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Abstract

Motivation: Functional protein–protein interaction (PPI) networks elucidate molecular pathways

underlying complex phenotypes, including those of human diseases. Extrapolation of domain–do-

main interactions (DDIs) from known PPIs is a major domain-based method for inferring functional

PPI networks. However, the protein domain is a functional unit of the protein. Therefore, we should

be able to effectively infer functional interactions between proteins based on the co-occurrence of

domains.

Results: Here, we present a method for inferring accurate functional PPIs based on the similarity of

domain composition between proteins by weighted mutual information (MI) that assigned different

weights to the domains based on their genome-wide frequencies. Weighted MI outperforms other

domain-based network inference methods and is highly predictive for pathways as well as pheno-

types. A genome-scale human functional network determined by our method reveals numerous

communities that are significantly associated with known pathways and diseases. Domain-based

functional networks may, therefore, have potential applications in mapping domain-to-pathway or

domain-to-phenotype associations.

Availability and Implementation: Source code for calculating weighted mutual information based

on the domain profile matrix is available from www.netbiolab.org/w/WMI.

Contact: Insuklee@yonsei.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are major functional molecules that conduct cellular proc-

esses. Interactions between proteins are important for understanding

the molecular mechanisms of complex traits, including diseases. For

example, network-based analysis has recently gained popularity in

interpreting data from genome-wide association studies (GWAS)

and whole exome sequencing (WES) for human diseases such as can-

cer (Krogan et al., 2015; Leiserson et al., 2013; Mutation and

Pathway Analysis working group of the International Cancer

Genome Consortium, 2015; Shim and Lee, 2015). Although a large

number of protein–protein interactions (PPIs) have been mapped via

experimental detection of physical interactions between proteins, in

silico methods are still useful for inferring functional PPIs (Rao

et al., 2014) because proteins may work cooperatively without phys-

ical interaction.

Interactions between proteins are typically mediated by domain–

domain interactions (DDIs); thus, protein domains can be used to

infer PPIs (Deng et al., 2002; Reimand et al., 2012; Sprinzak and

Margalit, 2001; Wojcik and Schachter, 2001). Indeed, frequently

observed domain pairs between interacting proteins have been iden-

tified as powerful predictors of PPIs (Deng et al., 2002; Sprinzak

and Margalit, 2001). These observations have motivated the system-

atic extraction of DDIs from known PPIs and extrapolation to new

PPIs. Many algorithms have been developed to extract DDIs from
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PPIs, as well as to infer new PPIs based on these DDIs, which have

been collected into meta-databases (Kim et al., 2012; Yellaboina

et al., 2011).

Functional PPIs can also be inferred from shared domains be-

tween proteins because protein domains are structural, functional

and evolutionary units of proteins. In addition, because proteins

evolved through gene duplication, recombination, fusion and fission

towards specific functions, there exist limited rules for domain com-

bination (Chothia et al., 2003; Moore et al., 2008). However, the

presence of shared domains between proteins may not be a sufficient

model of functional PPIs. For example, a DNA-binding domain

exists in most transcription factors, which regulate many different

biological processes. Thus, such a shared domain between two pro-

teins may not be a strong indicator of their functional association

with the same pathway. Therefore, we do not expect the prediction

of functional PPIs based on domain sharing to be effective. There

exists a need for a method to infer functional associations between

proteins based on domain co-occurrence.

In this study, we propose a method to infer PPIs based on do-

main occurrence. Any protein can be represented by a domain pro-

file, which is a vector reflecting the presence or absence of domains.

Functional associations between proteins are then measured by the

similarity between their domain profiles. Unlike DDI-based infer-

ence of PPIs, this approach does not require prior knowledge of the

PPIs from which the DDIs are extracted. In addition, to measure do-

main profile similarity with higher functional relevance, we wanted

to account for unequal distribution of functional information con-

tent across profiles and domains. Mutual information (MI) differen-

tially compares profile information based on their entropy. We

hypothesized that rarer domains tended to be involved in more spe-

cific pathways. Therefore, in addition to traditional MI, we tested a

weighted MI method that assigned different weights to domains

based on their genome-wide frequencies. Here, we demonstrate that

weighted MI outperforms traditional MI in the inference of func-

tional PPIs based on domain profile similarity in both yeast and

human. We also found that domain profile similarity by weighted

MI constructs substantially improved functional networks compared

to those based on DDIs. Our domain-based network inference

method constructed highly predictive functional networks for com-

plex phenotypes such as human diseases. Finally, we observed

that communities of our domain-based network are significantly

associated with known pathways or diseases, implicating a potential

application of domain-based functional networks in mapping associ-

ations between domains and pathways/diseases.

2 Methods

2.1 Pathway and phenotype annotation sets
Inferred functional PPI networks were analyzed using various path-

way or phenotype annotations. For pathway analysis, we used Gene

Ontology Consortium (2013) biological process (GOBP) annota-

tions for yeast and human. For yeast phenotype analysis, we used a

set of literature-based annotations of yeast genes for 100 knockout

(KO) phenotypes (McGary et al., 2007). For human phenotype ana-

lysis, two disease gene databases were used: Online Mendelian

Inheritance in Man (OMIM) (Amberger et al., 2015) and Disease

Ontology (DO) (Kibbe et al., 2015).

2.2 Generation of domain profiles for proteins
The InterPro database (Mitchell et al., 2015) (http://www.ebi.ac.uk/

interpro), which collects domain annotations from diverse sources,

includes over 20 000 entries. We downloaded InterPro entries (v38)

for yeast and human proteins via BioMart, and generated domain

profiles for 17 013 and 4921 proteins using 8362 and 4261 domains

for human and yeast, respectively. A stack of domain profiles, i.e. a

protein–domain matrix, was defined as follows:

DEFINITION 1: Protein–domain matrix M

Given n proteins and m domains, let a protein–domain matrix

M¼ [cij] be an n�m matrix whose elements cij indicate the presence

or absence of a domain dj within a protein pi as follows:

cij ¼
1; if protein pi contains domain dj

0; otherwise

(

2.3 Inference of functional PPIs by MI analysis
Given a protein–domain matrix, the functional association between

two proteins can be measured using MI analysis, which measures

the mutual dependence between two discrete random variables (e.g.

domain profiles) as described in Definition 2.

DEFINITION 2: MI I

Given two discrete random variables X and Y,

I X;Yð Þ ¼ H Xð Þ þH Yð Þ �H X;Yð Þ

where H(X), which represents the entropy (i.e. measure of uncer-

tainty) of random variable X, and H(X,Y) represents the joint en-

tropy between discrete random variables X and Y with joint

distribution p(X,Y). H(X), H(Y) and H(X,Y) defined as:

H Xð Þ ¼ �
XkX

i¼1
p Xið Þ � log p Xið Þ

H Yð Þ ¼ �
XkY

j¼1
p Yj

� �
� log p Yj

� �

H X;Yð Þ ¼ �
XkX

i¼1

XkY

j¼1
p Xi;Yj

� �
� log p Xi;Yj

� �
where kX and kY are the cardinality of the outcomes of X and Y,

respectively.

Higher MI results when the entropy of each random variable is

high and the relative entropy between two random variables is low.

In addition to traditional MI, we tested weighted MI, which adds

more weight to the rarer profile features, as described in the follow-

ing definitions:

DEFINITION 3: Domain-specific weight

Given the n-by-m protein–domain matrix M, the domain-

specific weight xj for each domain j is defined as:

xj ¼

Pn
k¼1

Pm
l¼1

ckl

Pn
k¼1

ckj

where cij denotes the value of the indicated cell in matrix M.

DEFINITION 4: Weighted MI Ix

Given two proteins X and Y,

Ix X;Yð Þ ¼ Hx Xð Þ þHx Yð Þ �Hx X;Yð Þ

where Hx Xð Þ and Hx Yð Þ represent the weighted entropy of protein

X and protein Y, respectively, and can be calculated as follows:

Hx Xð Þ ¼ �
X

t2 0;1f g
px X; tð Þ � log px X; tð Þf g
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px X; tð Þ ¼
P

j2fjjcXj¼ tgxjPm
j¼1

xj

In addition, Hx X;Yð Þ represents the weighted joint entropy be-

tween X and Y, and can be calculated as follows:

Hx X;Yð Þ ¼ �
X

t1t22fð00;01;10;11g
px XY; t1t2ð Þ � log px XY; t1t2ð Þf g

px XY; t1t2ð Þ ¼
P

j2 jjcXj is t1 and cYj is t2f gxjPm
j¼1

xj

2.4 Functional PPI inference based on DDI
Based on the rationale that domains mediate interactions between

proteins, PPIs can be inferred by DDIs. Various algorithms have

been applied to extract DDIs from known PPIs. These DDIs have

been deposited into databases such as DOMINE (Yellaboina et al.,

2011), which collects DDIs from 15 different sources of evidence.

Assuming that DDIs from different sources are independent, we as-

signed a weight to each DDI based on the number of sources; thus,

this weight ranged from 0 to 15. The score of a functional inter-

action between protein i and protein j, which is often mediated by

multiple DDIs, was calculated using the following definition:

DEFINITION 5: The score of each PPI mediated by multiple DDIs

was defined as

sij ¼
1

N

X
u2i; v2j

huv

where huv is the weight of a DDI between domain u and domain v

and N is the number of DDIs involved in the interaction between

proteins i and j with weight greater than zero.

2.5 Likelihood of inferred functional PPIs
The functional significance of each inferred PPI was measured by

the log likelihood score (LLS), which is based on a Bayesian statistics

framework as described previously (Lee et al., 2004). LLS is defined

as follows:

LLS ¼ ln
P LjEð Þ=Pð øLjEÞ

PðLÞ=Pð øLÞ

� �

where P(LjE) and P( øLjE) represent the frequencies of positive (L)

and negative ( øL) gold standard pathway links observed in the

given source of evidence (E), and P(L) and P( øL) represent the prior

expectations (i.e. the total frequencies of all positive and negative

gold standard pathway gene pairs, respectively). To avoid over-

fitting, we used ‘0.632 bootstrapping’ for all LLS calculations due

to its credibility in estimating classifier error rates. For this study,

gold standard pathway links were generated by pairing two proteins

annotated for the same GOBP terms.

3 Results

3.1 Overview of weighted MI to infer functional PPIs

from domain profiles
Given that domains are functional units of proteins, the functions of

a protein can be represented by its domain composition. We sum-

marized protein functions as profiles of binary scores that indicate

the presence or absence of a given domain. These domain profiles

can then be used to infer functional associations between proteins

based on their similarity. In this study, we generated domain profiles

for proteins using domains registered to a comprehensive domain

database, InterPro, as of May 2014 (Mitchell et al., 2015).

Figure 1A illustrates an example of a protein–domain matrix com-

posed of multiple domain profiles. Domain profiles are generally

sparse because most proteins contain only a few of the several thou-

sand domains annotated in the InterPro database. For example,

�22% and �40% of proteins annotated by InterPro contain a single

domain in human and yeast. Meanwhile, only 2% and 0.25% of

proteins contain ten or more domains in human and yeast, respect-

ively (Fig. 1B and Supplementary Fig. S1A). To measure profile simi-

larity with high functional relevance, we took into account the

unequal distribution of information content across different do-

mains and domain profiles. As shown in Figure 1A, two questions

about non-uniformity in information content need to be addressed

when measuring profile similarity: (i) Which domain profile is more

informative? (ii) Which domain is more informative?

To address the first question of non-uniform information content

across domain profiles, we employed MI, which accounts for the en-

tropy within a profile via the similarity measure; profiles with higher

entropy are more informative. Using information theory, MI de-

scribes how much information is shared between two variables (e.g.

two domain profiles). Whereas most commonly used correlation co-

efficient measures, such as Pearson’s (r), Spearman’s (q) and

Kendall’s (s), can only measure linear relationships (monotonic rela-

tionship) between two variables, MI can measure nonlinear depend-

encies. Therefore, there is no need to specify a theoretical

probability distribution or use a mean-variance model to account

for non-linear dependencies. In the case of the domain profile, the

rate of occurrence change between two proteins is not constant for

the entire range of proteins or their component domains. Moreover,

MI accounts for the individual entropy of each input, as well as the

joint entropy between two variables, which is advantageous in the

case of very sparse profiles.

Unequal distribution of information content among domains is

illustrated by the power–law distribution of domain occurrence

among proteins. From this, we hypothesized that rare domains are

associated with relatively specific biological processes while com-

monly occurring domains contribute to diverse functions (Fig. 1C

and Supplementary Fig. S1B). For example, the zinc finger C2H2-

like (IPR015880) domain occurs in 793 proteins and plays a role in

binding DNA, RNA, protein and/or lipid substrates, such as zinc ion

binding and nucleic acid binding. Even if a protein containing the

zinc finger domain acts as a core transcription factor, it is difficult to

assert that zinc finger domains are associated with a specific path-

way. Therefore, we assigned higher weights to the rarer domains

during MI calculation based on the assumption that rarer domains

have higher information content or pathway specificity (see

Definition 4). A similar approach for image registration, in which

spatially weighted MI analysis accounted for differential medical im-

portance (Park et al., 2010; Patel et al., 2011; Suh et al., 2010) or

pixel contribution (Rivaz and Collins, 2012; Zhuang et al., 2011),

was shown to be superior to traditional MI analysis.

3.2 Domain profile similarity by weighted MI

outperforms other domain-based

PPI inference methods
We compared four different domain-based functional PPI inference

methods for yeast and human: (i) PPIs inferred from shared
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domains, (ii) PPIs inferred from DDIs (see Definition 5), (iii) PPIs

inferred from domain profile similarity by traditional MI and (iv)

PPIs inferred from domain profile similarity by weighted MI.

Homologous proteins generate similar domain profiles. To infer

functional PPIs based on domain profile similarity rather than se-

quence similarity, we excluded paralogous protein pairs (defined by

a blastp E-value threshold of 10� 3) from all domain-based PPI net-

works. The likelihood that two proteins participate in the same

GOBP pathway was measured for every bin of 1000 PPIs ordered

from the highest edge score (i.e. from the MI, weighted MI or DDI-

based score). If the LLS was greater than zero, the two proteins were

more likely to be associated functionally than expected at random.

For example, networks inferred from domain profile similarity by

weighted MI have 12 000 and 94 000 PPIs before the first bin of

1000 PPIs with negative LLS for yeast and human, respectively.

To test the inference power of each domain-based score for func-

tional PPIs, we performed regression analysis between domain-

based scores and LLS of protein pairs that share GOBP pathway an-

notations. Functional PPIs by shared domains were excluded from

this analysis because they were based on binary edge scores, which

were not sortable for regression analysis. We tested regressions for

the top 15 000 and 200 000 PPIs for all yeast and human networks,

respectively. PPI networks were fitted by a sigmoid or linear func-

tion. Based on the best-fit relationships for each network, we found

that weighted MI was the best regression model for functional PPIs

in both yeast and human (Fig. 2).

Next, we assessed functional PPI networks by precision-recall

analysis, in which we defined recall as the coverage of the coding gen-

ome and precision was defined as the probability that the inferred

PPIs shared pathway annotations in GOBP. We found that functional

PPI networks inferred from domain profile similarity by weighted MI

outperformed all other domain-based networks for both yeast and

human (Fig. 3). Functional PPIs based on the presence of shared do-

mains between proteins generated the largest PPI networks, which

also covered the largest number of coding genes, but with low preci-

sion. Functional PPIs based on DDIs or domain profile similarity by

traditional MI covered fewer coding genomes. In addition, precision

was higher than functional PPIs based on the presence of shared do-

mains, but less than that of weighted MI. Notably, confident net-

works of 12 000 and 94 000 PPIs by weighted MI covered 45% and

65% of coding genomes in yeast and human, respectively. Therefore,

we concluded that domain profile similarity by weighted MI is the

best domain-based PPI inference method and can be used to construct

genome-scale functional networks in humans.

A

B C

Fig. 1. Summary of weighted MI analysis to infer domain-based functional associations between genes. (A) An illustration of a protein–domain matrix composed

of six proteins (p1–p6) and five domains (d1–d6). Each cell of the matrix has a value of 1 if the given domain exists in the protein, and a value of 0 in all other cases.

The distribution of domain occurrence (i.e. domain profiles) are different across proteins. Some domain profiles are more informative than others, and entropy

can be used to measure the information content, in which high entropy reflects more informative profiles. Information content across domains is not distributed

uniformly. Some domains are associated with more specific functions than others. In general, the more rare the domain, the more informative it is. (B) The distri-

bution of the number of human proteins harbouring k domains. The distribution indicates that most human proteins have only a few domains, and that only a

few proteins contain many domains. (C) The distribution of the number of domains that occurred in k proteins, which reveals a power–law distribution (Color ver-

sion of this figure is available at Bioinformatics online.)
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3.3 Functional PPIs based on domain profile similarity

are highly predictive for complex phenotypes
Recently, network-based analysis of candidate genes has become

more popular in the genetic dissection of complex phenotypes such

as human diseases. For example, PPI networks predictive for human

diseases have been used to identify novel disease genes by network

association with known disease genes, network-based prioritization

candidates within susceptible diseases in the same chromosomal re-

gion or GWAS loci. Moreover, PPI networks have been applied to

disease modules by searching for subnetworks enriched for patient-

specific mutations or disease-associated single nucleotide poly-

morphisms (SNPs) (Barabasi et al., 2011; Jia and Zhao, 2014;

Leiserson et al., 2013; Mutation and Pathway Analysis working

group of the International Cancer Genome Consortium, 2015; Shim

and Lee, 2015). To test the capability of domain-based functional

PPI networks for studying complex phenotypes, we assessed the pre-

cision of the networks for connecting proteins that share phenotypes

in yeast and humans. Using similar precision-recall analyses as those

used to test the predictive power for GOBP pathways, we found that

using functional PPIs inferred from domain profile similarity by

weighted MI is highly predictive of both yeast KO phenotypes and

human diseases in the OMIM database (Fig. 4). These results dem-

onstrate that domain-based functional PPI networks are highly pre-

dictive for pathways as well as phenotypes, suggesting that they can

be applied towards network-based analysis of complex phenotypes,

including human diseases.

3.4 Domain-based human functional PPIs elucidate net-

work communities associated with pathways and

diseases
The high likelihood of an association between proteins involved in

the same pathways may allow genome-scale reconstruction of func-

tional modules represented as network communities. Using CFinder

(Derenyi et al., 2005), a software that identifies network commun-

ities with overlaps, we searched for all 10 clique-connected sub-

graphs in the human functional network of 94 000 confident PPIs

based on domain profile similarity by weighted MI. A total of 430

communities were identified. We tested these communities for their

association with GOBP and DO-Lite gene sets by Fisher’s exact test.

Using a criterion of P<0.01, at least three member genes for the test

pathway or disease set and at least two overlapped genes between

communities and gene sets, we found that 282 (65%) and 198
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(46%) of 430 communities are significantly associated with at least

one GOBP pathway and DO-Lite disease, respectively. These results

suggest that domain-based network communities tend to be signifi-

cantly associated with pathways or diseases, implicating the poten-

tial application of domain-based functional networks in mapping

domain-to-pathway and domain-to-disease associations.

Figure 5 shows 16 of the 20 communities with the strongest asso-

ciation with pathways or diseases in the largest component of the

domain-based functional network, which contained 61 133 links

among 5676 coding genes. Among the 16 communities, 15 and 10

were significantly associated with GOBP terms (Fig. 5A and

Supplementary Table S1) and DO-Lite terms (Fig. 5B and

Supplementary Table S2), respectively. Notably, some communities

were associated with diseases and their relevant biological processes.

For example, two enriched diseases for community C4 (i.e. 4th larg-

est community), epidermolysis bullosa (P¼1.38e�07) and ectoder-

mal dysplasia (P¼1.91e�06), are likely to be influenced by

epidermis development (P¼1.84e�27) and ectoderm development

(P¼1.91e�06), which are also significantly enriched for C4. As an-

other example, the pathway set linked to the perception of sound

(P¼1.08e�03) and the disease set for deafness (P¼2.76e�04) were

identified as associated significantly with C20. Furthermore, a path-

way term for the antimicrobial humoral response (P¼5.21e�04),

as well as a disease term for infection by Cryptococcus neoformans

(P¼7.71e�07), were enriched for C18. Many other communities

connected diseases and pathways whose relationships are less obvi-

ous, but implicated by previous studies. For example, C1 was associ-

ated with blood coagulation (P¼3.49e�08) and macular

degeneration (P¼2.07e�05); a relationship between anticoagulant

medication and massive intraocular haemorrhage in age-related

macular degeneration has previously been reported (Tilanus et al.,

2000). As another example, community C8 was associated with the

lipid metabolic process (P¼1.09e�03) and Cushing syndrome

(P¼3.28e�06); elevated triglyceride levels have been observed in

patients with Cushing syndrome (Chanson and Salenave, 2010).

Furthermore, C13 was associated with the integrin-mediated signal-

ling pathway (P¼5.15e�07) and polyarthritis (P¼1.74e�03); a

significant contribution of integrin to inflammatory cartilage de-

struction has previously been reported (Peters et al., 2012). Finally,

C18 was associated with cell adhesion (P¼4.98e�05) and

Pseudoxanthoma elasticum infection (P¼6.63e�09); elevated levels

of the cell adhesion molecule P-selectin have been observed in pa-

tients infected with P.elasticum (Gotting et al., 2008). These results

demonstrate the usefulness of domain-based functional networks for

studying the underlying molecular mechanisms of diseases.

We also compared communities of PPI networks, one by domain

profile similarity based on WMI and the other by DDI-based infer-

ences. We found that the WMI-based network gives substantially

more communities with much smaller range of size distribution, and

more communities that are associated with diseases or pathways

among top 20 communities (Supplementary Fig. S2), indicating su-

periority of WMI-based network over DDI-based network in recon-

structing functional and disease modules.

4 Discussion

The protein domain is a widely accepted functional unit of proteins.

Thus, domains can be expected to convey information about the

pathways and phenotypes proteins are involved in. However, the

use of domains to predict these pathways and phenotypes based on

domain occurrence remains limited. Many domains are associated

with multiple pathways that are involved in distinct physiological

processes. Therefore, domain occurrence may not be a sufficient in-

dicator of domain involvement in specific pathways or phenotypes.

Furthermore, some domains appear to be basic components of a

large number of proteins. Therefore, domain-based pathway model-

ling has been challenging. In this study, we demonstrated the feasi-

bility of constructing highly predictive functional PPI networks for

pathways and diseases using an information theory approach with

differential weights across domains. However, despite superior ac-

curacy, PPI networks by weighted MI exhibit smaller genome cover-

age than those derived by simple domain sharing, which indicates

that many domains are general-purpose components of proteins that

do not indicate any specific pathways. These observations suggest

that we may be able to use domain-based networks to distinguish

domains involved in specific pathways from those that participate in

general processes. This enables more reliable pathway prediction

based on domain information.

Although we demonstrated the utility of weighted MI to con-

struct domain-based functional PPI for yeast and human in this

study, the same method can be easily applied to other organisms and

may potentially benefit relatively lesser understood organisms for

which only protein sequences with electronic annotation of domains

are available.

We also demonstrated that human domain-based network com-

munities tend to be associated with pathways and diseases, suggest-

ing a potential application for domain-based functional networks in

mapping domain-to-pathway and domain-to-disease associations.

Although we have made vast progress in in silico models to identify

associated pathways and diseases for genes, models using domains
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Fig. 5. Major communities of a human domain-based functional network. The

largest component of the human domain-based network by weighted MI

(90 000 links) contains 61 133 links among 5676 coding genes. Among the 20

largest communities identified by CFinder analysis, 16 were included in the

largest component network. A few significantly associated GOBP terms (A)

and DO-Lite terms (B) for each community are listed along with their signifi-

cance scores (Color version of this figure is available at Bioinformatics online.)
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as indicators remain are less developed. Given that the domain is a

more fundamental functional unit of proteins, pathway or disease

annotation for each domain would be more relevant to the genome.

Therefore, significant efforts have been invested into the manual

curation of relationships between domains and pathways, such as

InterPro2GO (Burge et al., 2012). We anticipate that the develop-

ment of an automatic mapper of domains to GOBP terms will accel-

erate this manual curation project. In addition, the prediction of

domain-to-disease associations will provide new insights into the

analysis of disease-specific genomics data, such as disease-associated

SNPs and mutations, which potentially opens new routes to under-

standing the molecular mechanisms of human diseases in the future.
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