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Abstract: Ischemic heart disease (IHD) is a leading cause of death worldwide.  

Urban public health and medical management in Shenzhen, an international city in the 

developing country of China, is challenged by an increasing burden of IHD.  

This study analyzed the spatio-temporal variation of IHD hospital admissions from 2003 to 

2012 utilizing spatial statistics, spatial analysis, and space-time scan statistics. The spatial 

statistics and spatial analysis measured the incidence rate (hospital admissions per 1,000 

residents) and the standardized rate (the observed cases standardized by the expected cases) 

of IHD at the district level to determine the spatio-temporal distribution and identify 

patterns of change. The space-time scan statistics was used to identify spatio-temporal 

clusters of IHD hospital admissions at the district level. The other objective of this study 

was to forecast the IHD hospital admissions over the next three years (2013–2015) to 

predict the IHD incidence rates and the varying burdens of IHD-related medical services 

among the districts in Shenzhen. The results show that the highest hospital admissions, 
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incidence rates, and standardized rates of IHD are in Futian. From 2003 to 2012,  

the IHD hospital admissions exhibited similar mean centers and directional distributions, 

with a slight increase in admissions toward the north in accordance with the movement of 

the total population. The incidence rates of IHD exhibited a gradual increase from 2003 to 

2012 for all districts in Shenzhen, which may be the result of the rapid development of the 

economy and the increasing traffic pollution. In addition, some neighboring areas exhibited 

similar temporal change patterns, which were also detected by the spatio-temporal cluster 

analysis. Futian and Dapeng would have the highest and the lowest hospital admissions, 

respectively, although these districts have the highest incidence rates among all of the 

districts from 2013 to 2015 based on the prediction using the GM (1,1). In addition, the 

combined analysis of the prediction of IHD hospital admissions and the general hospital 

distributions shows that Pingshan and Longgang might experience the most serious burden 

of IHD hospital services in the near future, although Futian would still have the greatest 

number and the highest incidence rate of hospital admissions for IHD. 

Keywords: ischemic heart disease (IHD); spatio-temporal analysis; spatial disparities;  

grey model; China 

 

1. Introduction 

Ischemic heart disease (IHD), also known as coronary heart disease (CHD) [1], is caused by the 

buildup of plaque along the inner walls of the coronary arteries, which narrows the arteries and reduces 

blood flow to the heart; IHD is the leading cause of death worldwide [2–4]. In 2004, the number of 

IHD-related deaths was 7.2 million, accounting for 12.2% of all deaths and 5.8% of all years of life 

lost, and 23.2 million people experienced moderate or severe disability due to IHD [5]. As the most 

common type of heart disease, the projected total costs of IHD will increase from 46.8 billion dollars 

in 2015 to 106.4 billion dollars in 2030, an increase of 123.75%, as estimated by the American Heart 

Association [6]. In China, heart disease has also been a leading cause of death in the past two decades.  

Among the 15 major diseases among urban residents, mortality from heart disease was ranked 3rd, 4th, 

3rd, 3rd, and 2nd in 1990, 1995, 2000, 2005, and 2010, respectively [7]. In particular, mortality from 

IHD is approximately 95.97 per 100,000 people in China in 2011, accounting for approximately 

72.64% of the total deaths from heart disease [7]. Furthermore, the annual direct costs of 

cardiovascular disease are approximately 4% of the gross national income in China [8], and IHD is a 

chief component of cardiovascular diseases. Therefore, it is necessary to analyze the spatio-temporal 

variation of IHD hospitalizations using spatial statistics and spatial analysis and to forecast the hospital 

admissions and incidence rate related to IHD and the corresponding burden on medical services using 

the grey model GM (1,1). Such analyses will facilitate the development of appropriate, region-specific 

measures for the prevention and management of IHD. 

Because IHD is the leading cause of death, many studies have investigated the distribution of IHD 

and attempted to forecast its future distribution. The traditional distribution studies can be classified 

into two types: those investigating time trends and those investigating health disparities.  
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The studies investigating time trends analyze the changes in one or more countries over time  

(usually with the year as the unit) [9–12]. The health disparity studies are mainly focused on the 

diversity among different social, racial, or ethnic populations [8,13–18]. With the development of  

Geographic Information System (GIS) technology and its applications in epidemiology [19],  

heath disparity studies have been expanded to include spatial dimensions using spatial analysis,  

spatial statistics, and mapping visualizations [20,21], such as geographic distribution [22,23]  

and the spatial heterogeneity of health issues related to environmental inequalities  

(such as air pollution) [24–26]. Unfortunately, the above distribution studies are generally analyzed 

according to traditional statistical methods and are based on large areas. Furthermore, there is limited 

research on the spatial variation of IHD hospitalizations, and the factors affecting this variation,  

such as socioeconomic status and environmental conditions, could vary among different regions. 

Prediction studies usually use models to forecast mortality or incidence. For example,  

Wilson et al. [27] used risk factor categories (age, diabetes, smoking, JNC-V blood pressure 

categories, NCEP total cholesterol, and LDL cholesterol categories) to predict gender-specific CHD 

risk. Murray and Lopez [3], as well as Mathers and Loncar [2], utilized three types of projection 

models (baseline, pessimistic, and optimistic) for both sexes and seven age groups to predict mortality 

rates for the cause-related clusters based on the four independent variables of income per person, 

average years of schooling per adult, smoking intensity, and time. In addition to the multiple-factor 

prediction model, time series models, such as the Markov computer simulation, have been used to 

predict morbidity, mortality, or costs [28]. However, such multiple-factor prediction models must be 

based on comprehensive and accurate data regarding the underlying causes of the diseases and the 

related factors, which could be difficult to obtain, and assumptions must be made for the other models.  

Therefore, predicting the future disease incidence or mortality using a grey model based directly on 

previous observations seems to be a practical approach. 

Since it was introduced in 1982 by Deng, the grey system theory has become very popular due to  

its ability to address systems that have partially unknown parameters [29,30]. In addition, grey models 

(GMs) require only a limited amount of data (at least four time series data points) to forecast the 

development of the unknown systems [31]. Due to its advantages, the GM has been successfully 

applied to many disciplines, including economics, sociology, engineering, and others, and has 

demonstrated satisfactory results in recent years [32,33]. In particular, the model has been applied in 

the predictions of some similar aspects of IHD hospitalizations. Li et al. [34] applied the GM and the 

grey relational analysis to forecast the development of six indicators of the financial burden of patients 

between 2012 and 2015. Wu and Chen [32] used the grey model GMC (1,n) combined with a grey 

relational analysis to predict the population that would have access to the internet based on 12 years of 

observed data. Mao and Chirwa [35] applied grey model GM(1,1) to estimate vehicle fatality risk on 

the basis of the observed data from 1966 to 2001 in the USA and from 1969 to 2000 in the UK. 

In addition, as fiscal and economic administrations have gradually become more decentralized 

during the Reform and Opening period in China, urban governments have enjoyed more autonomy in 

resource allocation, urban planning, and economic policy [36]. Moreover, the incidence rate of IHD 

hospitalizations can be reduced by high-quality primary care [37–39]. Therefore, a better understanding 

of the spatio-temporal characteristics and the prediction of IHD within a city would facilitate the 

identification of areas and populations at high risk. Such analyses would enable decision makers to 
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formulate appropriate urban public health policies and efficiently allocate public health resources for 

the prevention and treatment of IHD [40]. However, previous studies have mainly focused on the 

global, national, or regional levels [41]. 

Shenzhen is considered to be one of the fastest-growing cities in the World; it has developed into an 

international city from a small fishing village approximately 30 years ago [42,43].  

The increasing burden of chronic diseases, such as IHD, accompanied by the rapid expansion of 

urbanization, is a major challenge to Shenzhen health and medical management [44,45].  

Furthermore, the population grew to 10.5 million in 2012 from 0.3 million in 1979; the resulting 

almost 35-fold increase in the population [46,47] was almost entirely a result of migration, with an 

average age of 30 years [48]. The large migrant population makes it difficult for the local health 

authorities to control and prevent the transmission of infectious diseases (such as HIV/AIDS),  

chronic diseases (such as IHD and hypertension), and psychological disorders (such as  

depression) [49]. Moreover, there are substantial variations in the association between health and 

migration, and there are health disparities between the local residents and the migrant population and 

health disparities within the migrant population [50,51]. Therefore, lifestyle health promotion, disease 

surveillance, and disease prevention are important aspects of the healthcare system [44].  

The total annual investment in medicine and healthcare increased to 7.87 billion Yuan in 2011 from 

1.30 billion Yuan in 2003 [46,52]. In addition, the mortality from heart disease has always been ranked 

highly among the major causes of death (e.g., ranked 3rd in 2003 and 2nd in 2012),  

although the mortality has shown a downward trend (i.e., the mortality was decreased to 0.82 in 2012 

from 1.27 in 2003) [53,54]. As a result, it is important to analyze the spatio-temporal variations  

and to predict IHD hospitalizations in Shenzhen for effective public health surveillance  

and management and the efficient allocation of healthcare resources to develop public healthcare  

and promote equal health services. 

The present study aimed to (a) clarify the spatial and temporal characteristics of IHD 

hospitalizations at the district level in Shenzhen, China from 2003 to 2012 utilizing spatial statistics 

and analyses and (b) predict the IHD hospital admissions and incidence rates based on the GM (1,1) 

over the next three years to illustrate the differential burden of IHD hospital services in the districts. 

The study investigated: (1) the temporal trends of IHD from 2003 to 2012, (2) the geographical 

distribution of IHD within Shenzhen at the district level, (3) the spatio-temporal clusters and variations 

of IHD, and (4) the prediction of IHD-related hospital admissions and incidence rates from 2013 to 

2015 and the concomitant district-level disparities in the hospital service burdens. 

2. Materials and Methods 

2.1. Study Area 

Shenzhen is the oldest and most successful Special Economic Zone (designated in 1979) in China. 

The city is located in the southern portion of southern China’s Guangdong province and is immediately 

north of Hong Kong (Figure 1). There are six administration districts and four administration units in 

Shenzhen: Futian, Luohu, Nanshan, Yantian, Longgang, Baoan, Guangming, Pingshan, Longhua,  

and Dapeng. The Guangming and Longhua units were created from the Baoan district in 2007 and 
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2011, respectively; the Pingshan and Dapeng units were created from the Longgang district in 2009 

and 2011, respectively. In this study, the study area includes the ten districts under the administration 

of Shenzhen according the latest administrative divisions. 

Figure 1. A map of Shenzhen and its location in China. 

 

2.2. Data Description 

2.2.1. IHD Data 

The IHD data for hospitalized patients from 2003 to 2012 were obtained from the Shenzhen Center 

for Health Information. These data included age, gender, address, diagnosis, and other information.  

The diagnoses were recorded based on the 10th revision of the International Statistical Classification 

of Diseases and Related Health Problems (ICD-10), which coded for diseases, signs and symptoms, 

abnormal findings, complaints, social circumstances, and external causes of injury or disease [55]. 

Subjects were classified as having IHD (ICD-10 I20-I25), angina pectoris (ICD-10 I20), other acute 

ischemic heart diseases (ICD-10 I24), chronic ischemic heart disease (ICD-10 I25), acute myocardial 

infarction (ICD-10 I21), certain current complications following acute myocardial infarction  

(ICD-10 I23), or subsequent myocardial infarction (ICD-10 I22). 

2.2.2. Population Data 

The annual population data for each administrative district from 2003 to 2011 were mainly obtained 

from the Shenzhen Statistical Yearbooks from 2004 to 2012 [46,52,56–62]. Due to the changes in the 

administrative divisions in 2007, 2009, and 2011, the population data for Guangming (2004–2006), 

Pingshan (2004–2007), Longhua (2004–2011), and Dapeng (2004–2011) were not included in  

the Shenzhen Statistical Yearbooks. Therefore, the Baoan and Longgang Statistical Yearbooks from 

2004 to 2011 [63–78] were used to provide the missing data. In addition, the population data for  
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each district in 2012 were extracted from the Statistical Communiqué of Shenzhen in the 2012  

National Economic and Social Development Report [47]. 

2.2.3. Spatial District Data and General Hospital Data 

To investigate the locations of IHD, spatial data sets on the administrative units and roads are 

required for address geocoding [79]. Using these data, the IHD attribute data were converted into 

spatial data (Figure 2). In addition, a spatial statistical analysis of the IHD cases in each district was 

conducted based on the administrative spatial data. 

Figure 2. Distribution map of annual IHD hospitalizations, with 2003 and 2012  

as examples. 

  

The locations of the general hospitals in 2011 (Figure 3) were obtained to analyze the potentially 

unequal burdens on medical service resources based on the predictions of IHD hospital admissions 

from 2013 to 2015. 

Figure 3. Distribution map of general hospitals in Shenzhen, 2011. 
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2.3. Methodology 

2.3.1. Incidence Rate and Standardized Ratio Calculation 

The incidence rate (IR) and the standardized ratio (SR) were used to represent disease risk across 

Shenzhen in this study [38,45,80,81] to identify districts with higher or lower disease risks and to 

capture the temporal and spatial variations. The IR is expressed as hospital admissions per 1,000 

residents using the total population of the corresponding district as the standard, which can be 

described as follows: 

 1000i
i

i

O
IR

N
   (1) 

where    and    are the hospital admissions for IHD and the total population in the ith district, 

respectively. 

The SR is expressed as a ratio of the number of observed cases to the number of expected cases in 

the total population of the corresponding district, which can be expressed as follows: 
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where    and    represent the observed and expected numbers of IHD hospital admissions in the ith 

district, respectively. In addition,    is calculated by multiplying the general IR of Shenzhen by the 

population of the ith district and can be expressed as follows: 

 
i IR iE G N   (3) 

 
1

1

n

jj

IR n

jj

O
G

N









 (4) 

where     is the general IR of Shenzhen, which can be calculated by Equation (4). In addition,  

n is the number of districts administered by Shenzhen and    and    are the number of observed cases 

and the population in the jth (j = 1,2,…n) district, respectively. 

2.3.2. Spatio-temporal Variation Analysis 

A GIS-based global spatio-temporal map was applied to the IHD IRs and SRs to analyze their 

spatio-temporal distribution throughout Shenzhen. The IRs of IHD were analyzed at yearly intervals 

separately for each district to exhibit the temporal distribution and patterns using ArcGIS 10.1 to map 

the annual IRs from 2003 to 2012 for each district. Furthermore, the average IRs related to IHD from 

2003 to 2012 for all of the districts were classified into four ranks according to the standard deviation: 

(1) the first interval was from 0.350 to 0.710 and represented the standard deviations from the mean 

value of all of the average IRs smaller than −0.29; (2) the second interval was from 0.711 to 1.180 and 

represented the standard deviations from the mean value of all of the average IRs between −0.29 and 0.61; 

(3) the third interval was from 1.181 to 1.650 and represented the standard deviations between  
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0.61 and 1.5; and (4) the fourth interval was from 1.651 to 2.070 and represented the standard 

deviation from the mean average IRs larger than 1.5. The SRs of IHD were analyzed at the district 

level separately for each year to indicate the relative risk of IHD in the districts, i.e., the annual spatial 

distribution of IHD SRs. The SRs were classified into five ranks based on the K-mean clustering 

method, i.e., the first rank of SRs, from 0 to 0.580, represented the lowest relative risk among the 

districts; the second rank of SRs, from 0.581 to 0.890, represented a low relative risk; the third rank of 

SRs, from 0.891 to 1.270, represented a middle relative risk; the fourth rank of SRs, from 1.271 to 

1.840, represented a high relative risk; and the fifth rank of SRs, from 1.841 to 2.500, represented the 

highest relative risk. Furthermore, the changes in the SRs of IHD were analyzed for each district every 

three years and during the entire study period to identify the changing patterns of the SR rank. 

There are many spatial statistical tools to measure the central tendency and the dispersion of point 

events to describe the characteristics of a univariate distribution, including the mean center (MC),  

the standard deviational ellipse (SDE), and the standard distance [82–85]. The MC and the SDE tools 

in ArcGIS 10.1 were analyzed to identify the spatio-temporal changes of IHD hospital admissions in 

Shenzhen from 2003 to 2012. The MC identifies the geographic center of a set of points to measure the 

central tendency, which is calculated as follows: 

  ,t t tMC X Y  (5) 
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where     denotes the coordinates of the MC in the tth year, m is the number of points over the study 

area in the tth year, and    and    are the coordinates of the jth ( 1,2, ,j m ) point in the tth year.  

The IHD MCs of the same geographic area in a time series could reveal the movement of the IHD 

central tendency. The MCs of the address locations of the IHD hospital admissions from 2003 to 2012 

were measured to indicate the yearly movement of the IHD central tendency. In addition, the MCs of 

annual population from 2003 to 2012 were measure to compare with the change of annual MCs of IHD. 

The SDE measures the spatial distribution of points around their MCs to describe the dispersion and 

orientation. The SDE method was first proposed by Furfey [86], and its computational procedure was 

provided by Ebdon [83]. The SDE parameter could be calculated as follows: 
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where       and       represent the two standard distances (long and short axes, respectively) of the 

standard deviational ellipses in the tth year,    and    are the coordinates of the MC in the tth year 

calculated by Equations (5–7), m is the number of points over the study area in the tth year,    and  
 
 

are the coordinates of the jth ( 1,2, ,j m ) point in the tth year, and    is the rotation angle of the 

standard deviational ellipses in the tth year. The SDE was used to describe the spatial distribution of 

IHD hospital admissions. A SDE could be derived for annual IHD hospital admissions, and multiple 

SDEs of IHD hospital admissions could be compared against each other to reveal the extent of spatial 

correlation among the annual IHD hospital admissions. That is, the area of overlap among these SDEs 

indicated the degree of spatial correlation among the annual IHD hospital admissions, while the areas 

where the annual SDEs did not overlap represented spatial segregation [87]. 

SatScan, which uses the Kulldorff method of retrospective space-time scan statistics based on a 

discrete Poisson model, was used to detect IHD clusters in individual districts from 2003 to 2012.  

The space-time scan statistics is defined by a cylindrical window with a circular geographic base and a 

height corresponding to time [88,89]. The SatScan can detect several cluster centroids located 

throughout the study area, which are surrounded by other points with the radius of the base varying 

continuously according to the population range of the area, from zero to the maximum cluster size of 

the total population that might be at risk. In this study, the default maximum spatial cluster size of 50% 

was selected for the space-time cluster analysis. Furthermore, the log likelihood ratio (LLR) was used 

to calculate the difference of the incidence inside and outside the windows: 
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where     and     denote the numbers of actual and expected cases in the window, respectively. 

    can be calculated by Equations (3) and (4). The most likely cluster is the scan window with the 

largest LLR value, and the secondary clusters are the other scan windows with statistically significant 

LLR values. The IHD hospital admissions and population of each district in each year and the 

coordinates of each district were included to obtain the most likely cluster in which the districts and 

time frame have the largest LLR and the maximum relative risk. 

2.3.3. Prediction Analysis 

The grey model GM (1,1) was used to predict the development trend of IHD IRs and  

the corresponding medical burden in the near future in Shenzhen based on the existing data.  

The GM (1,1) is a time series prediction mode that consists of three basic operations: accumulated 
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generation, inverse accumulated generation, and grey modeling [35,90]. The process of GM (1,1)  

for forecasting is constructed as follows: 

Step 1: Assume an initial time sequence consisting of n + 1 values: 

  0 1, , , ,t nX x x x x  (15) 

where    is the value at time t  0,1,2, ,t n  and n must not be smaller than three. 

Step 2: Establish a new time sequence Y based on the initial sequence   through the accumulated 

generation operation to reduce the inconsistencies of building a GM and to weaken the variation 

tendency.   can be calculated as follows: 

  0 1, , , ,t nY y y y y  (16) 

where 0,1,2, ,t n , and:  

 
0

t

t ii
y x


  (17) 

Moreover, a mean time sequence Z is calculated based on the accumulated sequence Y, i.e.: 
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Step 3: Construct GM (1,1) based on the first-order differential equation: 
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and the difference equation: 
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The solution of Equation (20) could be obtained as follows: 
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Step 4 Evaluate the predicted value of    at time t: 

 1t t tx y y     1,2, ,t n  (25) 

In addition, the posterior deviation ratio c and the small error probability p are calculated to 

estimate this prediction as follows: 
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The forecasting results can be classified into four types according to the values of c and p:  

(a) if   0.9  and   0.  , then the results are “excellent”; (b) if   0.80 and   0. 0 ,  

then the results are “good”; (c) if   0.70 and   0.  , then the results are “marginal”;  

and (d) otherwise, the results are “unreliable.” 

First, the IHD IRs over the next three years (2013–2015) were predicted separately for each district 

based on the GM (1,1) using the IHD IRs from 2003 to 2012 (Figure 4) as the initial time sequence 

data. Second, the IHD hospital admissions over the next three years (2013–2015) were predicted 

separately for each district using the IHD hospital admissions from 2003 to 2012 (Figure 5) as the 
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initial time sequence data. Finally, the IHD medical burden from 2013 to 2015 was calculated by 

dividing the prediction value of IHD hospital admissions by the number of hospitals (Figure 3) 

separately for each district. 

Figure 4. The map of the IRs and total hospital admissions of IHD from 2003 to 2012 at 

the district level in Shenzhen. 

 

Figure 5. The IHD hospital admissions of each district in Shenzhen from 2003 to 2012. 

 

3. Results and Discussion 

3.1. Spatio-temporal Distribution 

The temporal distribution of IHD hospitalizations in Shenzhen from 2003 to 2012 is shown in  

Figure 4. The color of each district represents the average IR related to IHD from 2003 to 2012,  
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and the bar charts illustrate the annual IR from 2003 to 2012 (i.e., IR-03 to IR-12) for each district.  

The largest average IR of IHD hospital admissions was in Futian; the next largest average IR of IHD 

hospital admissions was in Luohu, The mid-range average IRs of IHD hospital admissions were  

in Nanshan, Longgang, Pingshan, and Dapeng; and the smallest average IRs of IHD hospital 

admissions were in Baoan, Guangming, Longhua, and Yantian. The analysis reveals that the IR of each 

district has experienced a variable but gradually increasing trend. Most of the maxima occurred in 

2011 and 2012 for all districts. It is notable that some neighboring areas exhibited similar temporal 

patterns. In the east (Yantian, Longgang, Pingshan, and Dapeng), the IRs from 2007 to 2009 were 

almost identical. In the west (Nanshan, Futian, Luohu, Baoan, Guangming, and Longhua), outbreaks 

occurred during the same period in 2011. 

The causes of the rise of IRs for all the districts from 2003 to 2012 may be the growth of the gross 

domestic product (GDP) and/or the aggravation of traffic pollution and related factors, according to a 

previous analysis of IHD-related factors [17,26]. The GDP has grown at a rate of greater than 10% 

since 2003 (except for 2009), and reached a maximum of approximately 20% in 2011. The total length 

and area of roads increased from 2,917.8 km and 71.38 km
2
 in 2003 to 6,228 km and 90.98 km

2
 in 

2011 (respective increases of 113.4% and 27.2%). In addition, the number of buses increased from 

4,885 in 2003 to 14,873 in 2011 (a 204.5% increase) [46,56]. Therefore, health-related policies should 

be formulated to prevent overly rapid increases in the IR of IHD and its related factors in all districts.  

In addition, the probable causes of the IHD outbreak in 2011 in the west should be studied to provide 

guidelines for the prevention of IHD to identify measures for predicting future IHD outbreaks. 

The relative risk of IHD throughout the geographic area of Shenzhen from 2003 to 2012 is 

represented by the SR of each district in Figure 6. Among the districts in Shenzhen, Futian always has 

the highest SR, Luohu always has a high SR, and Longhua always has the lowest SR. In addition,  

all the districts display no changes in the SR from 2011 to 2012. As a result, Futian and Luohu should 

be given more attention for IHD prevention and control in the future. 

Figure 6. The IHD SRs of the districts in Shenzhen from 2003 to 2012. 
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Figure 6. Cont. 
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The SR changes every three years and the total changes from 2003 to 2012 across Shenzhen are 

shown in Figure 7. The dark red color represents the SRs of the districts that experienced an increase 

of one rank (higher) during the time interval, the light red color represents the SRs of the districts that 

experienced a decrease of one rank (lower) during the time interval, and the middle red color 

represents the SRs of the districts that experienced no changes (invariant) during the time interval. 

There were no total changes in SR (2003–2012) for most of the districts, with the exceptions of 

Nanshan, Baoan, and Dapeng. However, these districts exhibited different change patterns during the 

three time intervals (2003–2006, 2006–2009, and 2009–2012). The SRs of Futian, Luohu, Guangming, 

and Longhua remained unchanged throughout the three time intervals. Futian and Longhua retained 

the same levels of SR from 2003 to 2012 (Figure 6).  

Yantian exhibited a lower SR in the first time interval, a higher SR in the second time interval,  

and an invariant SR in the third time interval. Longgang had a lower SR in the first time interval,  

an invariant SR in the second time interval, and a higher SR in the third time interval. Pingshan had an 

invariant SR in the first time interval and a higher SR and a lower SR in the second and the third time 

intervals, respectively. Nanshan had a lower SR in the first time interval and remained unchanged in 

the next two time intervals. Dapeng exhibited the opposite pattern of Nanshan, showing the opposite 

total changes from 2003 to 2012, i.e., a higher SR in the first interval and no change in the next two 

intervals. Baoan had the same total SR change from 2003 to 2012 as Nanshan but with different 

patterns in the three time intervals. Baoan had a higher SR in the first time interval and lower SRs in 

the next two time intervals. Therefore, the spatial structures of relative risk for IHD have been 

consistent over the past 10 years. In particular, Nanshan and Baoan may serve as examples of 

successful IHD prevention for the other districts. However, Dapeng might also have taken measures to 

prevent further increases of IHD. 

Figure 7. The SR changes every three years and the total SR changes for each district  

in Shenzhen. 

 

  



Int. J. Environ. Res. Public Health 2014, 11 4814 

 

 

Figure 7. Cont. 

 

 

 



Int. J. Environ. Res. Public Health 2014, 11 4815 

 

 

3.2. Spatio-temporal Clusters 

The results of the cluster analysis of the IHD spatio-temporal distribution at the district level are 

mapped in Figure 8. The IHD exhibited a statistically significant cluster pattern in the spatio-temporal 

distribution, i.e., Nanshan, Futian, and Luohu had the highest relative risk (2.54) between 2008 and 

2012 because the p-value of this group was less than 0.0001 [89]. Therefore, the factors related to the 

cluster districts during the analyzed time period might be used to analyze the local probable causes of 

IHD in Shenzhen for the future prevention and management of IHD. 

Figure 8. The spatio-temporal clusters of the relative risk in Shenzhen, 2003 to 2012. 

 

3.3. Spatio-temporal Change Analysis 

The investigation of the MC and the SDE analysis revealed that from 2003 to 2012, the IHD centers 

(Figure 9) were all located in the southeast of Longhua, near Futian and Luohu, which exhibited the 

highest SRs among the entire study area.  

The MCs and SDEs exhibited a slight northward movement, except for in 2003 and 2006;  

the majority of the MCs were in the adjacent locations, and the majority of SDEs appeared in adjacent 

locations with similar shapes, sizes, and directions (west-east). The IHD hospitalizations have 

expanded to the north of Shenzhen and have a high spatial correlation of each year. In addition, the 

MCs of the total population exhibited a small northward movement, except for in 2003 and 2004 

(Figure 10). Furthermore, he MCs of the population moved slightly northwestward from 2005 to 2009 

and slightly northeastward from 2010 to 2012. Therefore, the slight northward movement of the 

centers of IHD hospital admissions may have been caused by the slight northward movement of the 

population. In particular, the MCs of the IHD hospital admissions and the total population both 

exhibited a slight northeastward movement from 2010 to 2012. Thus, health-related policies should be 

formulated to prevent this expansion or to take measures to adjust to it. 
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Figure 9. Annual mean center and directional distribution of IHD in Shenzhen from  

2003 to 2012. 

 

Figure 10. Annual mean center of the total population in Shenzhen from 2003 to 2012. 

 

3.4. Predicting the Results of IHD and the Corresponding Medical Burden 

The prediction results of IHD IRs and hospital admissions over the next three years are shown in 

Table 1 and Table 2. In general, the predictions of IHD hospital admissions are satisfactory because all 



Int. J. Environ. Res. Public Health 2014, 11 4817 

 

 

of the predictions have the degree of “excellent”; however, the prediction of IHD IRs is slightly less 

satisfactory because there are some exceptions, which have the degree of “good”. 

Table 1. Prediction of IHD IR based on GM (1,1). 

Districts 
Prediction Value 

S1 S2 c p Degree 
2013 2014 2015 

Baoan 1.23 1.44 1.67 0.2509 0.0757 0.301714 1 excellent 

Dapeng 1.96 2.22 2.51 0.3704 0.1053 0.284287 1 excellent 

Futian 3.2 3.48 3.78 0.4803 0.1176 0.244847 1 excellent 

Guangming 1.3 1.5 1.74 0.2585 0.059 0.22824 1 excellent 

Longgang 1.66 1.95 2.28 0.3451 0.112 0.324544 1 excellent 

Longhua 0.56 0.6 0.66 0.0938 0.0373 0.397655 0.8889 good 

Luohu 2.65 3 3.4 0.4903 0.1273 0.259637 1 excellent 

Nanshan 1.79 1.97 2.18 0.3005 0.1163 0.387022 0.8889 good 

Pingshan 1.13 1.22 1.33 0.1775 0.0729 0.410704 0.8889 good 

Yantian 1.58 1.91 2.3 0.341 0.0802 0.235191 1 excellent 

Table 2. Prediction of IHD hospital admissions based on GM (1,1). 

Districts 
Prediction Value 

S1 S2 c p Degree 
2013 2014 2015 

Baoan 3,532 4,197 4,988 739.5386 157.6849 0.213221 1 excellent 

Dapeng 263 300 343 51.1903 12.7783 0.249623 1 excellent 

Futian 4,461 4,970 5,537 773.7296 164.6242 0.212767 1 excellent 

Guangming 670 807 972 144.2794 35.003 0.242606 1 excellent 

Longgang 3,498 4,264 5,196 762.7598 168.6213 0.221067 1 excellent 

Longhua 862 1,032 1,237 182.3981 37.1975 0.203936 1 excellent 

Luohu 2,540 2,923 3,364 492.6384 112.5286 0.22842 1 excellent 

Nanshan 2,157 2,477 2,843 415.7689 85.9678 0.206768 1 excellent 

Pingshan 396 467 551 81.8777 17.2176 0.210284 1 excellent 

Yantian 342 416 506 73.9185 16.0493 0.217122 1 excellent 

As shown in Table 1 and Table 2, Longgang might surpass Baoan in IHD hospital admissions  

after 2014, causing Longgang to be ranked 2
nd 

among all of the districts. Futian, Luohu, and Dapeng 

would have the highest IHD IRs among all of the districts. In addition, Futian and Dapeng might 

continue to have the most and the least IHD hospital admissions, respectively; however, these districts 

had the highest IRs among the districts of Shenzhen during the prediction period. 

Figure 11 shows the IHD medical burden of each district from 2013 to 2015. Pingshan (79.2, 93.4, 

and 110.2) and Longgang (72.88, 88.83, and 108.25) are predicted to have the highest values of IHD 

medical burden among all of the districts, except in 2013, when Nanshan (77.04) and Futian (74.35)  

are predicted to have the second and third highest IHD medical burdens, respectively; Futian has the 

highest hospital admissions and IRs from 2013 to 2015. In other words, Pingshan and Longgang 

should have priority in the allocation of hospital resources and health-related financial investments  

in the near future. 
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Figure 11. Mean admissions per hospital for each district in Shenzhen. 

 

4. Conclusions 

This study aimed to understand the spatio-temporal patterns of IHD at the district level in Shenzhen 

from 2003 to 2012 using ArcGIS tools and SatScan software and to predict the IHD hospital 

admissions and incidence rate over the next three years using the GM (1,1) model to provide 

guidelines for the allocation of public health resources and the formulation of medical-related policies. 

The spatio-temporal analyses and predictions revealed interesting findings. We found that the IRs of 

each district exhibited a gradual increase from 2003 to 2012, which may have been caused by the rapid 

growth of the economy and/or the increasing traffic pollution. Furthermore, some neighboring areas 

exhibited similar temporal patterns. In the east of Shenzhen, the IRs from 2007 to 2009 were almost 

the same, and in the west of Shenzhen, outbreaks occurred during the same period in 2011.  

The west exhibited a variation with lower SRs, the east exhibited a variation with higher SRs,  

and the middle saw no changes in the level of SRs from 2003 to 2012. Futian, especially,  

always had the highest SR, and Longhua always had the lowest SR. However, each district exhibited 

its own pattern of change over the three-year intervals, although most of them had the same status from 

2003 to 2012. We also observed that the hospital admissions for IHD showed distributions of  

spatio-temporal clusters that were not random. The primary clusters were Nanshan, Futian, and Luohu 

from 2008 to 2012. Although the hospital admissions for IHD maintained very similar MCs and SDEs 

from 2003 to 2012, they exhibited a slight northward movement, with the exceptions of 2003 and 

2006, which was similar to the movement of the total population. From the combined analysis of the 

predictions of IHD hospital admissions and the current hospital distribution, Pingshan and Longgang 

are predicted to experience the most serious hospital service burdens with regard to IHD;  



Int. J. Environ. Res. Public Health 2014, 11 4819 

 

 

Futian is likely to have the highest number of hospital admissions and the highest incidence rate 

related to IHD. These results can be used by urban public health officials and related decision makers 

to allocate public health resources and formulate prioritized medical-related policies. 
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