adaptive feature recalibration, and increased feature power representation. The

addition of a dilated convolution module can ensure global and multi-scale extraction. We

evaluated our model on the publicly available DRIVE [33] and CHASE DB1 [34] datasets, and

the results show that it is effective, and the performance is improved.

Table 1. Summary of related work.

Method Sensitivity Specificity Accuracy

Mo and Zhang 0.8147 0.9844 0.9674

Neto et al. 0.8344 0.9443 0.8894

Kamble et al. 0.7177 0.9664 0.9421

Nugroho et al. 0.8927 0.7852 0.9022

Strisciuglio et al. 0.7716 0.9701 0.9497

Bahadar Khan etal. 0.758 0.9627 0.9458

Singh and Srivastava 0.7939 0.9376 0.9270

Zhao et al. 0.78 0.978 0.9560

Azzopardi et al. 0.7716 0.9701 0.9497

Nergiz et al. 0.8126 0.9442 0.9312

Mendonça 0.6996 0.027 0.9440

Staal 0.697 0.019 0.9516

Soares 0.7165 0.0252 0.9480

Singh and Srivastava 0.6134 0.0245 0.9384

Martinez-Perez 0.7506 0.0431 0.941

MF-FDOG 0.7177 0.0247 0.9484

Abdallah 0.6145 0.0162 0.9402

Raja et al. 0.936 0.9896 0.9594

Xiao et al. 0.7147 0.9735 0.9476

Manoj et al. 0.9314 0.9884 0.9583

Marı́n et al. 0.6944 0.9819 0.9526

Soares et al. 0.7181 0.9765 0.9500

Li et al. 0.7843 0.9837 0.9690

https://doi.org/10.1371/journal.pone.0273318.t001
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The proposed approach has the following contributions.

1. We propose a U-Net model integrating modified residual blocks to improve network

performance.

2. An improved hybrid atrous convolution is used to increase the receptive field.

The rest of this paper is organized as follows: Section 2 analyze relevant literature. Section 3

presents the proposed method; Section 4 analyzes and discusses the experiment result; Section

5 concludes this study.

Related work

Due to the excellent performance of deep learning framework in retinal vascular segmentation,

We will analyze ralated works using typical deep learning architectures.

U-Net

U-Net can be divided into three parts: left (down-sampling), middle (copy and crop), and

right (up-sampling). The first part reduces the size of the picture through four down-sampling

operations, which extract features from shallow information. The copy and crop part includes

four splicing operations. This operation fuses characteristic deep and shallow information. In

the up-sampling part, the picture is larger, and deep information is extracted through four up-

sampling operations. In the process of up-sampling, the number of channels in the image is

halved, which is contrary to the change of the number of channels in feature extraction in the

left part [35]. The up-sampling process fuses the shallow information on the left and splices

the features. A skip connection is used in U-Net at the same stage, ensuring that the recovered

feature graph integrates more low-level features and features of different scales. In this way,

multi-scale prediction and deep supervision can be carried out, and information such as edge

recovery of segmentation maps can be more refined [36].

ResNet

It has been found that deeper network layers and smaller receptive fields can improve neural

network performance. However, as the network structure deepens, two problems arise. First,

vanishing and exploding gradients affect the convergence of training. Second is degradation.

An increasing number of layers causes the model accuracy to decrease (which is not caused by

overfitting), and the training and testing error both increase.To overcome these problems, the

The residual network proposed by He et al. [37] shows significantly improved training charac-

teristics, allowing previously unachievable network depths.

In contrast to the traditional convolutional or fully connected layer, ResNet has many

bypass branches that connect the input directly to the following layer, so as to directly learn

the residuals. This structure is also known as a shortcut connection. Such a structure can

directly detour the input information to the output to protect its integrity. The network only

needs to learn the input and output differences of that part, simplifying the learning objectives

and decreasing difficulty.

Method

Using U-Net as the basic framework in medical image segmentation can solve the problem of

small samples that commonly exist in such images. However, U-Net is composed of a contrac-

tion path that gradually reduces the spatial dimension of the image through down-sampling,

and an expansion path that gradually restores the details and spatial dimension of the object
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through up-sampling. Therefore, after convolution and down-sampling, there will be gradient

disappearance, structural information loss, and other problems.

In this study, We integrate a residual network (ResNet) and atrous convolution modules

into the U-Net network in a new network structure, the atrous residual U-Net (ARU-Net),

which can further expand the receptive field and improve the correlation between objects

without losing information, thus improving the performance of vascular segmentation.This

framework is shown in Fig 1. It consists of two phases of training and testing. In the training

stage, color fundus images were preprocessed with grayscale transformation and normaliza-

tion, and then used as training data. The network adjusts model weight parameters by iterative

learning. Then save the weights. In the testing stage, the network reloads the saved weight

information and makes predictions for the preprocessed data.

Modified residual block

To further improve the performance of the network, we include a squeeze-and-excitation

block in ResNet [38], the difference from the original residual network is shown in Fig 2B and

2C. Squeeze (red box, Fig 2(C)) can change the spatial dimension of each input feature map

from H×W squeeze to 1×1. We use global average pooling to achieve this. In the squeeze oper-

ation, we perform feature compression along the spatial dimension, turning each two-dimen-

sional feature channel into a real number that has a global receptive field, and the dimension

of the output matches the number of feature channels of the input. It represents the global dis-

tribution of responses on the characteristic channel and enables the layer close to the input to

obtain the global receptive field, which is useful in many tasks.

zc ¼ FsqðucÞ ¼
1

H �W

XH

i¼1

XW

j¼1

ucði; jÞ ð1Þ

Where zc represents the channel descriptor for channel c, Fsq represents global average

pooling, uc represents channel c of the input, and H and W represent the height and width of

the input.

Fig 1. Overview of proposed ARU–Net.

https://doi.org/10.1371/journal.pone.0273318.g001
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In excitation (green box, Fig 2(C)), the feature dimension is reduced to 1/r of the input, and

raised back to the original dimension through a fully connected layer after ReLU activation.

This method, which is more nonlinear and can better fit the complex correlation between

channels than the method that directly uses a fully connected layer, greatly reduces the number

of parameters and the amount of calculation.

Hybrid atrous convolution block

As is well known, atrous convolution can enlarge the receptive field [39,40]. When the convo-

lution kernel is 3×3, 1-dilated and 2-dilated together can achieve the effect of a 7×7 convolu-

tion kernel. Similarly, when 4-dilated conv is followed by 1-dilated and 2-dilated conv, the

receptive field can achieve the effect of a 15×15 convolution kernel. Compared with traditional

convolution operations, the receptive field of atrous convolution grows exponentially.

However, when we only stack convolution with the same void rate many times, the kernel

is not continuous, i.e., not all pixels are used for calculation. Therefore, the information is

regarded as checkerboard, which will lose continuity, and does not work well for small objects.

We use a hybrid atrous convolution block to solve this problem,

Mi ¼ max½Miþ1 � 2ri;Miþ1 � 2ðMiþ1 � riÞ; ri�; ð2Þ

where ri is the void rate of the i-th layer, and Mi is the maximum void rate at layer i. Assuming

there are n layers, the default is Mn = rn. If we apply a k×k convolution kernel and our goal is

that M2�K, then we can cover all the holes using standard convolution.

Proposed U-net Block is shown in the Fig 2A. We replaced the original COV3×3 block in

the original U-net with AR Conv Unit. The red arrow represents AR Conv Unit, it is also

an important difference from U-Net, and we can see the specific algorithm flow from Algo-

rithm 1.

Algorithm 1: Algorithm of the proposed ARU convolution unit

Input: Feature map X

Output: Feature map Y

Fig 2. (a) Proposed ARU–Net Block, (b) standard residual block, (c) modified residual block.

https://doi.org/10.1371/journal.pone.0273318.g002
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1: X1 = HAC(X) // Hybrid atrous convolution block with r[1,2,3]

5: X2 = h(X)+F(x,w);xl+1 = f(x2)

6: X3 = Ftr(X2) // Ftr: X!U, X2RW’×H’×C’, U2RW×H×C

7: X4 = FSq(X3) //FSqðXÞ ¼ 1
H�W

XH

i

XW

j

Xði; jÞ Shrinking feature maps2RW×H×C through

saptical dimentions

8: X5 = Fex(X4,W) //Learnning W2RC×C to explicitly model channel-association

9: X6 = Fscale(X2,X5) //Reweighting the feature maps2RW×H×C

10: Y = concatenate(X1,X6)

Experiments

Implementation details

We evaluated the proposed ARU-Net on the DRIVE and CHASE DB1 retinal image datasets.

DRIVE includes 40 color fundus images, with 20 for training and 20 for testing. CHASE DB1

contains 28 retinal fundus images. Although there is no initial division of training and testing

sets, the first 20 are usually used for training, and the remaining eight for testing. Additionally,

in Chase DB1, there are two sets of Ground-truth (GT) images, we chose the first group

because they have more complete vessel details than broken ones. Images in DRIVE and

CHASE DB1 have resolution of 565×584 and 999 × 960, respectively. To fit our network, we

resize each image in DRIVE and CHASE DB1 to 592 × 592 and 1008 × 1008 by padding it

with zero in four margins, but in evaluation, we crop the segmentation results to the initial res-

olution. Manually segmented binary vessel maps of both datasets provided by human experts

can be applied as the ground truth.

The experiments have been conducted in a desktop computer with intel core i5-9400 pro-

cessor CPU, 32GB RAM, and NVIDIA 1080Ti, 11 GB GPU. Adam optimization method was

used to optimize the parameters. Since the phased training can speed up the convergence of

the network, we adopted different parameters in the training process [41]. When using the

Drive data set, we find that the first 200 epochs use learning rate of 0.003, followed by the

learning rate of 0.0001 can achieve good results. And the same is true for CHASE DB1. The

difference is that we set the batch size to be 2 and 1 respectively. The relevant model dimen-

sions are listed in Table 2.

Evaluation metrics

To quantitatively evaluate our model, we compared the segmentation results with the corre-

sponding ground truth; divided the results of each pixel into true positive (TP), false positive

(FP), false negative (FN), and true negative (TN); and adopted sensitivity (Se), specificity (Sp),

F1-score (F1), and accuracy (ACC) to evaluate the performance of the model.

Se ¼
TP

TP þ FN
; ð3Þ

Sp ¼
TN

TN þ FP
; ð4Þ

Table 2. Related parameters to our model and U–net.

Model Parameters Flops

U-Net[32,64,128] 517090 1032931

Proposed[16,32,64,128,256] 1054523 2100906

https://doi.org/10.1371/journal.pone.0273318.t002
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precisionK ¼
TP

TP þ FP
; ð5Þ

recallK ¼
TP

TP þ FN
; ð6Þ

F1 ¼
1

n

X2 � precisionK � recallK
precisionK þ recallK

� �2

; ð7Þ

Acc ¼
TP þ TN

TP þ FN þ TN þ FP
: ð8Þ

We also utilize the area under the ROC curve (AUC), where a value of 1 indicates perfect

segmentation.

Results

The results in Table 3 are our results on public datasets, the DRIVE and the CHASE DB1. We

compare the single use of residual networks, the single use of empty convolution and our

approach. When the residual convolution block or the hybrid atrous convolution block is

added separately, the segmentation performance of the network can be improved. The experi-

mental results show that when the above two kinds of convolution are added to the network,

the segmentation network can get better results.

Fig 3 shows some examples from our experiments. From the segmentation results of the

two datasets, our results are very close to the gold standard, especially for some small blood

vessels. We also verify the influence of different blocks on the results. According to the results

in Table 1, our method is superior to the previous best in some key parameters. The highest

ACC (0.9686%/0.9746%), the highest AUC(0.9842/0.9869), and the highest Se(0.8149/0.8420).

That means residual convolution blocks and hybrid atrous convolution block are very useful

for networks.

The proposed method was also compared with U-Net in a segmentation experiment, and

some examples of the results are shown in Figs 4 and 5. Fig 4 shows examples on the DRIVE

dataset; Fig 4(A)–4(D) are the color fundus image, ground truth (manual annotation data),

results by the proposed method, and results by U-Net. Fig 5 shows examples of the results on

CHASE DB1. We can conclude from these results that our method can segment more vascular

details, especially in capillary vessels (marked by a red box).

Finally, we compared ARU-Net with several state-of-the-art methods on the DRIVE and

CHASE DB1 datasets, with results as shown in Table 4, which shows that ARU-Net performs

best on both datasets as measured by Se, Sp, ACC, F1, and AUC. In details, on the DRIVE and

Table 3. Experimental result on DRIVE and CHASE DB1.

Datasets DRIVE CHASE DB1

Architecture Se Sp F1 ACC AUC Se Sp F1 ACC AUC

U-Net 0.7537 0.9820 0.8142 0.9531 0.9755 0.8288 0.8288 0.7783 0.9578 0.9578

RE only 0.7726 0.7726 0.8149 0.9553 0.9553 0.7726 0.7726 0.7800 0.9553 0.9553

Atrous only 0.8130 0.9819 0.8223 0.9680 0.9827 0.8300 0.9848 0.8073 0.9732 0.9860

Ours 0.8043 0.9844 0.8179 0.9686 0.9842 0.8099 0.9856 0.8005 0.9746 0.9869

https://doi.org/10.1371/journal.pone.0273318.t003
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CHASE DB1, our model has the highest AUC (0.21%/0.09% higher than the best before), the

highest accuracy (1.08%/0.85% higher than the best before) and the highest sensitivity. F1 and

specificity are generally comparable. Hence, our method achieves state-of-the-art performance

for retinal vessel segmentation.

In addition, adding multi-scale strategy can improve network performance, just like on the

Drive dataset. The Se, Acc and AUC were improved (Se0.7772, ACC0.9553, AUC0.9759

respectively) [55,56]. In their study, an improved cross entropy loss function is applied, and

uses CRFs as a post-processing strategy. The challenge is how to exploit the relationships

between images at different scales. The segmentation result is greatly affected by the weight

coefficient, which needs to be set manually. And compared with some other methods, the per-

formance improvement is not obvious. For convolution neural network method with rein-

forcement sample learning strategy proposed by Guo et al. [57], Sp and ACC value was the

lowest, and the final segmentation result was the worst. For U-net based on patch-based learn-

ing strategy, Se, Sp, ACC and AUC value were not the highest; however, the segmentation

result was the best in the comprehensive evaluation.

Discussion and conclusion

In medical image segmentation, common methods of data augmentation include random

slice, rotation and mirror image, etc [58,59]. In general, the accuracy of the model on the train-

ing set is significantly increased, but in the validation set, the accuracy is not significantly

improved, that is to say, the generalization ability of the model is not substantially improved.

In order to improve the overall performance of the network, such as Se, Sp, ACC, AUC, and

AUC, it is necessary to adjust the structure of the network, change the supervision function

and the optimizer.

Fig 3. Some examples from two experiments on the DRIVE and CHASE DB1 datasets. The first three columns are from the DRIVE dataset.

The last three columns are from the CHASE DB1 datasets. (a) and (d) Color fundus image, (b) and (e) ground truth, (c) and (f) segmentations.

https://doi.org/10.1371/journal.pone.0273318.g003
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Unlike other data augmentation approaches, our method operates on the entire image. This

has proven to be beneficial as our model is faster than the above methods. In addition, our

model is able to obtain more natural and continuous segmentation masks and capture more

detailed features. Furthermore, the introduction of hybrid atrous convolution blocks and mod-

ified residual blocks in our framework made it possible to utilize image at multiple scales, with

corresponding oversight at each scale, helping our model to efficiently aggregate the outputs of

different stages.

We presented ARU-Net, a segmentation structure to which atrous and residual convolution

were added. This unit enlarges the receptive field without losing resolution. We replaced ReLU

with LeakyReLU in the downsampling process. We evaluated the method on the DRIVE and

CHASE DB1 benchmark datasets, and accuracy and sensitivity metrics demonstrated that our

model can segment fundus vessels better than other models. The branches of many vessels,

including very small vessels, were correctly segmented. Fundus diseases often reflect changes

in the small shape of blood vessels.

Therefore, the above methods can help doctors to diagnose diseases. However, the segmen-

tation rupture of blood vessels can still occur in images with lesions. In the future, we’ll con-

tinue to explore how to ameliorate the problem of broken blood vessels, so that the

segmentation results are closer to the real.The experimental results on the DRIVE and CHASE

DB1 datasets are shown in Figs 6 and 7.

Fig 4. Comparison of ARU–Net and U–Net on DRIVE dataset: (a) color fundus images; (b) ground truth; (c)

segmentation result by ARU–Net; (d) segmentation result by U–Net.

https://doi.org/10.1371/journal.pone.0273318.g004
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Fig 5. Comparison of ARU–Net and U–Net on CHASE DB1 dataset: (a) color fundus images; (b) ground truth; (c) segmentation

result by ARU–Net; (d) segmentation result by U–Net.

https://doi.org/10.1371/journal.pone.0273318.g005

Table 4. Results of different methods on DRIVE and CHASE DB1.

DRIVE CHASE DB1

Methods Se Sp F1 ACC AUC Se Sp F1 ACC AUC

Orujov [42] 0.8380 0.9570 - 0.9390 - 0.8800 0.9680 - 0.9500 -

Roychowdhury [43] 0.7395 0.9782 - 0.9494 0.9672 0.7615 0.9575 - 0.9467 0.9623

Azzopardi [44] 0.7655 0.9704 - 0.9442 0.9614 0.7584 0.9587 - 0.9387 0.9487

Jiong Zhang [45] 0.7743 0.9725 - 0.9476 0.9636 0.7626 0.9661 - 0.9452 0.9606

Fraz [46] 0.7406 0.9807 - 0.9480 0.9747 0.7224 0.9711 - 0.9469 0.9712

Li [47] 0.7569 0.9816 - 0.9527 0.9738 0.7507 0.9793 - 0.9581 0.9716

U-Net [31] 0.7537 0.9820 0.8142 0.9531 0.9755 0.8288 0.8288 0.7783 0.9578 0.9578

ResU-Net [32] 0.7726 0.7726 0.8149 0.9553 0.9553 0.7726 0.7726 0.7800 0.9553 0.9553

Orlando et. al. [48] 0.7897 0.9684 0.7857 0.9454 0.9506 0.7277 0.9712 0.7332 0.9458 0.9524

Yan et al. [49] 0.7653 0.9818 - 0.9542 0.9752 0.7633 0.9809 - 0.9610 0.9781

R2U-Net [50] 0.7799 0.9813 0.8171 0.9556 0.9784 0.7756 0.7756 0.7928 0.9634 0.9634

LadderNet [51] 0.7856 0.9810 0.8202 0.9561 0.9793 0.7978 0.9818 0.8031 0.9656 0.9839

RU-Net [52] 0.7751 0.7816 0.8155 0.9556 0.9782 0.7459 0.9836 0.7810 0.9622 0.9803

DEU-Net [53] 0.7940 0.9816 0.8270 0.9567 0.9772 0.8074 0.9821 0.8037 0.9661 0.9860

Vessel-Net [54] 0.8038 0.9802 - 0.9578 0.9821 0.8132 0.9814 - 0.9661 0.9860

Ours 0.8043 0.9844 0.8179 0.9686 0.9842 0.8099 0.9856 0.8005 0.9746 0.9869

https://doi.org/10.1371/journal.pone.0273318.t004
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