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Abstract
Time-varying connectivity analysis based on sources reconstructed using inverse modeling of electroencephalographic 
(EEG) data is important to understand the dynamic behaviour of the brain. We simulated cortical data from a visual spatial 
attention network with a time-varying connectivity structure, and then simulated the propagation to the scalp to obtain EEG 
data. Distributed EEG source modeling using sLORETA was applied. We compared different dipole (representing a source) 
selection strategies based on their time series in a region of interest. Next, we estimated multivariate autoregressive (MVAR) 
parameters using classical Kalman filter and general linear Kalman filter approaches followed by the calculation of partial 
directed coherence (PDC). MVAR parameters and PDC values for the selected sources were compared with the ground-
truth. We found that the best strategy to extract the time series of a region of interest was to select a dipole with time series 
showing the highest correlation with the average time series in the region of interest. Dipole selection based on power or 
based on the largest singular value offer comparable alternatives. Among the different Kalman filter approaches, the use of 
a general linear Kalman filter was preferred to estimate PDC based connectivity except when only a small number of trials 
are available. In the latter case, the classical Kalman filter can be an alternative.

Keywords  Multivariate autoregressive (MVAR)modeling · Kalman filtering · Partial directed coherence (PDC) · EEG 
source modeling · Visual spatial attention network

Introduction

Brain function fundamentally relies on the interaction 
between functional units at different scales. Electrophysi-
ological measures such as electroencephalography (EEG) 
and magnetoencephalography (MEG) can provide unique 
insight into the dynamic and directed interactions between 
anatomical regions, thanks to their high temporal resolu-
tion (Leistritz et al. 2016; Lopes da Silva 2013). This relies 
on the validity of methods and strategies used to derive 

time-varying directed connectivity from EEG and MEG 
when cortical sources are estimated (Siebenhü et al. 2016; 
Mahjoory et al. 2016).

The technique to map EEG data from sensor space to 
cortical sources is referred to as EEG source modeling. 
Popular approaches for distributed source modeling are the 
weighted minimum-norm estimate (Jeffs et al. 1987) and 
standardized low-resolution brain electromagnetic tomog-
raphy (sLORETA) (Pascual-Marqui 2002). Both methods 
are widely used to study directed and time-varying EEG-
based connectivity between sources (Wang et al. 2016; 
Simpson et al. 2011; Hassan and Wendling 2015; Plomp 
et al. 2016; Gao et al. 2015; Hassan et al. 2014). sLO-
RETA is robust against noise, is less biased towards super-
ficial sources and the solutions are very smooth. Once the 
sources are determined, the connectivity between these 
sources can be studied using a variety of methods such 
as Granger causality (GC) (Freiwald et al. 1999), phase 
synchronisation (Campbell et al. 1980) or cross-spectrum 
(Blackman and Tukey 1959) among the reconstructed time 
series (Hassan et al. 2017; Haufe and Ewald 2016). All 
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these methods heavily depend on the accuracy of the time 
series in the selected sources. In the case of smooth dis-
tributed sources, the extraction of the correct representa-
tive time series is far from trivial while at the same time, 
this is critical for an accurate estimate of the connectivity 
measure (Mahjoory et al. 2016). Often, time series are 
averaged across the dipoles in a region of interest (ROI) 
which leads to an additional smoothing. An alternative is 
to extract the time series from a single dipole (Sohrabpour 
et al. 2016; Coito et al. 2016). However, when using such 
a strategy, it is important to evaluate the performance of 
different dipole selection strategies within an ROI.

Once the time series are extracted in selected dipoles, 
directed and time-varying connectivity between these 
sources can be studied to determine information processing 
in the human brain (Leistritz et al. 2016; Lie and Mierlo 
2017; Liu et al. 2016; Mao et al. 2016; Plomp et al. 2016). 
Unlike functional connectivity, directed and time-varying 
connectivity allows to study the information flow and the 
timings of the interactions among brain regions to under-
stand the basis of cognitive functions. Among the different 
approaches to derive directed and time-varying connectiv-
ity, multivariate autoregressive modeling (MVAR) and the 
concept of GC, are widely applied (Baccalá and Sameshima 
2001). GC based measures give directed flow by estimat-
ing a linear causal relationship among brain regions. In this 
article, we focused on partial directed coherence (PDC), one 
of the commonly applied GC based frequency domain meas-
ures. The estimation of PDC follows the MVAR modeling of 
EEG time series. The estimated MVAR parameters are trans-
formed to the frequency domain to calculate PDC values. 
The conventional approaches are based on stationary MVAR 
estimates of the data i.e. one model is estimated for the entire 
length of the time series. However, EEG is highly non-sta-
tionary, and stationarity will miss the dynamic interactions 
among brain regions. With a moving window approach, this 
would still require stationarity in a window and the size of 
the window will impose further limitations to the results. 
Among all time-varying MVAR estimation approaches, a 
Kalman filter based MVAR modeling gained wider appli-
cations in high-dimensional EEG data due to its accurate 
estimation of non-stationary (Milde et al. 2010; Arnold et al. 
1998). Kalman filter based approaches can track transient 
changes in spectra of EEG data and give estimates of the 
MVAR model at each time point so that time-varying PDC 
can be calculated. A Kalman filter can be implemented in a 
number of ways to estimate the time-varying MVAR model.

Here we present a methodological investigation on time-
varying connectivity starting from EEG source modeling. 
More specifically, our aim was:

1.	 To compare strategies for dipole selection within an ROI 
after source modeling.

2.	 To compare the performance of time-varying directed 
connectivity methods based on different Kalman filter-
ing approaches to derive PDC based networks.

To perform a methodological investigation a ground truth 
time varying connectivity is required. Such validation is not 
possible with real data and simulations are inevitable and 
the only way to compare different methods. Simple sim-
ulations are useful to gain insight into the behaviour of a 
method under different conditions like SNR, but ultimately 
we want to apply such methods in more complex situations, 
and therefore the development of more realistic simulations 
is essential (Haufe and Ewald 2016). We used simulated 
EEG data with a known ground truth time-varying directed 
connectivity model. A preliminary version of this work with 
a simple model consisting of three nodes has been reported 
in (Ghumare et al. 2015).

Methods

Time‑Varying Connectivity

We first describe the theoretical formulation of time-varying 
directed connectivity based on GC starting from time series 
in a set of sources.

For the discrete time series y ∈ R m×N measured in m 
channels with N samples, the time-varying MVAR process 
is described as:

where n being the n-th time bin of the N samples, p is the 
model order, Ak(n) ∈ R m×m is the matrix of the time-var-
ying MVAR model parameters at time bin n for delay k, 
k = 1, 2,… , p and e(n) is a vector of multivariate zero-mean 
uncorrelated white noise.

Partial directed coherence is a full multivariate spec-
tral measure based on the concept of GC (Baccalá and 
Sameshima 2001), used to determine the directed influences 
between a pair of time series in sources i and j with the influ-
ence of the remaining time series removed. Using time-var-
ying MVAR parameters, we can obtain time-varying PDC 
values from source j to source i calculated as a function of 
frequency and time:

(1)y(n) =

p∑
k=1

Ak(n) y(n − k) + e(n)

(2)

𝜋ij(f , n) =
Āij(f , n)�

m∑
r=1

Ārj(f , n) Ā
H
rj
(f , n)

,
�
i

�𝜋ij(f , n)�2 = 1
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in which the superscript H stands for the Hermitian trans-
pose and

where f is the normalized frequency in the interval [− .5, .5]. 
We used the squared values of PDC i.e. |�ij(f , t)|2 as meas-
ure of connectivity. Squared values of PDC were shown to 
provide superior accuracy and sensitivity compared to PDC 
(Astolfi et al. 2006).

Time Varying MVAR Model Estimation Using Kalman 
Filtering

The application of the Kalman filtering algorithm to MVAR 
modeling is based on a linear state-space representation of 
the signal. A linear state-space model consists of two joined 
linear equations:

the state equation

and a measurement equation

The state equation relates state Ãp(n) of MVAR parameters 
at time bin n to the state or MVAR estimates at time bin 
n + 1 with v(n) ∼ �(0,V(n)) , the state white noise pro-
cess and Hp(n) is a matrix with the p past data points of the 
measurement. The time-varying MVAR parameters Ãp(n) 
are related to the parameters Ak(n) (see Appendices 1 and 2).

The MVAR parameters Ãp(n) are estimated using Kalman 
filtering recursion equations. There are mainly two differ-
ent implementations of Kalman filtering to perform time-
varying MVAR modeling: the classical Kalman filter (CKF) 
(Arnold et al. 1998) or the general linear Kalman filter 
(GLKF) (Milde et al. 2010). The former is implemented 
for a single trial while the latter has an implementation 
which takes into account multi-trial data and which is not a 
straightforward extension of the CKF, i.e. it does not reduce 
to the CKF if one would consider single trial data as a spe-
cial case of multi-trial data. The details of the CKF and the 
general linear Kalman filter are given in Appendices 1 and 
2 respectively.

For multi-trial EEG/ERP data, we can use the following 
strategies to estimate time-varying PDC:

1.	 PDC values are calculated from the averaged single 
trial MVAR estimates using the classical Kalman filter 
(CKF-1) (Tang et al. 2013);

(3)Ā(f , n) = I −

p∑
k=1

Ak(n)e
−i2𝜋fk

(4)Ãp(n + 1) = Ãp(n) + v(n)

(5)y(n) = Hp(n)Ãp(n) + e(n)

2.	 PDC values are calculated by averaging (across trials) 
single trial estimates of the PDC values (CKF-2) calcu-
lated from MVAR estimates using the classical Kalman 
filter (Eftaxias and Sanei 2013; Omidvarnia et al. 2014);

3.	 PDC values are calculated from MVAR estimates 
obtained using the general linear Kalman filter.

Previously, we have shown that averaging the trials before 
MVAR modeling will result in inaccuracies (Ghumare et al. 
2015) and therefore, this approach will not be one of our 
strategies.

Simulated Ground Truth Data

To compare the different strategies, we used simulated data 
with a ground-truth model at the level of cortical sources.

The simulated data consisted of a realistic large-scale 
model of the visual spatial attention system with a complex 
time-varying and directed connectivity structure. The simu-
lated directed connectivity model is shown in Fig. 1. The 
connectivity model was based on (Corbetta et al. 2008) and 
the time-varying information was based on the timings of the 
significant effects observed in different regions as described 
in (Simpson et al. 2011) and (Vossel et al. 2014). The tim-
ings were specified for the presentation of a central cue in a 
visual spatial attention experiment.

To mimic the visual input to the cortical areas, the input 
signal was obtained from a source estimated from real 
EEG data acquired during a visuospatial attention experi-
ment in a healthy control. In this experiment, the trials 
started with a central cue presented for 200 ms indicating 
the direction of attention to the left. After a delay phase 
of 300 ms from cue offset, a grating in the left hemifield 
was shown in combination with a central fixation cross. 
We estimated the cortical sources using distributed source 
modeling (Pascual-Marqui 2002) with the head model 
derived from a high-resolution anatomical MRI of that 
subject. To extract the visual input, a signal from 200ms 
before cue onset until 500 ms after cue onset (the end of 
the delay phase) was extracted from a source in primary 
visual cortex (V1) and it was resampled with a sampling 
frequency of 256 Hz. The source in V1 was located at 
MNI coordinates (6.3, − 82.3, − 3.7) corresponding to 
a central position in the visual field according to retino-
topic mapping studies (Dougherty et al. 2003). Because 
the timings of the effects were described in (Simpson et al. 
2011; Vossel et al. 2014) for 1000 ms after stimulus onset, 
we had to generate a new input signal for a longer dura-
tion. This was done as follow: (1) we estimated stationary 
autoregressive parameters from the original input signal 
using the ARFIT package (Schneider and Neumaier 2001) 
and (2) we used the estimated parameters to simulate the 
new input signal for a duration of 1000 ms after stimulus 
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onset. This signal was used as input for the model (Fig. 1). 
The model order for the stationary autoregressive model 
was determined using Schwarz’s Bayesian Criterion (SBC) 
and was found to equal 10. The model order was further 
validated based on the comparison of the power spectrum 
of the signal using a non-parametric Welch and parametric 
Burg method (van Mierlo et al. 2013). Furthermore, the 
frequency spectrum of the simulated signal confirmed the 
presence of a standard 1/f function with a peak in the alpha 
band (8–12 Hz) as in a real EEG frequency spectrum.

The cortical signals of the ground truth model in the 
other regions were generated using the time-varying MVAR 
model shown in Fig. 1. The sampling frequency was set to 
256 Hz. The noise amplitude was adjusted at each time point 
to achieve a constant SNR level of 20. The model was con-
structed iteratively in time to generate single trial data. We 
repeated the procedure to obtain 100 trials to mimic multiple 
trial data. The time series in each trial was generated for a 

duration of 1200 ms in which the first 200 ms were consid-
ered baseline.

Next, we associated the multi-trial ground truth time 
series to the cortical sources (dipoles) which were located 
on the cortical surface using the default anatomy (Colin27) 
in Brainstorm and which were closest to the Montreal Neu-
rological Institute (MNI) coordinates described in Table 1 
based on the Euclidean distance. The MNI coordinates from 
Table 1 were derived from previous studies on visuospatial 
attention (Gillebert et al. 2013; Simpson et al. 2011).

Simulated Scalp EEG Data

Using the data in the ten dipoles, we simulated EEG meas-
urements in 256 electrodes derived from the ANT Neuro 
sensors available in Brainstorm. The forward matrix G was 
estimated with the symmetric boundary element method 
(Gramfort et al. 2010) implemented in Brainstorm. This 
model consisted of three layers: skin, skull, and brain 
[including cerebrospinal fluid (CSF)] with relative values 
of the conductivities set as 1, 1/80 and 1 S/m respectively 
(Qin et al. 2010; Ahrens et al. 2012). The conductivity 
ratio between scalp and skull was set to 1/80 which was the 
default value in Brainstorm. However, others have argued 
that this ratio is rather between 1/20 and 1/10 (Oostendorp 
et al. 2000; Lai et al. 2005). By performing the simulations 
using the value 1/80, the problems caused by the conductiv-
ity of the skull become more pronounced and it could be 
considered as a worst case scenario.

The brain sources were limited to the cortical surface with 
15,002 vertex points with a dipole orientation orthogonal to 
the cortical surface. For each time bin n, we can calculate 
the surface EEG signal D(n) from the forward matrix G and 
the signal S(n) in all dipoles:

in which e(n) is white noise mimicking measurement noise.
(6)D(n) = G ⋅ S(n) + e(n)

Fig. 1   The simulated visual spatial attention model consisting of an 
input area (V1), two visual areas (VA), the intraparietal sulcus (IPS), 
the frontal eye fields (FEF), the temporoparietal junction (TPJ), the 
anterior insula in the ventral frontal cortex (VFC/AI) and the mid-
dle frontal gyrus (MFG). The model was taken from (Corbetta et al. 
2008) with some minor modifications: connections between FEF, 
IPS, and MFG were slightly adapted, and the visual input region 
was added. The arrows indicate directed interactions consisting of a 
stimulus-driven control (orange), top-down control (blue) and the vis-
ual input signal (black). Bidirectional interhemispheric connections 
were modeled as stationary with a strength of 0.5. The time-varying 
MVAR connectivity was imposed based on the timings of the signifi-
cant effects observed in different regions as described in (Simpson 
et al. 2011) and (Vossel et al. 2014) and are shown by the figures next 
to each directed connection. These time-varying connections were 
added on top of the stationary connection in which the latter had a 
strength of 0.2. The time lag for MVAR parameters for the connec-
tion in blue and orange was chosen as 16 ms and for black as 4 ms. 
The exact onset of the directional time-varying interactions, its ampli-
tudes and duration as well as the time lag were chosen arbitrarily

Table 1   MNI coordinates of the cortical ground truth sources

Region x y z

Primary visual cortex (V1) 6.3 − 82.3 − 3.7
Right visual area (R VA) 15 − 71 5
Right intraparietal sulcus (IPS R) 42 − 42 48
Right frontal eye fields (FEF R) 38 − 6 56
Right temporoparietal junction (TPJ R) 66 − 48 20
Right ventral frontal cortex/anterior 

insula (VFC/AI R)
39 0 39

Right middle frontal gyrus (MFG R) 47 38 29
Left visual area (VA L) − 14 − 81 9
Left intraparietal sulcus (IPS L) − 44 − 57 48
Left frontal eye fields (FEF L) − 43 − 7 52
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We applied an overall scale factor for S to obtain a peak 
amplitude in the EEG data in the same range as realistic 
measurements. EEG scalp signals were calculated with an 
average reference.

We adapted the variance of the white noise to generate 
trials at a specific SNR level. SNR was defined as the ratio 
of the average power in the EEG recordings (over all trials, 
time and EEG electrodes) to the power of the white noise 
added (Leistritz et al. 2013). Final datasets consisted of 100 
trials per SNR level.

Source Modeling of Simulated EEG Data

We followed a realistic approach by performing a data-
driven distributed source modeling using Brainstorm.

The noise covariance of the EEG data required for the 
inverse estimation was calculated using the baseline period 
of 200 ms of all simulated trials. Off-diagonal elements of 
the noise covariance were discarded to model uncorrelated 
measurement noise. The parameter � used in Brainstorm is 
required for the regularization of the ill-posed problem. � is 
related to the level of noise present in the measurements and 
is calculated as � = 1∕SNR2 in which SNR represents the 
signal to noise ratio (Bradley et al. 2016). For each dataset, 
the simulated SNR of the scalp EEG data was used to calcu-
late � . To regularize the noise covariance matrix we used the 
default setting of 0.1 in Brainstorm. During the source esti-
mation, the orientations of the dipoles were constrained to be 
normal to the cortical surface. A shared inversion kernel for 
all the trials was determined using sLORETA implemented 
in Brainstorm (Pascual-Marqui 2002). The estimated shared 
kernel was applied to each trial of EEG data to obtain the 
corresponding cortical signal in each dipole position in each 
of the 15002 vertices.

Regions of Interest and Dipole Selection

Using the scout menu in Brainstorm, we created a-priori 
regions of interest (ROIs) on the cortical surface around the 
location of the ground-truth dipoles (Table 1). Each ROI 
consisted of 40–50 vertex points (corresponding to an area 
of 10 cm2) and was defined using the position of the ground-
truth dipole as as seed. Within each ROI we selected a single 
dipole from the distributed sources obtained during source 
modeling. Extraction of a single time series in a ROI better 
overcomes the problem of smoothness of the inverse solu-
tion compared to the averaged time course of all dipoles 
within that ROI (Rueda-Delgado et al. 2017). The set of 
time series of the selected dipoles was used to perform the 
connectivity analysis.

We compared a number of strategies to select a single, 
representative dipole within an ROI. We used two different 
types of strategies for the dipole selection: (1) strategies in 

which we used the ground truth information and (2) strate-
gies in which we use a data driven approach (as we would 
do in a real experiment).

Dipole Selection Using Ground Truth Information

In these approaches, we used the ground truth knowledge to 
select the representative dipole in each ROI. The following 
strategies were used:

1.	 The ground truth dipole was selected (GT1).
2.	 The dipole in the ROI with the highest correlation 

between the time series in that dipole and the ground 
truth time series was selected (GT2) (Babiloni et al. 
2004).

Data Driven Methods for the Dipole Selection

In these approaches, we selected a dipole without the knowl-
edge of the ground truth data. Before selecting the dipole, 
we have to determine the dominant direction of the dipoles 
in an ROI followed by sign flipping the dipoles with opposite 
direction (Hassan et al. 2017). The reason for this approach 
is that the inverse solution obtained by sLORETA is based 
on minimum norm estimates and the sign of these minimum 
norm estimates depends on the dipole direction. In some 
of the strategies, we make use of the resolution matrix of 
the inverse solution which is the product of the inverse ker-
nel and the forward matrix. In the ideal case, the resolu-
tion matrix will be the identity when sources are perfectly 
separated. However, this is never the case because of the 
ill-posed nature of the problem. The selection strategies we 
have evaluated were:

1.	 The dipole with the highest correlation between the time 
series in that dipole and the averaged time series across 
all dipoles in the ROI. Such a dipole could best represent 
the regional fluctuations in the signal (DD1).

2.	 The dipole with the highest power (i.e. the mean squared 
amplitude) (DD2) (Rueda-Delgado et al. 2017).

3.	 The dipole showing the highest correspondence with the 
largest singular value based on a row singular vector 
(Sohrabpour et al. 2016). Such a dipole can best explain 
the variability in the ROI (DD3).

4.	 The dipole with the resolution index closest to 1 in the 
ROI (DD4) (Stenroos and Hauk 2013; Hauk et al. 2011). 
The resolution index is the diagonal value of the resolu-
tion matrix, and 1 indicates that the sources are opti-
mally resolved.

5.	 The dipole with the highest cross-talk function (CTF) 
index in the regions (DD5). This index was defined as 
the ratio of the mean outflow CTF (the sum of the col-
umn elements of the resolution matrix) and the mean 
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inflow CTF (the sum of the row elements of the resolu-
tion matrix). A “strong” dipole will have more outflow 
CTF due to the smooth solution and a minimal inflow 
CTF indicating its closeness to the ideal solution (Fara-
hibozorg et al. 2017; Hauk et al. 2011).

We used different parameters to evaluate the performance of 
the different dipole selection strategies:

1.	 The Euclidean distance and the surface based distance 
between the position of the selected dipole and the 
ground truth position.

2.	 The Pearson correlation coefficient between the time 
series in the selected dipole and the ground-truth time 
series.

3.	 The mean squared error (MSE) between the linear fit 
of the time series in the selected dipole and the ground-
truth time series.

These parameters were estimated for different SNR levels.

Evaluation of Different Kalman Filtering Approaches

The Kalman filtering approaches were applied to the time 
series extracted from the dipoles selected after source mod-
eling to determine time-varying MVAR parameters followed 
by time-varying PDC estimation.

The SNR of the surface EEG and the number of trials 
were chosen as factors to vary when evaluating the different 
Kalman filter approaches. We used SNR = [1, 3, 5, 10] and 
number of trials = [3, 5, 10, 20, 40, 60, 80, 100]. For each 
setting, we used 100 noise realizations and each noise reali-
zation was obtained by repeating the entire process starting 
from the simulated EEG surface recordings.

The update constant UC was set to 0.02 (Astolfi et al. 
2008; Leistritz et al. 2013) and we used a fixed model order 
of eight in all subsequent analyses. This model order was 
obtained by fitting a stationary MVAR model to the ground 
truth data using the ARFIT algorithm from the time series 
analysis toolbox (Schlögl 2002; Schneider and Neumaier 
2001) and by applying the SBC criterion because it is least 
affected by the presence of noise (Porcaro et al. 2009).

Based on the theoretical time-varying MVAR parameters 
shown in Fig. 1, we constructed the theoretical time-varying 
PDC values (Astolfi et al. 2008). For the calculation of PDC, 
we limited our analysis to the frequency window 1–40 Hz 
based on the spectral power of the ground truth source data. 
We used two figures of merit to compare the performance of 
each method for MVAR model parameters and PDC sepa-
rately. The figures of merit were estimated per factor level 
and per noise realization. Since it may make a difference 
whether we look at existing or non-existing connections in 

the ground truth model, we performed a separate analysis 
for both types of connections.

The first figure of merit was the MSE between the theo-
retical and estimated time-varying MVAR parameters:

where p is the model order, n is the time bin.
The MSE between the theoretical and estimated time-

varying PDC values was used as another figure of merit:

where i and j refers to a pair of ROIs, f is the frequency bin, n 
is the time bin. In Eq. 8, the diagonal elements are excluded 
due to the column normalization properties of PDC.

We performed repeated-measures ANOVAs for MSEMVAR 
and MSEPDC to compare the three Kalman filter based 
approaches. A Greenhouse-Geisser correction for spheric-
ity was used. The posthoc analysis was performed using 
Scheffé’s method. The statistical significance was set at 
p < 0.05 Bonferroni corrected for the number of pairwise 
tests performed.

Results

Dipole Selection to Extract ROI Time Series

We compared different dipole selection strategies using vari-
ous performance parameters in two different scenarios: (1) 
when the ground truth is known and (2) using data-driven 
methods (Figs. 2, 3 and 4).

For data driven dipole selection methods, we selected the 
dominant direction of the dipoles in the ROI without the 
ground truth knowledge similar to a real experiment. As a 
result, in four ROIs the sign of the dominant direction was 
opposite to the ground truth direction. The dipole selection 
itself was not affected but only the sign of the dipole time 
series. As a result, the localization error was not affected 
but the correlation with the ground truth time series and the 
MSE with these time series was strongly affected. There-
fore, we showed additional results for ROIS in which the 
extracted time series had a correct or incorrect sign sepa-
rately (panels a and b in Figs. 3, 4).

Compared to the other data-driven strategies, DD1 
showed the lowest localization error both using the Euclid-
ean distance (Fig.  2a) and using the surface distance 
(Fig. 2b) . The localization error improved with increasing 
levels of SNR.

Looking at the correlation between the selected time 
series and the ground truth time series, we observe that in 
ROIs with the correct sign for the dominant direction, the 

(7)MSEMVAR = �[(Ãp(n)
estimated − Ãp(n)

theoretical)2]

(8)
MSEPDC = �[(|�ij(f , n)estimated|2 − |�ij(f , n)theoretical|2)2]
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Fig. 2   The performance parameters for the dipole selection strategies 
at different levels of SNR. Box-and-Whisker plots across all regions 
and 100 noise realizations are shown. a Euclidean distance in mm 

from the ground truth location. b Surface distance from the ground 
truth location along the cortex

Fig. 3   The correlation coefficient with corresponding ground truth 
time series for the dipole selection strategies at different levels of 
SNR. Box-and-Whisker plots across all regions and 100 noise realiza-
tions are shown. a ROIs with the correct sign of the dominant direc-

tion compared to the ground truth direction. b ROIs with an incorrect 
sign of the dominant direction compared to the ground truth direc-
tion. c Overall results
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dipole showing the highest correlation with the ROI aver-
aged time series (DD1) also showed a high correlation with 
the ground truth time series (Fig. 3a). The performance of 
this strategy for this criterion was comparable to the ground 
truth based dipole selection strategies. For DD2 (power 
based selection) and DD3 (based on SVD), the performance 
improved with increasing levels of SNR and was comparable 
to DD1 when SNR=10 (Fig. 3a). The strategies based on 
resolution index (DD4) and the CTF index (DD5) showed a 
lower performance (Fig. 3a). For ROIs with an incorrect sign 
for the dominant direction, we observed almost an opposite 
pattern: using DD1, DD2 and DD3 lead to strong negative 
correlations and using DD4 and DD5 was found to be supe-
rior (Fig. 3b). Based on the overall results for all ROIs, we 
observed comparable performances of all the approaches for 
this criterion (Fig. 3c). However, based on the median of the 
data, we considered DD1, DD2 and DD3 as superior com-
pared to DD4 and DD5. Improvement in the performance 
of using DD2 and DD3 with increasing SNR was consist-
ently observed. At SNR=10, DD2 and DD3 showed results 
comparable to DD1.

Looking at the MSE between the linear fit of the selected 
time series and the ground truth time series, DD1 also 
showed the best performance for this criterion for ROIs with 
the correct sign of the dominant direction (Fig. 4a). DD1 
showed minimal variation across regions and noise realiza-
tions compared to all other data-driven methods. Overall 
the error reduced with increasing levels of SNR, and this 
was the case for all the dipole selection strategies (Fig. 4a). 
Similar to the results for the correlation coefficient, all meth-
ods showed for the ROIs with an incorrect sign of the domi-
nant direction a large variability as well as a higher error 
compared to the ROIs with a correct sign of the dominant 
direction (Fig. 4b). The overall results also indicated a large 
variability (Fig. 4b) and DD4 and DD5 can be considered 
the best for this criterion.

In the remainder, we will show the performance of the 
Kalman filtering approaches for dipole selection strategy 
DD1, DD2 and DD3 since they can be considered the best 
taking all criteria into account. For comparison, we also used 
the ground truth based selection strategy GT2 since this is 
also a correlation based strategy.

Fig. 4   Mean square error (MSE) after linear fitting with ground truth 
time series for the dipole selection strategies at different levels of 
SNR. Box-and-Whisker plots across all regions and 100 noise realiza-
tions are shown. a ROIs with the correct sign of the dominant direc-

tion compared to the ground truth direction. b ROIs with an incorrect 
sign of the dominant direction compared to the ground truth direc-
tion. c Overall results
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Performance of Kalman Filtering Approaches

The Kalman filtering approaches were compared at differ-
ent levels of SNR and number of trials. The figures of merit 
were calculated separately for time-varying MVAR param-
eter estimates and PDC values. To distinguish between the 
performance for existing versus non-existing connections in 
the ground truth network, we applied the figures of merits 
separately for both types of connections.

Errors in Existing Connections

The figures of merit for the existing connections indicate the 
sensitivity to capture the time-varying connectivity in the 
underlying brain network.

The results of MSEMVAR for existing connections and the 
ground truth based dipole selection (GT2) and data driven 

dipole selection strategies DD1, DD2 and DD3 are shown 
in Fig. 5a–h. For MSEMVAR , the use of the general linear 
Kalman filter outperformed the other approaches ( p < 0.05 ) 
when using the ground truth based dipole selection (GT2) 
(Fig. 5a–b). The figures of merits calculated for the data-
driven dipole selection methods (DD1, DD2 and DD3) are 
shown in Fig. 5c–h. Averaging of the MVAR estimates after 
using the classical Kalman filter (CKF-1) outperforms the 
other methods at all levels of SNR and number of trials while 
GLKF showed the worst performance. We also observed in 
some cases an increase in error when the number of trials 
increased or when SNR increased. When looking at indi-
vidual MVAR plots, this was caused by the sign flip in four 
of the time series as a result of the wrong dominant direction 
within the corresponding ROI.

For MSEPDC , the use of the general linear Kalman fil-
ter outperformed the other approaches when the dipole was 

Fig. 5   MSE
MVAR

 for different Kalman filtering approaches at various levels of SNR and number of trials for existing model connections and 
using the ground truth based dipole selection GT2 and the data driven dipole selections DD1, DD2 and DD3
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selected based on the ground truth based strategy (GT2) 
except when the number of trials was ≤ 20 at SNR=10 in 
which case averaging PDC values across single trial esti-
mates of the PDC values using the CKF is the best method 
(CKF-2) (Fig. 6a–b). For data driven dipole selection meth-
ods, the use of the general linear Kalman filter outperformed 
( p < 0.05 ) the other methods in most situations (Fig. 6c–h). 
When using DD1, GLKF and CKF-2 gave comparable errors 
in PDC values (Fig. 6c–d).

Errors in Non‑existing Connections

The figures of merit for the non-existing connections is an 
indication for detection of false positive connections.

The results of the figures of merit MSEMVAR for the non-
existing connections and the ground truth based dipole 
selection (GT2) and data driven dipole selection strategies 

DD1, DD2 and DD3 are shown in Fig. 7a–h. The results 
indicate that averaging of the MVAR estimates after using 
the classical Kalman filter (CKF-1) outperforms the other 
methods ( p < 0.05).

The results of the figures of merit MSEPDC for the non-
existing connections and the ground truth based dipole 
selection (GT2) and data driven dipole selection strategies 
DD1 , DD2 and DD3 are shown in Fig. 8a–h. Similar to 
MSEMVAR , the results indicate that the classical Kalman fil-
ter with averaging of the MVAR estimates (CKF-1) outper-
forms the other methods ( p < 0.05).

Overall Performances

Overall the performance depends on the ratio of existing and 
non-existing connections as well as on their actual errors. In 
our case, for MSEMVAR , the use of the general linear Kalman 

Fig. 6   MSE
PDC

 for different Kalman filtering approaches at various levels of SNR and number of trials for existing model connections and using 
the ground truth based dipole selection GT2 and the data driven dipole selections DD1, DD2 and DD3
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filter outperformed all other approaches for the ground truth 
based dipole selection. For data-driven dipole selection meth-
ods DD1, DD2 and DD3, this was the case for averaging of 
the MVAR estimates after using the classical Kalman filter 
(CKF-1).

For MSEPDC , the use of the general linear Kalman filter 
outperformed the other methods for all the dipole selection 
approaches (GT2, DD1, DD2 and DD3).

Interesting to note is that among the data-driven dipole 
selection methods, MSEMVAR and MSEPDC was lowest for 
DD1.

Discussion

The pipeline to derive time-varying connectivity from 
EEG data can be divided into three stages: (1) estimation 
of cortical sources (source modeling); (2) ROI selection 
and time series extractions; and (3) estimating time-var-
ying connectivity. There is abundant literature available 
about source modeling, and therefore we investigated the 
remaining two stages of the pipeline that required further 
attention. We used simulated data with a ground-truth 

Fig. 7   MSE
MVAR

 for different Kalman filtering approaches at various levels of SNR and number of trials for non-existing connections of the 
model and using the ground truth based dipole selection GT2 and the data driven dipole selections DD1, DD2 and DD3
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time-varying connectivity applied to regions involved 
in the visual spatial attention system. We studied two 
aspects: first, we compared strategies to select representa-
tive dipoles from which the time series could be used in 
the connectivity analysis and second, we compared the 
performance of different Kalman filtering approaches in 
deriving time-varying PDC based connectivity.

Some of the earlier work on time varying connectivity 
(Wilke et al. 2008) focused on the application of the clas-
sical Kalman filter to compare the adaptive and the station-
ary directed transfer function. In contrast, in this work, we 
focused on the comparison between the CKF and the more 
recent general linear Kalman filter for the case of multi-trial 
data and their impact on the estimation of the MVAR model 
parameters and the PDC values along with the comparison 
of dipole selection methods. Previously, the methodological 
investigations on time-varying connectivity approaches were 

often based on simulated EEG data with only a few network 
nodes with a simple time-varying structure and without EEG 
cortical source estimation (Wilke et al. 2008; Astolfi et al. 
2008; Leistritz et al. 2013). However, in this study, we took 
it a step further and used a model based on the visual spatial 
attention system. This model of the attention system (Cor-
betta et al. 2008) has been highly influential and had the 
regions sparsely distributed all over the cortical surfaces at 
various depths. Such a configuration allowed to compare 
the different approaches under more realistic circumstances 
with respect to other simulations in which only a few regions 
with a simple time-varying connectivity structure are used.

In our model, we simulated 23 directed connections from 
90 possible connections. The simulated directed connec-
tions allowed the modeling of feed-forward and feedback 
mechanisms of the interaction between areas as is the case 
in a real brain network (Corbetta et al. 2008). Furthermore, 

Fig. 8   MSE
PDC

 for different Kalman filtering approaches at various levels of SNR and number of trials for non-existing connections of the model 
and using the ground truth based dipole selection GT2 and the data driven dipole selections DD1, DD2 and DD3
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time-varying influences on top of baseline connectivity 
mimic cognitive processes and flow of information between 
regions. However, the exact choices of the time-varying val-
ues of MVAR parameters were arbitrary but consistent with 
the timings described in (Simpson et al. 2011; Vossel et al. 
2014) specified for the presentation of a central cue in a 
visual spatial attention experiment.

The source modeling included in the simulation pipeline 
is essential for the comparison of the performance because 
this is what we do in a real experiment. We used a realis-
tic head model in combination with the symmetric bound-
ary element method and constrained the orientation of the 
sources orthogonal to the cortical surface. However, we did 
not want to include the effect of the creation of the head 
model on the dipole selection and the comparison of the 
performance of different Kalman filtering approaches, and 
therefore we made the same choices for the head model 
while simulating the surface EEG data from the ground 
truth model. The distributed source estimation using mini-
mum norm is giving the network that best matched the 
ground-truth (Hassan et al. 2017). Among minimum norm 
algorithms, sLORETA is widely applied due to its stand-
ardization applied to the estimates to reduce the error in 
depth localization. However, the performance of sLORETA 
to uncover multiple source configurations with different 
strengths and cortical depths is still under investigation 
(Becker et al. 2016; Dümpelmann et al. 2012) although the 
approach is a promising candidate and performs well as 
compared to other linear approaches for source localizations 
(Dümpelmann et al. 2012; Wagner et al. 2003).

The smoothed distributed sources, obtained using sLO-
RETA, result in mixing of sources due to cross-talk and 
impose a primary challenge to estimate the connectivity. 
A reliable estimation of the true connectivity is possible 
if the shape and fluctuations of the source’s time series are 
well estimated. Often the time series of an ROI is obtained 
by averaging the time series across dipoles within that ROI 
(Hassan et al. 2017), However, this would further worsen 
the problem for GC and phase based connectivity measures 
(Ghumare et al. 2015; Makeig 2002). To overcome this prob-
lem, choosing a single representative dipole is recommended 
(Rueda-Delgado et al. 2017; Sohrabpour et al. 2016; Coito 
et al. 2016). We compared a number of strategies for dipole 
selection. A large correlation indicates a strong matching 
of the shape of the ground-truth and the time series in the 
selected dipole (Stenroos and Hauk 2013; Babiloni et al. 
2003, 2004 ). Another criteria often applied is mean squared 
error between times series in estimated and true sources. 
However, compared to conventional criteria, we used MSE 
between the time series in the true source and a linear fit 
of time series in the estimated source. Due to the ill-posed 
nature, the strength of estimated sources is underestimated 
compared to the strength of true sources with a factor of 

about 10−3 (Stenroos and Hauk 2013). MSE calculated by 
the direct comparison between estimated sources and true 
sources would lead to a dipole selection with higher ampli-
tude but with less similarity in signal fluctuations. However, 
the fluctuations are essential to extract the time-frequency 
characteristics and connectivity. Our approach of linear fit-
ting of estimated time series to the ground truth time series 
ensured that the selected dipole time series has a similar 
shape as the true source. Note that we did not perform the 
connectivity calculations with scaled data but performed it 
with the unscaled estimated time series.

For the sources estimated with constrained orientations 
(normal to the cortex), the sign of the estimated time series 
can be an issue. A strategy that is often used, is to determine 
the dominant direction of the ROI based on the scalar prod-
uct of the orientations followed by a sign flip of the dipole 
time series that are not in the dominant direction (Hassan 
et al. 2017). For the regions used in this study, we found four 
ROIs in which the sign of the dominant direction was oppo-
site compared to the ground truth. This has no impact on the 
dipole selected but it has an impact on the sign of the time 
series which will be used in the connectivity analysis. When 
we evaluated the dipole selection methods, we found that the 
methods based on highest correlation (DD1), highest power 
(DD2) or using SVD (DD3) performed comparatively well. 
Dipole selection based on the resolution matrix showed the 
worst performance. This is caused by selecting a dipole with 
(almost) no signal since such dipoles can also have a resolu-
tion index of 1 or can have a high cross-talk function index 
when the dipole is surrounded by very low signal dipoles 
resulting in a low denominator (inflow cross-talk function).

The comparison of different Kalman filtering approaches 
to derive time-varying PDC was performed using four dipole 
selection strategies (one which was based on knowledge of 
the ground-truth and three purely data-driven methods). The 
figures of merit calculated for time-varying MVAR indicated 
how well the simulated model is extracted. We found that 
averaging of the MVAR estimates after using the classical 
Kalman filter (CKF-1) gave the best result for all data driven 
dipole selection strategies. In this analysis we included four 
time series with the wrong sign because the dominant direc-
tion in the corresponding ROIs was sign flipped compared 
to the ground truth. As a result, we observed a decline in the 
performance with increasing levels of SNR or number of tri-
als. But if we are interested in directed connectivity, we are 
using the MVAR parameters to calculate the PDC values and 
these were not much affected by the sign flip. However, the 
accuracy of MVAR parameters is usually considered impor-
tant for the generalization of the results to other measures 
(Sameshima et al. 2015).

Overall, based on the MSEPDC results, the best Kalman 
filtering approach depends on the number of trials and 
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the SNR in the data. However, some clear trends can be 
observed. For existing connections, a higher number of 
trials is required for the approach in which we use the 
general linear Kalman filter in order to outperform the 
other strategies (Ghumare et  al. 2015). There should 
be sufficient data compared to the number of estimated 
parameters depending on the model order and the number 
of time series (Schlögl and Supp 2006). For the case of 
non-existing connections, the noise in the data can often 
lead to false positive connections. In that case, the best 
performance was obtained when averaging MVAR esti-
mates across trials (CKF-1), and this is caused by the 
improved SNR while averaging. The use of the general 
linear Kalman filter showed poor performance for the non-
existing connections. However, the error was much lower 
compared to the existing connections and therefore, this 
method was overall the best one in most cases. However, if 
we look at the ground truth based method GT2, we specu-
late that the general linear Kalman filter eventually would 
outperform CKF-1 in case of non-existing connections if 
we would have included a higher number of trials. For 
the data-driven approaches, this is a bit more complicated 
because in that case the influence of the incorrect sign of 
some of the time series is also playing a role.

Interestingly, based on MSEMVAR and MSEPDC , we 
observed a lower error using the ground truth based (GT2) 
and data driven DD1 dipole selection method compared to 
the other data driven methods DD2 and DD3. This also sup-
ports our idea that for time-varying connectivity studies, 
the dipole selection should not be based on amplitude but 
on the fluctuations in the signal which are more relevant in 
that case.

There are a number of limitations in our analysis. Firstly, 
often in source simulation studies, random noise is added 
to dipoles besides the ground truth dipoles to mimic the 
background brain activity (Haufe and Ewald 2016; Babiloni 
et al. 2003, 2004). However, there are several noise configu-
rations possible. In reality, each noise configuration can lead 
to slightly different results, and none can be considered as 
the best choice. In our analysis, noise in the ground truth 
sources is required due to the intrinsic property of MVAR 
approaches being a white noise process. Therefore, we added 
only a small amount of noise to the ground truth sources 
(SNR = 20) to mimic the background noise. Furthermore, 
we added noise at the level of the scalp in various amounts. 
Therefore, we did not add any noise in the dipoles besides 
the ground truth dipoles to model background brain activity 
but rather considered it negligible. Secondly, in the dipole 
selection strategies, the results were based on a surface 
ROI. We have performed additional analyses with a surface 
ROI of smaller size compared to the original analysis and 
a spherical ROI of 1 cm radius. These additional analyses 
showed similar results in the dipole selection strategies.

Conclusions

We compared approaches for single dipole based extraction 
of time series from the inversely reconstructed EEG sources 
in regions of interest. We showed that a single dipole can be 
selected to represent the time series based on the highest cor-
relation with the averaged time series in the ROI. The dipole 
selected based on the highest power or based on a singular 
value decomposition are good alternatives. The comparison 
of different approaches based on Kalman filtering to estimate 
time-varying PDC showed that the best approach is based on 
the use of the general linear Kalman filtering in case of exist-
ing connections whereas the CKF with trial averaged MVAR 
model estimates is the best approach for non-existing connec-
tions. Based on the overall performance, the general linear 
Kalman filter is the best choice.
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Appendix 1: Classical Kalman Filter (CKF)

CKF can be estimated using a single trial of the data. Let Ãp(n) 
and Hp(n) be given as:

in which vec means the vectorization of the matrix Ak(n) by 
selecting row by row and

where ⊗ denotes the Kronecker product of matrices. For 
m channel measurement of N samples, y ∈ R m×N , CKF is 
defined as follows:

For n = [1,… , p] , initialize the time-varying MVAR 
parameters Ãp(n) = 0 , the a-posteriori error covariance matrix 
P(n) = I and the measurement error covariance W(n) = I . For 

(9)Ãp(n) =

⎛⎜⎜⎝

vec[A�

1
(n)]�

⋮

vec[A�

p
(n)]�

⎞⎟⎟⎠
∈ R mmp×1

(10)Hp(n) = I m×m ⊗

⎛⎜⎜⎝

y�(n − 1)

⋮

y�(n − p)

⎞⎟⎟⎠
∈ R m×mmp
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each time bin n, apply the Kalman filtering recursion equations 
(Arnold et al. 1998):

 The Update coefficient UC ( 0 < UC < 1 ) controls the adapta-
tion speed of time-varying MVAR parameters Ãp(n) . CKF 
was implemented using the mvaar.m function available from 
the time series analysis toolbox (Schlögl 2002).

Appendix 2: General Linear Kalman Filter 
(GLKF)

GLKF can estimate the time-varying MVAR model for multi-
trial data. Let Ãp(n) and Hp(n) be given as:

and

where

(11)
Find the measurement error: e(n) = y(n) − Hp(n)Ãp(n − 1)

(12)
Update the measurement error covariance:

W(n) = (1 − UC)W(n − 1) + UC(e(n) e(n)
�)

(13)
Calculate the residual covariance:

X(n) = [Hp(n)P(n − 1)Hp(n)
� + W(n)]−1

(14)
Calculate the Kalman gain: KG(n) = P(n − 1)Hp(n)

�X(n)

(15)
Update the MVAR estimates: Ãp(n) = Ãp(n − 1) + KG(n)e(n)

(16)
Calculate the state error covariance:

V(n) =
UCtrace([I − KG(n)Hp(n)]P(n − 1))

mmp
I

(17)
Update the a-posteriori error covariance:

P(n) = [I − KG(n)Hp(n)]P(n − 1) + V(n)

(18)Ãp(n) =

⎛⎜⎜⎝

A1(n)

⋮

Ap(n)

⎞⎟⎟⎠
∈ R mp×m

(19)Hp(n) = [O(n − 1)O(n − 2)…O(n − p)]

(20)O(n) =

⎛⎜⎜⎜⎝

y(1, n, 1) y(2, n, 1) ⋯ y(m, n, 1)

y(1, n, 2) y(2, n, 2) ⋯ y(m, n, 2)

⋮ ⋱ ⋮ ⋮

y(1, n,K) y(2, n,K) ⋯ y(m, n,K)

⎞⎟⎟⎟⎠
∈ R K×m

For m channel measurements with number of trials K, 
y ∈ R m×N×K , GLKF is defined as follows (Milde et al. 2010):

For n=[1,…,p], initialize the time-varying MVAR param-
eters as Ãp(n) = 0 ∈ R mp×m , the a-posteriori error covariance 
matrix P(n) = I ∈ R mp×mp and the measurement error covari-
ance W(n) = I ∈ R m×m . For each time bin n, apply the Kalman 
filtering recursion equations (Milde et al. 2010):

The General Linear Kalman filter was implemented in MAT-
LAB using custom-written scripts.
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