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Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is one of the most important natural
products in the genus Capsicum. Due to its numerous biological effects, there has
been extensive and increasing research interest in capsaicin, resulting in increased
scientific publications in recent years. Therefore, an in-depth bibliometric analysis of
published literature on capsaicin from 2001 to 2021 was performed to assess the global
research status, thematic and emerging areas, and potential insights into future research.
Furthermore, recent research advances of capsaicin and its combination therapy on
human cancer as well as their potential mechanisms of action were described. In the last
two decades, research outputs on capsaicin have increased by an estimated 18% per
year and were dominated by research articles at 93% of the 3753 assessed literature. In
addition, anti-cancer/pharmacokinetics, cytotoxicity, in vivo neurological and pain
research studies were the keyword clusters generated and designated as thematic
domains for capsaicin research. It was evident that the United States, China, and
Japan accounted for about 42% of 3753 publications that met the inclusion criteria.
Also, visibly dominant collaboration nodes and networks with most of the other identified
countries were established. Assessment of the eligible literature revealed that the potential
of capsaicin for mitigating cancer mainly entailed its chemo-preventive effects, which were
often linked to its ability to exert multi-biological effects such as anti-mutagenic,
antioxidant and anti-inflammatory activities. However, clinical studies were limited,
which may be related to some of the inherent challenges associated with capsaicin in
the limited clinical trials. This review presents a novel approach to visualizing information
about capsaicin research and a comprehensive perspective on the therapeutic
significance and applications of capsaicin in the treatment of human cancer.

Keywords: anticancer, bibliometrics, cytotoxicity, TRPV 1, vanilloid
July 2022 | Volume 12 | Article 9084871

https://www.frontiersin.org/articles/10.3389/fonc.2022.908487/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.908487/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.908487/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.908487/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:adetunjiademola@hotmail.com
mailto:aremua@ukzn.ac.za
https://doi.org/10.3389/fonc.2022.908487
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.908487
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.908487&domain=pdf&date_stamp=2022-07-13


Adetunji et al. Capsaicin Systematic Review
1 INTRODUCTION

Capsaicin (8-Methyl-N-vanillyl-trans-6-nonenamide, C18H27NO3)
is a homovanillic acid abundant in Capsicum species (pepper) fruits
(1, 2). Its structure (Supplementary Figure 1) was ascertained in
1919, following its isolation in 1846 (3, 4) and chemical synthesis in
1930 (5). The compound has two geometric (cis-trans) isomers but
naturally occurs as a trans-isomer (6). This lipophilic compound is
the main bioactive constituent of peppers and is responsible for the
tissue irritation and characteristic burning consequences
(pungency) of peppers (1, 2). It accounts for about 70% of the
alkaloid group called capsaicinoids. Other analogs are
dihydrocapsaicin (second most abundant, representing ca. 22%),
nordihydrocapsaicin (ca. 7%), and compounds such as
homocapsaicin, homodihydrocapsaicin and norcapsaicin
produced in lower quantities (2). Capsaicin constitutes a key
ingredient of self-protection products (e.g., oleoresin capsicum
spray), spicy foods in various cultures around the world, and its
concentration may be more than 65% in cosmetic, herbal
supplements, and other health care products (7).

Capsaicin content is high in pepper fruit placenta, which holds
the seeds (3, 8). The ovary and fruit–tip contain the highest
capsaicin content, while the seeds have the lowest concentration
(9). Capsaicin levels may increase in pepper when subjected to
controlled-stress conditions (10, 11). Due to its broad applicability,
there have been extensive studies aimed at enhancing capsaicin
production. For instance, capsaicin production has been improved
by enzyme-catalyzed (12), chemical (13), and in vitro syntheses (14,
15) as well as improving pepper cultivation (6, 16). Its biosynthesis
by fatty acid metabolism and phenylpropanoid pathways
(Supplementary Figure 2) has been described by several authors
(10, 11, 17).

There is increasing interest in using capsaicin as a therapeutic
alternative for different diseases (18, 19) due to its pleiotropic
pharmacological effects on various physiological systems, with an
emphasis on pain as well as neuroscience, cardiovascular,
respiratory, cancer, and urinary systems studies (20). In terms of
the pharmacokinetics, capsaicin has high oral bioavailability and
skin absorption (21), making its topical application effective in
various musculoskeletal or neuropathic pain conditions such as
arthritis (22), shingles (23), vasomotor rhinitis (24), vasogenic facial
pain (25). It is also used for treating urinary incontinence, chronic
kidney disease-associated pruritus, and postoperative nausea and
vomiting in acupoint therapy (3). Other beneficial bioactivities of
capsaicin, including analgesic, anesthetic, anti-apoptotic, anti-
inflammatory, anti-obesity, antioxidant, neuroprotective effects (1,
26, 27), enhanced energy metabolism (28), gastroprotective (29),
and anticarcinogenic properties (7, 30) have also been reported.
However, capsaicin may also function as a carcinogen or co-
carcinogen (7, 31, 32).

Understanding capsaicin research from global perspectives
over an extended time is crucial. Although several studies have
been published on capsaicin applications, bioactivities, and many
other capsaicin-related topics (33–35), none of these studies
explored the scientometric approach to critically assess its
progress and current direction in scientific research.
Bibliometrics is a valuable tool for evaluating research trends
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within a subject area, thus providing insight into extensively
researched themes and identifying research needs to inform
action (36).

Web of Science Core Collection indexing coverage search
gave more than 19,000 publications about capsaicin from 1991 to
2021. A recent review also showed that out of over 10,000
capsaicin-related publications from 2010 to 2020, the
anticancer effect was the most investigated, accounting for ca.
26% (2). Hence, this review aimed to provide a systematic review
of global research output and recent advances in capsaicin
application against human cancer in the last two decades. The
in-depth analysis of retrieved publications provided an overview
of explored themes, research progression, as well as insights and
future perspectives needed to enrich the knowledge domain on
the compound.
2 METHODOLOGY

2.1 Data Gathering and Selection Criteria
Data used for the bibliometric survey was retrieved according to the
procedure described in our previous articles (36, 37)
(Supplementary Figure 3). Concisely, published articles on
“Capsaicin” were retrieved from the Web of Science (WoS) Core
Collection and Scopus databases. The former database was chosen
because it contains a high volume of biological and physical sciences
literature (38, 39), while Scopus is considered the largest citation and
abstract source of global research outputs (40). In theWoS database,
the search term “Capsaicin” was used to retrieve records in the
“Title” module from January 1, 2001 to December 31, 2021. Only
document types such as “Article”, “Review”, “Book Chapter”, and
“Editorial” were searched. The search yielded 2914 records. Other
document types such as “Proceeding Paper,” “Letters,” “News
Items,” “Corrections,” “Early Access,” “Retracted Publications,”
and “Publication with Expression of Concern,” were excluded
from the search because these are often pre- or post-publication
data. For Scopus, a total of 3261 records were identified using the
search term “Capsaicin” on the “Article Title” search field. Only
records such as “Article”, “Review”, “Editorial”, and “Book Chapter”
that satisfied the selection criteria were included. Other records such
as “Conference Paper,” “Note,” “Letter,” “Erratum,” “Short Survey,”
and “Retracted” were excluded. Records from both databases were
downloaded in Bibtex file format and uploaded in RStudio (Version
1.1.463, 2009–2018) for statistical processing. The search and data
retrieval were conducted on January 31, 2022. Bibliometric library
and packages were installed on the RStudio and used to analyse all
bibliometric indicators (articles produced per year, most used
keywords, most productive authors, and countries based on
number of publications and citations). Duplicate records from
both databases were merged as one using R commands. Codes
for all bibliometric indicators were obtained from https://www.
bibliometrix.org/vignettes/Introductiontobibliometrix.html.
Keyword visualization was done on VOSviewer (version 1.6.15,
2009 –2020). Information on recent research advances of capsaicin
against human cancer was obtained from relevant articles published
in the last two decades in different databases, including Google
July 2022 | Volume 12 | Article 908487
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Scholar, WoS, and Scopus. Chemical structures were drawn
with ChemDraw.
3 RESULTS AND DISCUSSION

3.1 Descriptive Analysis of Scientific
Production and Annual Publication Trends
A total of 3753 scientific documents met the inclusion criteria in
the merged databases (WoS and Scopus) across the 20 years from
2001 to 2021. The entire capsaicin-related research was divided
into five groups according to the type of document: articles
(3460) representing 93% of the total, followed by reviews (195,
5%), editorial materials (43, 1.2%), book chapters (54, 1.4%), and
books (1). Documents were retrieved from 1385 journals and
included 6920 author keywords (DE) and 12586 keywords plus
(ID). Except for 115 single-authored publications, all authors
(10113) published multiple-author articles with an average
author-per-document and document-per-author of 2.69 and
0.371, respectively (Supplementary Table 1).

Figure 1 presents the annual scientific production and trends
in capsaicin research from 2001 to 2021. Given its wide display of
biological effects and therapeutic significance since its
identification, capsaicin has been the target of extensive
research (41). The number of articles related to capsaicin
research increased from 162 in 2001 to 239 in 2021, with an
annual growth rate of 18.88%. From 2001 to 2017, it was
observed that there were fluctuations in publication
productivity. However, in 2018, the publication productivity of
capsaicin research increased steadily up until 2021. The
relationship between the publication year and the number of
publications fitted into the polynomial model showed a strong
positive correlation r2 value of 0.956. This result, together with
Frontiers in Oncology | www.frontiersin.org 3
other statistical measures, such as Kolmogorov-Smirnoff
goodness-of-fit (0.719) and b-coefficient (2. 446), suggests that
there could be an increasing trend in publication productivity
with persistent investigations.

Regarding the publication language, the majority of the articles
were published in English (98%), however, some articles were also
published in German (0.5%), French (0.3%), and Spanish (0.2%).
Other languages, such as Chinese, Portuguese, Turkish and Polish,
occurred in lower frequencies. Evidently, capsaicin research topics
are rising trends in scientific research, and several researchers across
the globe are actively contributing to the field. The diversity of
research topics on capsaicin is evident in the distribution of different
publications in science-based subject areas, including neurosciences,
pharmacology, biochemistry and/or molecular biology, physiology,
chemistry, anaesthesiology, cell biology, food science and
technology, science technology and gastroenterology (hepatology).
This underscores the recognition of capsaicin as a promising drug
candidate to be developed as a primary treatment therapy for several
ailments (41).

3.2 Keyword Analysis and Thematic Areas
In scientometric analysis, keywords in publications are generally
accepted as representations for obtaining insights into the
thematic area of the research (42). Here, the top 20 most
relevant keywords [author’s keywords (DE) and keyword-plus
(ID)] in capsaicin research were recorded (Supplementary Table
2). To evaluate the thematic areas of capsaicin-related
publications, an analysis of the co-occurrence network of
keywords associated with capsaicin research was done for the
period under study. Four keyword clusters can be interpreted as
the thematic areas in the study domain, where each cluster
represents a thematic domain (Figure 2). The terms enclosed
in different coloured circles in a cluster represent the most
FIGURE 1 | Annual number of publications relating to capsaicin research in the period 2001–2021.
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frequently used keywords. Lines between terms show the
frequency of occurrence in literature.

In Figure 2, the blue cluster (cluster 1) represents the first
thematic area. It focuses on pain research studies on capsaicin
with different keywords such as pain measurement, analgesics,
neuropathic pain, and chronic pain. Indeed, capsaicin is an
incontestably thrilling molecule and remains a valued drug for
easing pain (41). Currently, capsaicin is in the third phase (phase
III) of clinical trials as an analgesic agent for musculoskeletal,
chronic/acute, arthritis, neuropathic, and postoperative pains
(41, 43).

The green cluster (cluster 2), with keywords such as animals,
rats, dogs, Wistar rat, Sprague- Dawley, neurons, nociceptors,
spinal ganglions, and ganglia represents in vivo neurological
thematic area. This cluster covers publications that document
the application of in vivo models to study the mechanism by
which capsaicin exerts its many therapeutic effects on the human
nervous system. The utilization of capsaicin as a therapeutic
agent stems from its relatively selective capacity to excite and or
cause neuroinhibitory action (capsaicin desensitization) of a
subpopulation of afferent neurons [transient receptor potential
channel vanilloid (TRPV1)] receptors, which reduces the
number of nerve fibers that respond to painful stimuli (44, 45).
Hence, extensive studies have been done in this thematic area
over the last two decades.

In the yellow cluster (cluster 3), keywords such as
cytotoxicity, human cells, cell viability, cytology, and animal
cell focusing on cytotoxicity study thematic area are grouped.
Frontiers in Oncology | www.frontiersin.org 4
Although, with proper dosage, capsaicin has demonstrated
several health-promoting effects, high doses of capsaicin can
cause various acute physiological responses (e.g., burning
sensation), activate inflammation, and induce cytotoxicity in
various cells (46). Thus, there has been significant research on
the cell toxicity of capsaicin to ensure the most effective dosage in
treating different ailments. Apart from the side effects of
capsaicin prompting cytotoxicity studies, capsaicin has shown
wide applicability against several types of cancer (30) through the
induction of apoptosis and arrest of cell cycle progression (47).
Hence, studies to explore the effects of capsaicin on cancer cell
lines have persisted.

The red cluster (cluster 4) depicts the pharmacokinetics and
anticancer thematic area of capsaicin research and includes
different keywords such as modulation, expression, induction,
activation, TRPV1, cancer and apoptosis. Over the last two
decades, there have been several publications investigating the
anticancer, mechanisms of action, pharmacokinetics, and
pharmacodynamics of capsaicin since this compound exerts
many pathways in its mode of action against different ailments.

3.3 Publication Sources and
Topmost Journals
Research outputs on capsaicin were published in 1385 primary
reference works such as conference proceedings, journals, books,
and letters. The top 20 most productive journals in capsaicin-
related research are recorded in Supplementary Table 3. Based
on the compiled data, three publishers − Elsevier, Wiley
FIGURE 2 | Thematic areas and network visualization of keyword co-occurrence map on capsaicin publications.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Adetunji et al. Capsaicin Systematic Review
Blackwell, and Lippincott Williams & Wilkins were identified as
the top publishers, with seven Elsevier journals, two Wiley
Blackwell journals, and two Lippincott Williams & Wilkins
journals. Different publishers publish the remaining journals
across the globe. The most productive journal in terms of the
number of articles was “Pain” with 363 articles, followed by
“European Journal of Pharmacology” (78 articles), “Neuroscience
Letters” (63 articles), “Neuroscience” (56 articles), and “Brain
Research” (55 articles). Pain, which had the highest number of
articles on capsaicin research, is one of the top journals devoted
to publishing original research articles that deal with the nature,
mechanisms, and treatment of pain. One of the major
therapeutic applications of capsaicin is its topical use in
treating pain. Capsaicin studied in several in vitro and in vivo
models as well as clinical trials has shown therapeutic
effectiveness against acute and chronic pains and has been
approved as a topical treatment of neuropathic pain (48). The
mechanism of action of its pain-relieving effect has been
attributed to the ability of capsaicin to cause reversible
defunctionalization or desensitization of sensory nerve endings
of substance P and by reducing the density of epidermal nerve
fibers (49). The increasing interest of researchers in
understanding capsaicin’s effects and the mechanisms of action
on chronic pain may account for the high number of articles on
capsaicin published in Pain journal. In terms of impact factor,
the British Journal of Pharmacology (IF 8.739) was the most
influential, followed by Pain (IF 6.96), Journal of Neuroscience
(IF 6.167), Journal of Pain (IF 5.820), and Journal of Agricultural
and Food Chemistry (IF 5.279).

3.4 Leading Authors and Citation Analysis
An important aspect of bibliometrics is the contribution of
authors toward a research topic. Citation indicators or metrics,
especially the H-index (an author-level metric that measures
both the productivity and citation impact of the publications),
are generally being used in the context of research evaluation
(50). Several studies have shown that the H-index is correlated
with the total number of citations and publications (51, 52). The
present study used different citation metrics such as the number
of articles, H-index, g-index, and total citations to identify the
top 20 leading authors (authors who have contributed more than
20 publications) in capsaicin research over the last two decades
(Supplementary Table 4). The top leading author’s productivity
is shown in Supplementary Figure 4, where embedded circles
represent the total number of articles and total citations for
articles published in a particular year.

The results of the analysis show that the topfivemost productive
authors are Lee, J. (46 articles), Lee, S. (45 articles), Wang, X (43
articles),Wang,Y. (43articles) andZhang,Y. (42articles).As for the
relative impact of the publication in terms of citations, Anand, P.
(3166 citations), Lee, S. (1763 citations), Wang, X. (1282 citations),
Wang, J. (1124 citations) and Wang, H. (1075 citations) were the
most influential in the period considered.

3.5 Most-Cited Publications
The number of citations an article receives has been employed as
a marker of its influence on the research community in that
Frontiers in Oncology | www.frontiersin.org 5
subject area (53). We identified the 20 most cited articles in the
field of capsaicin research during the 20 years study period
(Supplementary Table 5) and their association with the
clusters identified in Figure 2 (the thematic areas of capsaicin
research). The listed 20 most-cited articles gave insight into the
important articles and thematic areas that had impacted
capsaicin research within and beyond the subject area. These
articles were all published by authors from developed countries
and were co-authored collaborations except Amadesi (54) and
Ghilardi (55). These top-cited articles received between 240 and
1048 citations, and only four articles were cited more than 400
times. The most cited article was “Bradykinin and nerve growth
factor release the capsaicin receptor from PtdIns(4,5)P2-
mediated inhibition” by Chuang et al. (56), published in
Nature with 1048 citations. By evaluating the listed articles
(Supplementary Table 5) in relation to the thematic clusters
in Figure 2, it appears that research focusing on the
pharmacokinetics/pharmacodynamics of capsaicin (cluster 4)
has made the greatest contributions, as six of the 20 most cited
publications are associated with this cluster.

3.6 Leading Countries and Collaboration
Networks Between Countries
The heat map of the 10 top leading countries that have
contributed more than 30 publications over the 20 years study
period was shown in Figure 3. Additional information given in
Supplementary Table 6, showed the number of articles,
citations, average article citations, single country publications,
and multiple country publications. The highest publication
metrics were from the United States (689 publications), China
(546 publications), Japan (354 publications), North Korea and
South Korea (209 publications), and India (172 publications),
making them the top five leading countries in terms of the
number of publications. Of the top leading 20 countries, the
dominance of European countries and, to a lesser degree, Asian
countries was striking, while publications originating from North
America, South America, and Oceania were less prevalent.
Within Asia, the majority of the publications originated from
the far East, and China, Japan, North and South Korea, and India
were recognized as significant contributors to capsaicin research.
In Europe, Germany, United Kingdom, and Italy were significant
contributors to capsaicin publications. Europe has been
recognized as the centre of global science and research since
the beginning of the 20th century as scientists from relatively rich
European countries are heavily funded (57). This could account
for the relatively high contributions of capsaicin publications
from Europe. In terms of citations, the top three countries— the
US (28869 total citations), China (8621 total citations), and
Japan (8578 total citations) corresponded with the top three
productive countries. Other countries with relatively high
citations were the United Kingdom (7857 total citations) and
North and South Korea (5813 total citations).

To assess the international collaboration network on
capsaicin research among the 20 leading countries, a network
visualization map was constructed (Supplementary Figure 5).
Generally, more productive countries (in terms of publications
and citations) also have more collaboration links. The line
July 2022 | Volume 12 | Article 908487
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thickness in the network map depicts the collaboration frequency
between countries. The United States had a visibly dominant
collaboration node with a strong collaboration network with
almost all other countries on the map. China, which had the
second-largest node and the second-highest number of
publications, collaborated mainly with the US, Denmark,
Australia, and Canada.
4 RECENT RESEARCH ADVANCES OF
CAPSAICIN ON HUMAN CANCER

Non-communicable diseases, including cancer, contribute
significantly to morbidity and account for over 70% of
untimely global mortality. The vast plurality of these deaths
(over 80%) occurs in nations with a low or medium Human
Development Index (58). Cancer is considered an increasing
public health concern with devastating economic implications
(59). With the aging and growing population, about 29 million
cancer cases are expected by 2040 (60). Cancer treatment is
currently a topic of high interest due to its severity, impact on
quality of life, and burden on the healthcare system (61). Despite
the advancement of medical science, the burden of cancer keeps
rising rapidly and demands safe and more effective cancer
prevention and treatment strategies capable of inhibiting or
reversing cancer (32). The failure of most of the current
Frontiers in Oncology | www.frontiersin.org 6
treatment strategies has been linked to the fact that different
forms of cancer are capable of acquiring mutations that make
them resistant to treatment over time.

Lately, however, there has been growing attention to the
potential of natural products, including dietary phytochemicals
such as capsaicin, as safe and effective therapies for combating
cancer (62, 63). This current research paradigm stems from the
role of diet in 30% of cancers and the proposition that 35% of
cancer can be prevented by diet and lifestyle changes (64, 65).
Indeed, dietary phytochemicals have shown significant efficacy in
ameliorating several levels of cancer development. Equally
advantageous is the fact that these dietary phytoconstituents
are readily available, relatively non-toxic, biocompatible,
and cheap.

About 25% of global therapeutic drugs have been sourced
primarily or otherwise from plants (66). For instance, anticancer
agents such as vinblastine and paclitaxel were derived from
Catharanthus roseus (L.) G. Don (syn. Vinca rosea L.) and Taxus
brevifolia Nutt., respectively (62). Thus, natural therapeutic agents
are historically key contributors to drug discovery for various
diseases, including cancer (67). Persuasive evidence from
experimental and epidemiological studies has shown that some of
these plant-derived therapeutic agents possess promising
chemopreventive and chemotherapeutic properties (64).
Capsaicin, an homovanillic acid derivative, is one of such dietary
phytochemicals with the ability to ameliorate cancer at various
FIGURE 3 | Heat map of the top 10 leading countries based on capsaicin publications from 2001 to 2021. Grey colour shadings signify countries outside the top 10.
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levels. Various remedial effects and mechanisms of actions of
capsaicin have been documented (2, 32, 61). This section
considers various anticancer roles of capsaicin and the underlying
mechanism in a more detailed perspective.

4.1 Capsaicin and Chemoprevention
Chemoprevention refers to the use of chemotherapeutic agents
that hinders and halts the development of tumor before the
onset of tumor cell invasion (68). Capsaicin has shown
significant prospects as an effective chemopreventive agent, as
discussed below.

4.1.1 Antimutagenic Activity of Capsaicin
Arguably, the initial evidence of the anticancer role of capsaicin could
be traced to earlier studies on the chemopreventive/anticarcinogenic
activity. Capsaicin pre-treatment could suppress DNA binding of
benzo (a) pyrene (a carcinogenic polycyclic aromatic hydrocarbon),
thereby inhibiting lung carcinogenesis in mouse model (69). Several
studies further corroborated this research finding with capsaicin
showing protective effects against chemical carcinogens such as
aflatoxin B1, 4-(methylnitrosamino)- 1-(3-pyridyl)- 1-butanone,
vinyl carbamate and N-nitrosodimethylamine (70). It is noteworthy
that a number of these hydrocarbons (specifically halogenated
hydrocarbons) are metabolized by the phase drug-metabolizing
enzyme CYP450 2E1, which catalyzes the activation to generate
highly reactive genotoxic products. Interestingly, capsaicin has been
found to inhibit several isoforms of CYP 450 enzymes, including CYP
2E1. As such, the chemoprotective role of capsaicin has been linked to
its ability to modulate CYP enzymes (7). Furthermore, in a more
recent study, capsaicin was shown to cause upstream activation of Ca2
+/calmodulin (CaM)-dependent protein kinase (CaMK) and
CCAAT/enhancer-binding protein b (C/EBPb), which resulted in a
concomitant inhibition of CYP1A1mRNA (71). Hence, by inhibiting
CYP enzymes expression and its upstream modulator, capsaicin is
capable of acting as an anticarcinogenic agent.

4.1.2 Anti-Oxidative Action of Capsaicin
Another plausible mechanism implicated in the chemopreventive
action of capsaicin is its anti-oxidative effects. Capsaicin elicits a
biphasic anticancer action, acting directly to scavenge
free radicals and upregulating the expression of several
antioxidant enzymes. Antiradical activity of pure capsaicin
revealed high scavenging activity against 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulphonic acid (ABTS) radical with
IC50 value of 187.7 µM (72). Likewise, there was a positive
correlation between the levels of capsaicin and its analogues
and the antioxidant activity of peppers of the genus Capsicum
(73). Capsaicin was also shown to protect against autoxidation
and Fe2+ induced oxidation of linoleic acid (74). In addition,
capsaicin inhibits reactive oxygen species (ROS) release and the
subsequent mitochondrial membrane potential collapse,
cytochrome c expression, chromosome condensation, and
caspase-3 activation induced by oxidized low-density
lipoprotein in human umbilical vein endothelial cells (75). This
profound free radical scavenging activity gives credence to the
ability of the compound to mitigate oxidative stress conditions,
Frontiers in Oncology | www.frontiersin.org 7
which have been implicated in cellular dysfunction vis-a-vis the
development of cancer.

Aside from directly scavenging free radicals in vitro, capsaicin
has also been found to increase the expression of antioxidant
enzymes in vivo to modulate oxidative imbalance. Capsaicin pre-
treatment in mice suppressed oxidative damage in mice testicles
exposed to heat stress by modulating heat shock 70-kDa protein
1 (Hsp72), phospholipid hydroperoxide glutathione peroxidase
(PGHPx), and manganese superoxide dismutase (MnSOD)
mRNA expression (76). Hsp72 gene is upregulated in response
to oxidative stress; however, the pre-exposure to capsaicin results
in decreased Hsp72 levels (76). Likewise, the increased
expression of MnSOD and PGHPx underscores the role of
capsaicin in activating antioxidant enzyme expressions. A
similar protective effect was demonstrated in cisplatin-induced
nephrotoxicity in rats, where exposure to capsaicin decreased the
levels of kidney malondialdehyde and ameliorate decreased levels
of GSH and SOD activity (77).

Additionally, capsaicin can act synergistically with other
dietary phytochemicals causing an exponential beneficial
cytoprotective effect (78, 79). For instance, dietary curcumin
and capsaicin concurrent administration in high-fat diet-fed rats
were shown to mitigate the testicular and hepatic antioxidant
status by increasing GSH levels, glutathione transferase activity,
and Cu-ZnSOD expression (79). The investigations by Joung
et al. (80) provided further mechanistic insights into the
antioxidant defense mechanism of capsaicin. The authors
noted that capsaicin was capable of inducing a series of protein
kinase phosphorylation events activating the antioxidant defense
response in HepG2 cells. Capsaicin was shown to trigger the
phosphorylation of Akt, activating the protein kinase leading to
Nrf2 phosphorylation (80). The phosphorylation of Nrf2 results
in disruption of NRF2/Keap 1 complex liberating the activated
Nrf2 protein, which translocates to the nucleus forming a
complex with maf2, which binds to the antioxidant response
element in the promoter region of genes encoding the
antioxidant enzyme heme-oxygenase-1 (Figure 4). HO-1
catalyzes the oxidative degradation of heme to liberate free
heme, carbon monoxide and biliverdin. By degrading heme,
HO-1 prevents oxidative damage by heme protein. Besides
HO-1, Nrf2 activation have also been linked to the increased
expression of other and drug-metabolizing enzymes such as
NAD(P)H:quinone acceptor oxidoreductase (NQO) and
antioxidant enzymes, including catalase (CAT), SOD, GPX and
GST via the Nrf2/ARE pathway (81).

4.1.3 Anti-Inflammatory Action of Capsaicin
Anti-inflammation is another mechanism implicated in the
chemopreventive action of capsaicin. According to the national
cancer institute, chronic inflammation has been named as a
major risk factor in cancer. This is because, during chronic
inflammation, notable damage to the DNA structure is
observed, which can ultimately result in cancer. Such is the
case observed during chronic inflammatory bowel disorders such
as Crohn’s disease and ulcerative colitis, which leads to colon
cancer. Sub-plantar injections of capsaicin were able to
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significantly inhibit paw-swelling in Wistar rats at a rate
comparable to standard drug diclofenac (82). The anti-
inflammatory effect of capsaicin was initially linked to
capsaicin receptors known as transient receptor potential
vanilloid sub-type1 (TRPV1). Vanilloid receptors have been
implicated in tissue injury and inflammation; however,
repeated application of capsaicin results in anti-inflammatory
responses via these receptors. Recent studies have suggested that
the anti-inflammatory action of capsaicin is independent of the
TRPV1 receptor (83–85).

Capsaicin mediates anti-inflammation by inhibiting
lipopolysaccharide (LPS)-induced IL-1b, IL-6 and TNF-a
production by increasing Liver X receptor a (LXRa) expression
through peroxisome proliferator-activated receptor-gamma
(PPARg) pathway (85). The authors also observed that the
activation of LXRa blocks NF-kB-mediated inflammatory gene
expression and the inhibitory action of capsaicin on NF-kB
expression was blocked by LXRa inactivation with siRNA.
Likewise, capsaicin inhibits toll-like receptor-mediated salivary
epithelial cells’ release of pro-inflammatory cytokines through the
NF-kB signalling pathway (84). Kim et al. (83) reported
the inhibition of NF-kB by capsaicin via a mechanism involving
the degradation of ikB-a. The compound elicits COX-2 enzyme
activity inhibition and downregulation of iNOS protein to
Frontiers in Oncology | www.frontiersin.org 8
ameliorate inflammation in LPS-stimulated murine peritoneal
macrophages. Chen et al. (86) investigated the signal transduction
mechanism implicated in the anti-inflammation action of capsaicin
in RAW264.7 macrophages. Capsaicin inhibited LPS- and IFN-g-
mediated NO production, iNOS protein and mRNA expression,
COX-2 expression and PGE2 production. In addition, capsaicin
inhibits NF-kB, AP-1 activation and STAT1 activation, as well as
other upstream protein kinases, including ERK, JNK and IKK. The
inhibition of the upstream kinase is implicated in the apoptotic
action of capsaicin, which is discussed in the subsequent session.
The overall anti-inflammatory of capsaicin is summarized
in Figure 5.

4.1.4 Cell Cycle Regulation by Capsaicin
Cell progresses through the G0/G1, S and G2/M phases of the cell
cycle during cell proliferation. This series of events is highly
regulated by cyclin, cyclin-dependent kinase, and checkpoint
kinases, including polo-like kinase, aurora kinase and CDK
inhibitors which ensures that damaged/mutated cells do not
proceed through in cell cycle (87). However, in cancer cells,
deregulation in cell cycle regulations allows cell proliferation to
occur. Over the years, dietary phytochemicals such as capsaicin
have shown attractive cell cycle regulation activity, thereby
halting cellular division of cancer cells (87). Upon sensitization
FIGURE 4 | Antioxidant enzyme pathway regulation by capsaicin.
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by proliferative stimulus, cell progresses from the resting G0
phase to the growth phase (G1). A recent study observed that
capsaicin mediates cell cycle arrest at the G1 phase in ORL-48
cells (88). Similarly, Qian et al. (89) reported G0/G1 cell cycle
arrest in bladder cancer cells following capsaicin treatment.
However, studies have also reported the inhibition of the cell
cycle at the G2/M phase in human KB cancer cells and MCF7
breast cancer cells. The cellular arrest is usually achieved by
modulation of cell cycle protein kinases. For instance,
downregulation of CDK8 expression was involved in the G2/M
phase arrest of breast cancer cells by capsaicin (90). In another
study, the inhibition of CDK2, CDK4 and CDK6 were
responsible for G0/G1 arrest (91). Likewise, the anti-tumor
effect of capsaicin on human pharyngeal squamous carcinoma
cells (FaDu) is associated with mitochondrial pathways, possibly
by decreasing the expression of the regulators of cyclin B1 and
D1, as well as cyclin-dependent protein kinases CDK-1, CDK-2
and CDK-4 mediating cell cycle arrest at G1/S phase (92).

Beyond the anti-CDK activity of capsaicin, capsaicin
modulates upstream molecular events such as the p53
dependent pathways. Islam et al. (93) recently reported that
tumour-associated NADH oxidase (tNOX) is a major target of
capsaicin responsible for its effect on the cell cycle. The authors
noted that modulating tNOX reduces NAD+ generation and
Frontiers in Oncology | www.frontiersin.org 9
inhibits SIRT1, causing c-myc and p53 activation, ultimately
leading to the inhibition of cyclin/CDK complex at G1
checkpoint triggering cell cycle arrest. In bladder cancer,
capsaicin treatment down-regulates tNOX and SIRT1 expression
prolonging cell cycle progression among other effects (94).
Capsaicin elicits anticancer effect via a p53 dependent pathway in
human colon cancer cells (95). By suppressing p53/MDM2
interaction, capsaicin inhibited p53 degradation, allowing p53 to
induce cell cycle arrest at the G0/G1 phase and apoptosis (95). In
addition, via a mechanism that involves the vanilloid receptor
TRPV1, capsaicin modulates the expression of p53, p21 and
CDK2, initiating G0/G1 phase arrest in bladder cancer RT4 cells
(96). Overall, by modulating critical signal transducers in the cell
cycle, capsaicin can halt cancer proliferation in different cancer
types to prevent the progression of cancer.

4.2 Cell Death Mechanism of Capsaicin
Apart from being a chemopreventive agent, capsaicin has shown
cytotoxic effects. It has been reported to cause the induction of
cell death in different cancer cells in in vitro and in vivo models.

4.2.1 Apoptotic Cell Death by Capsaicin
Apoptosis is the primary mechanism via which capsaicin can
induce cell death in cancer cells, including prostate cancer,
FIGURE 5 | Anti-inflammatory mechanism of capsaicin.
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pancreatic cancer, colorectal cancer, lung cancer, breast cancer,
liver cancer, and skin cancer. Apoptosis is a programmed form of
cell death characterized by morphological and biochemical
events including membrane blebbing, cell shrinkage, nuclear
and DNA fragmentation, chromatin condensation followed by
engulfment of the dead cells by neighbouring cells (97). A
different molecular mechanism capable of inducing apoptosis
has been described following the treatment of cancer cells
with capsaicin.

One of the major pro-apoptotic mechanisms of capsaicin is
via the vanilloid receptors, primarily TRPV1, a non-selective
calcium channel that has been functionally involved in cell death
in a wide variety of cancer cells. In glioma cells, capsaicin
treatment increased the expression of TRPV1, causing a
concomitant influx of Ca2+ triggering apoptosis via the p38
signalling pathway (98). Similarly, in anaplastic thyroid cancer,
the agonistic role of capsaicin led to the inhibition of the cell
viability as a result of cell death via the intrinsic pathway of
apoptosis (99). The mechanism also involved triggering Ca2+

influx into the cell cytoplasm, causing an imbalance in
intracellular calcium homeostasis and a severe condition of
mitochondria calcium overload (99). The disruption of the
mitochondria calcium balance resulted in increased production
of mitochondria reactive oxygen species, depolarization of
mitochondria membrane potential , and opening of
mitochondria membrane permeability pore (99). The latter
effects result in the release of cytochrome C, triggering
apoptosome assembly and the activation of caspase, leading to
apoptotic cell death. Equally worth emphasizing is that the study
also showed that in the presence of TRPV1 antagonist and
calcium chelator, apoptosis underscores the role of the TRPV1
receptor pathway in capsaicin-induced apoptosis in cancer
cells (99).

Amantini et al. (100) studied the role of TRPV1 in capsaicin-
induced apoptosis in human urothelial cells. The authors noted
that TRPV1 dependent apoptosis involved the activation of pro-
apoptotic protein -ataxia-telangiectasia mutated (ATM), which
is involved in Ser15, Ser20, and Ser392 phosphorylation in the
DNA damage response pathway, and the activation of Fas/CD95
protein which mediates intrinsic and extrinsic apoptosis
pathway. Likewise, TRPV1 activation following capsaicin
treatment results in apoptosis induction in colorectal cancer
via the calcineurin-NFAT2-p53 signaling pathway (101). Aside
from TRPV1, another member of the TRPV family which has
been implicated in the apoptotic action of capsaicin is TRPV6.
Like TRPV1, TRPV6 is a calcium selective ion channel that
regulates calcium homeostasis. In human small cell lung cancer,
capsaicin displays potent antineoplastic activity by increasing
TRPV6 expression, causing increased levels of intracellular
calcium ions activating the calpain pathway to induce
apoptosis (102). According to Chow et al. (103) TRPV6
mediated capsaicin-induced apoptosis activation in gastric
cancer cells. It was observed that TRPV6 overexpression
increased mitochondria permeability in the cells through the
activation of Bax and p53 through C-jun N-terminal kinase
(JNK) activation (Figure 6).
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Perhaps, what makes capsaicin a particularly interesting
anticancer agent is its ability to act on multiple anticancer
targets? This feature is once again exemplified in its apoptotic
mechanism, which has been found not to be limited to vanilloid
receptor pathways (104). The studies by Bao et al. (105) revealed
that by treating human osteosarcoma MG63 cells with capsaicin,
apoptosis by induced via the TRPV1-dependent and
independent pathways. Through the TRPV1 independent
pathway, capsaicin-induced apoptosis by activating adenosine-
5-monophosphate-activated protein kinase (AMPK), p53 and
JNK. Findings by Kida et al. (106) showed that in the presence of
TRPV1 antagonist, capsaicin stimulated intracellular calcium
influx. Likewise, the binding of capsaicin to mitochondrial
complex I and II in the electron transport chain disrupted the
mitochondrial membrane potent ia l and increas ing
mitochondrial membrane permeability (107). Zhang et al.
(108) equally showed that capsaicin increases ROS levels and
results in increased expression of pro-apoptotic Bcl-2 (Bax),
downregulation of anti-apoptotic Bcl-2 and CytC release,
causing cell death in pancreatic cancer cells in vitro and in
vivo. Thus, via a mechanism independent of TRPV1, capsaicin
can activate the extrinsic and intrinsic apoptosis pathways.

4.2.2 Autophagy Mediated Cell Death by Capsaicin
Autophagy is a highly regulated process through which
cytoplasmic components are delivered to the lysosome for
degradation and later recycled to meet the metabolic needs of
starving cells (68, 109). While it was initially thought of as a pro-
survival mechanism, autophagy has been found to play a
dichotomous role as a cell survival mechanism and cell death
mechanism (68, 109). Although the role of capsaicin in
autophagic death is yet to be fully understood, it appears to
vary with different cancer cell types as it has been shown to
inhibit or promote autophagy in different forms of cancer (110–
112). By blocking the Pi3/Akt/mTOR signalling pathway,
capsaicin increases levels of autophagic markers (LC3-II
and Atg5), enhances p62 and Fap-1 degradation and increases
caspase-3 activity to induce apoptosis in human nasopharyngeal
carcinoma cells (112). Moreover, capsaicin acts through tNOX to
induce autophagic apoptosis in oral and melanoma cancer cells
(113, 114). Conversely, in U251 Glioma cells, capsaicin was
shown to inhibit autophagy, and this inhibition resulted in
increased apoptotic cell death (110). As such, in these cancer
cells, autophagy appears to be a pro-survival mechanism and its
inhibition by capsaicin results in cell death.

However, most studies have suggested that capsaicin is likely
to induce autophagy in cancer cells in a manner that assists in
cancer cell survival. For instance, in the study by Chu et al. (111),
it was shown that capsaicin-induced autophagy, which served a
tumour-promoting role in human melanoma cells and inhibition
of autophagy using 3-MA enhanced capsaicin-induced cell
death. Similarly, Chen et al. (115) increased stat3 dependent
autophagy through the generation of ROS in human hepatoma
(HepG2 cells) and inhibition of autophagy enhanced capsaicin-
induced apoptosis. Further studies have shown that autophagy
induction by capsaicin retards cell death by suppressing
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endoplasmic reticulum stress-mediated apoptosis via a pathway
involving JNK, p38 and ERK (116, 117).

4.4.3 Necrosis, Paraptosis, and Necroptosis Cell
Death by Capsaicin
Although apoptosis is the main form of cell death described in
capsaicin-treated cancer cells, other forms of cell death such as
necrosis, paraptosis, and necroptosis have also been reported
using in vitro and in vivo models (118, 119). Several factors,
including cell type, dose and time of capsaicin exposure, can
influence the type of cell death mediated by capsaicin (118).
Capsaicin induces necrotic cell death in a time-dependent
manner in 5637 and T24 BC cells and that autophagic
inhibitor enhances the cytotoxic effects (120). Following the
investigation of the effect of capsaicin-induced TRPV1
expression on cell proliferation in breast cancer, Wu et al.
(121) observed that TRPV1 does not enhance cell proliferation
and capsaicin was able to induce necrotic cell death in the MCF-7
cell, which was associated with increased expression of c-fos and
RIP3. Ramıŕez-Barrantes et al. (122) equally established that
TRPV1 expression mediates necrosis in HeLa cells. The authors
Frontiers in Oncology | www.frontiersin.org 11
observed that at high concentration (> 10 µM), capsaicin induces
a slow but persistent increase in intracellular Ca2+, which leads to
plasma membrane depolarization, mitochondrial dysfunction,
and ultimately cell death by necrosis and apoptosis.

Another form of cell death has been described by Jambrina
et al. (119), using capsaicin. The authors reported that activation
of TRPV1 by capsaicin causes Ca2+ influx, which triggers a
distinct program of mitochondrial dysfunction leading to
paraptotic cell death, which does not fulfil the criteria for
either apoptosis or necrosis. Huang et al. (123) also reported
necroptosis (programmed necrosis) in oral squamous cell
carcinoma cells treated with capsaicin. It is noteworthy that
the role of paraptosis and necroptosis in the anticancer effects of
capsaicin is yet to be fully elucidated. Further studies are thus
required to carefully study this pathway of cell death in
capsaicin-treated anticancer cells.

4.3 Capsaicin Intervention in
Cancer Metastasis
Tumor cells, in certain cases, are capable of migrating through
the lymphatic or blood systems to colonize distant sites
FIGURE 6 | Intracellular signalling pathway implicated in the apoptotic action of capsaicin.
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through a process known as metastasis. This is a complex
process implicated in 90% of cases of cancer mortalities, and
it involves several alterations causing stimulation of
angiogenesis, local invasion attachment, basement membrane
disruption, matrix proteolysis, and stimulation of growth
factors (68, 124). Capsaicin has been shown in the past to
mitigate cancer metastasis due to the ability to modulate
critical pathways involved in molecular alterations of cancer.
For instance, Min et al. (125) described the inhibition of
angiogenesis by capsaicin under in vitro and in vivo systems.
Angiogenesis is the formation of new blood vessels to deliver
nutrients and oxygen necessary for secondary tumor growth.
By inhibiting angiogenesis, capsaicin can stall the growth of
secondary tumours. In non-small lung cancer cells, capsaicin
was able to restrain angiogenesis by dampening vascular
endothelial growth factor (VEGF) expression via p53-
SMAR1 auto-regulatory loop activation (126). Capsaicin is
also able to inhibit tumor metastasis by inhibiting the matrix
proteolysis pathway. Specifically, capsaicin has been shown to
target matrix metalloproteinase 9 (MMP9), a protein
responsible for extracellular matrix degradation and cytokine
activation during tissue remodelling in metastatic cancer. The
inhibition of MMP9 by capsaicin occurs via the suppression of
AMPK-NF-kB, EGFR-mediated FAK/Akt, PKC/Raf/ERK, p38
MAPK, and AP-1 signaling pathway (127, 128). In addition,
Shin et al. (129) outlined phosphatidylinositol 3-kinase/Akt/
Rac1 signal pathway inhibition as the primary mechanism of
cell migration in B16-F10 melanoma. In human papillary
thyroid carcinoma BCPAP cells, capsaicin inhibits matrix
protease MMP9 and MMP2 by activating the TRPV1
channel (130). Based on recent evidence (131), capsaicin
might inhibit migration and invasion and metastasis of
oesophageal squamous ce l l carc inoma (ESCC) via
overexpression of claudin-3 (Cldn3) and inhibiting
epithelial-mesenchymal transition (EMT). The anti-
metastatic effect of capsaicin has been further validated using
in vivo mouse prostate cancer model where it was
demonstrated that capsaicin significantly reduced the
metastatic burden (132).

4.4 Human Clinical Trials on Capsaicin
Within the last two decades, there have been several clinical
reports on the use of capsaicin. However, most of the studies
have mainly examined the analgesic activity of capsaicin. There
have been few reports on the use of capsaicin in cancer patients;
however, these studies have examined the pain relief function of
capsaicin in addition to other treatment regimens (133–135).
For instance, Adlea (ALRGX-4975) - an injectable preparation
of capsaicin in phase II clinical trials in Morton’s neuroma
patients, was effective in the treatment of chronic neuropathic
pain (134). Likewise, Privitera and Anand (133) revealed that
capsaicin 8% patch could promote the regeneration and
restoration of skin nerve fibres in chemotherapy-induced
peripheral neuropathy in addition to pain relief. These
studies have suggested that capsaicin might serve as a
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suitable adjuvant to ameliorate pain and its associated
complications in cancer treatment. However, it remains
unclear whether capsaicin serves any antiproliferative
function in cancer patients. Further clinical studies focused
on its antiproliferative potential are therefore required.

4.5 Downsides and Recent Improvement
Initiatives on the Effects of Capsaicin on
Human Cancer
The last few decades have seen a significant increase in the
number of research conducted on the anticancer effects of
capsaicin, yet none of these research works has been met
by clinical approval. This limitation stems from certain
challenges with capsaicin as a drug. One of the limitations
of capsaicin is its pro-carcinogenic effects. Although the
number of anticancer studies of capsaicin far outweighs the
carcinogenic activity, nonetheless, the risk associated
with capsaicin carcinogenic effect is a major concern to
researchers (136). Another major drawback of capsaicin is
the lead-likeness property. Capsaicin has been shown to have
high hydrophobicity, low binding affinity, and short half-life,
which can affect the in vivo anticancer efficacy (31). More so,
capsaicin has shown several unpleasant side effects,
including stomach cramps, skin and gastric irritation, and
burning sensation (137). Hence, we further discuss the recent
studies carried out to improve the anticancer efficacy
of capsaicin.

4.5.1 Synthesis of Capsaicin and Its Analogs
The majority of capsaicin used in research have been purified
from Capsicum plants, with varying levels of purity which has
led to a disparity in some results obtained from biological
assays (138). To circumvent these challenges, capsaicin has
been synthesized artificially with a high level of purity and high
yield. Furthermore, to bypass some side effects and limitations
with capsaicin, different capsaicin analogs have been
synthesized some of which have shown significant anticancer
prospect. A typical capsaicin structure consists of an aromatic
ring (region A), an amide group (region B), and a hydrophobic
group (region C) (137). Modifications of capsaicin
pharmacophore have focused mainly on the B and C region
of the capsaicin structure to yield capsaicinoids such as
capsiate, dehydrocapsaite, nordihydrocapsiate, which have
only shown anticancer properties without any reported
carcinogenic effects (137). In a study by Lewinska et al.
(139), capsaicin epoxide was synthesized and found to be
non-toxic to human dermal fibroblast cell lines and showed
higher toxicity to cancer cell lines compared to capsaicin by
inducing oxidative damage. Likewise, by modifying regions A
and B of capsaicin, Pereira et al. (140) synthesized a capsaicin-
like analogue which induced apoptotic cell death in cancer cells
with a better pharmacokinetic profile than capsaicin and had
no irritant effects on mice. These findings were corroborated
by de-Sá-Júnior et al. (141), who synthesized RPF101, by
modifying similar aromatic and amide substituent groups.
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The compound had a better pharmacokinetic profile than
capsaicin and was reactive toward the cancer target. In
addition, capsazepine − a TRPV1 antagonist, has also been
synthesized and found to be a highly effective pleitropic
antitumoral/anti-inflammatory agent in cancer cells and in
vivo models (142). So far, the several capsaicin analogs have
shown significant promise but require further in vivo and
clinical validations.

4.5.2 Targeted Delivery of Capsaicin
In an effort to enhance the bioavailability, improve the
pharmacokinetics and half-life and reduce the side effects,
different delivery vehicles, including inorganic carriers (metal
nanoparticles and carbon sphere), polymeric carriers (micelle,
dendrimer and polymersome), and lipid-based nanoparticles
(liposomes, microencapsulation and solid-lipid nanoparticle)
have been developed to perform site-directed delivery of
capsaicin (143). In addition, excipient-free self-assembled
capsaicin delivery systems have been designed with improved
pharmacokinetic properties (144). Studies on the delivery of
capsaicin for improved anticancer functions are summarized
in Table 1.

Delivery systems such as nanoparticles offer the advantage of
increasing the retention time in the blood system, thereby allowing
the drug to achieve maximum efficacy before being cleared from
the body. Likewise, liposomes and micro-emulsion-based drugs
have been known to significantly improve oral bioavailability and
reduce the irritation of drugs (154). In addition, these delivery
systems can be surfaced-modified to perform site-directed/cell-
specific drug delivery, thereby ensuring increased cell death of
cancer cells while sparing non-selective normal cells (155).
Furthermore, owing to its antioxidant potential, capsaicin has
been applied asa bioreduction and capping agent to synthesize
biocompatible silver nanoparticles and can be used in cancer
theranostics (156).

4.5.3 Drug Synergism and Capsaicin-
Combination Therapy
The current generation of cancer therapeutics has good initial
efficacy but often develops resistance within months
of treatment. One way of combating this problem is
through drug-drug combination and combination of
chemotherapeutic treatment with other anticancer therapies
such as radiotherapy and photothermal therapy. In the same
vein, capsaicin has been combined with other anticancer
therapies for more pronounced anticancer effects (Table 2).
In most cases, the combination of capsaicin with other
chemotherapeutic drugs has shown a significant synergistic
effect. Recent studies have shown that capsaicin may
also serve additional benefits as an adjunct to current
chemotherapeutic drugs. The unique TRPV1 dependent cell
death mechanism of capsaicin together with other cell death
pathways by chemotherapeutic drugs ensures complete
clearance of the cancer cells and makes it less likely for
cancer cells to develop resistance.
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5 CONCLUSION AND FUTURE
PERSPECTIVES

Evidence from this review highlighted the research trend and
pattern (e.g., top authors, journals, and publications). It
revealed an in-depth insight into the potential of capsaicin
for managing human cancer. The last two decades have
witnessed an increasing rate (an average of ca. 18% growth
yearly) in the number of publications (dominated by research
articles at 93%) following the renewed interest in capsaicin
research. The research outputs have been majorly (ca. 42% of
3753 publications) produced by the United States, China, and
Japan, which also had a visibly dominant collaboration node and
network with most of the other countries identified in this review.
Despite the evident productive collaboration, the inadequate
representation of countries from the developing world remains a
concern that needs to be addressed for significant success in
exploring the potential of capsaicin for mitigating human cancer.
The importance of concerted effort toward developing research
collaboration between developed and developing countries cannot
be over-emphasised. Based on the assessed eligible literature, the
four keyword clusters generated and designated as thematic
domains for capsaicin research included anti-cancer/
pharmacokinetics, cytotoxicity, and in vivo neurological and pain
research studies. The top-20 publications were distributed across
multiple science-based subjects such as neurosciences,
pharmacology, biochemistry, physiology, chemistry, cell biology,
food science and technology, thereby suggesting the
multidisciplinary approach currently being explored for capsaicin
as potential therapeutics for several health conditions. In relation to
the top-20 cited publications, the anti-cancer/pharmacokinetics/
pharmacodynamics of capsaicin was the most active thematic
domain in the last two decades.

The potential of capsaicin for mitigating cancer has been
mainly explored for its chemopreventive effects and mechanisms
involved in cell death as well as intervention in cancer metastasis.
The chemopreventive effect of capsaicin is related to its ability to
exert diverse biological effects, including anti-mutagenic,
antioxidant and anti-inflammatory activities as well as cell cycle
regulation. Furthermore, capsaicin demonstrated cytotoxic effects,
often facilitated by the induction of cell death in different cancer
cells under in vitro and in vivo models. Overall, capsaicin has
shown effectiveness against various human malignancies in recent
years. Although there is an increasing focus on assessing the
clinical effects of capsaicin, especially the analgesic activity, the
anticancer efficacy is currently limited. This has been attributed to
the pro-carcinogenic effect, high hydrophobicity, low binding
affinity and short half-life of capsaicin. Hence, more research
efforts geared at mitigating these limitations remain pertinent.
Some of the currently applied approaches entail synthesising
natural and synthetic analogs, precise targeted delivery, drug
synergism, and combination therapy for capsaicin. The potential
of combination therapy for improved anticancer properties,
especially for lung and prostate cancer, has demonstrated some
promising results, which indicates the therapeutic value of
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TABLE 1 | Recent examples of anticancer studies focusing on capsaicin delivery.
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50 mg/kg
intraperitoneal
administration

The nanocomposite showed concen
vitro antioxidant activity. In in vivo rat
drug reduced TNF-a concentrations

Capsaicin loaded solid-
lipid nanoparticles

In vitro Hepatocellular
carcinoma

IC50 of 21.36 µg/ml The nanoparticle-loaded drug showe
HepG2 cells in vitro. The capsaicin lo
circulation for up to 3 days.

Capsaicin loaded folic
acid conjugated lipid
nanoparticles (CFLN)

In vitro Ovarian cancer >50µg/ml CFLN had significant cell apoptosis (
loaded lipid NPs (21%) and pure cap

NIR-triggered plasmonic
nanodots capped
mesoporous silica
nanoparticles loaded with
capsaicin

In vitro Thyroid cancer 6 – 25 µM The drug-loaded NPs exhibited extra
activity against thyroid cancer cell lin
addition, anti-metastatic activity was

Capsaicin-loaded
trimethyl chitosan
nanoparticles

In vitro Hepatocellular
carcinoma

50 -100 µ M The capsaicin-loaded nanoparticles
anticancer activity of capsaicin by ind
free capsaicin.

Capsaicin loaded
hyaluronic acid
nanoparticles

In vitro and in
vivo

Lung cancer 20-50 µM in vitro
concentration and 20
mg/kg, i.v.
administration in rat

The loaded NPs significantly suppres
compared to free capsaicin. The dru
significantly reduced tumor volume in
model.

Capsaicin loaded nano-
liposomes

In vitro Breast cancer
and pancreatic
cancer

13-100 µM The capsaicin-loaded nano-liposome
improvement in anticancer activity ag
breast cancer cells and pancreatic c

Capsaicin-in-cyclodextrin
inclusion complexes
loaded into pegylated
liposomes

In vitro Chemopreventive
and cytotoxic
effect on breast
cancer cell

– Liposome-based capsaicin significan
the MDA-MB-231 and A549 cancer

Capsaicin-BODIPY self-
assembly

In vitro and In
vivo nude mice
model

Prostate cancer 20-100 µM in vitro
dose, 18 µg/kg
bodyweight
intraperitoneal
injection in nude mice

Capsaicin covalently attached to BO
aqueous solution and show improve
capsaicin-based drug showed a 2-fo
in in vivo prostate cancer compared
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TABLE 2 | Examples of studies on capsaicin combination therapy for improved anticancer property.

Combination
therapy

Experimental
model

Cancer form Effective
dose

Main findings Conclusion References

Folic acid-
functionalized co-
therapy of
capsaicin (Cap)
and gefitinib
(Gnb)
nanoparticles

In vitro and in
vivo (Wistar
rats)

Lung cancer In vitro dose
20-100 µM
(Gnb and Cap
combined in
2:1). In vivo
therapy
consists of 20
mg/kg of Gnb
and 10 mg/kg
capsaicin
applied
intraperitoneal.

Co-administration of gefitinib and capsaicin NPs
displayed significant targeting potential and reduced
tumor volume while restoring the biochemical
parameters. Significant downregulation was observed
for anti-apoptotic proteins (MMP-9) and up-regulation
of pro-apoptotic proteins (caspase-3, caspase-9 and
MMP-9) with co-therapy of gefitinib and capsaicin
NPs, when compared with individual therapy through
Gnb/Cap.

Co-administration of
gefitinib and
capsaicin is highly
effective for the
treatment of lung
carcinoma.

(157)

Capsaicin-5-
Flurouracil (5-FU)
drug combination

In vitro and in
vivo nude mice

Cholangiocarcinoma In vivo dosage
of 60 mg/kg
5FU and 150
mg/kg
Capsaicin. 60
µM Cap and
40 µM 5FU
were highly
cytotoxic to
CCA QBC939
cell line.

The combination of capsaicin with 5-FU was
synergistic, with a combination index (CI) < 1, and the
combined treatment also suppressed tumor growth in
the cholangiocarcinoma xenograft to a greater extent
than 5-FU alone. Capsaicin inhibits 5-FU-induced
autophagy by activating the phosphoinositide 3-kinase
(PI3K)/protein kinase B (AKT)/mammalian target of
rapamycin (mTOR) pathway in cholangiocarcinoma
cells.

Capsaicin may be a
useful adjunct
therapy to improve
chemosensitivity in
cholangiocarcinoma.

(158)

Brassinin
combined with
capsaicin

In vitro Prostate cancer >100 µM
brassinin and
> 75 µM Cap

The combination significantly increased the cytotoxicity
as compared to the monotherapy alone. Furthermore,
proliferation, apoptosis, mitochondrial membrane
potential, and colony formation were significantly
inhibited, and anti-apoptotic-, proliferative-, and
metastatic-related proteins were inhibited in the
combination. Likewise, constitutive MMP-9/2
expression and their enzymatic activity, as well as cell
migration and tumor cell invasion in PC-3 cells were
inhibited in the combination group.

Brassinin in
combination with
capsaicin exerts
synergistic
anticancer effects in
prostate carcinoma.

(159)

Co-delivery of
Paclitaxel by a
capsaicin
prodrug micelle

In vitro and in
vivo mice
model

Breast cancer 0.1-10 µg/ml
in vitro
administration
on cells. > 10
mg/kg body
weight
intravenous
administration.

Polymeric micelles containing capsaicin delivered in
combination with PTX achieved 62.3% apoptotic
tissue, compared to 45.4% apoptotic tissue when PTX
was administered alone. In vivo antitumor activity of
PTX/CAP-loaded micelles was superior to that of the
single independent treatments in mice.

The polymeric
prodrug micelles are
a promising
nanosystem for
achieving synergistic
antitumor efficacy of
chemotherapy
drugs paclitaxel and
capsaicin.

(160)

Capsaicin
combined with
cisplatin

In vitro and in
vivo mice
model

Osteosarcoma 100 µM Cap
and 16.7 µM
cisplatin in
vitro
concentration.
Oral galvage
consisting of
20 mg/kg
bodyweight
capsaicin and
4 mg/kg
cisplatin

The combination of capsaicin and cisplatin had
significant effects on apoptosis induction, cell cycle
arrest and cell invasion inhibition in osteosarcoma cells
compared with the individual-treatment groups and
the control group. The co-treatment of capsaicin and
cisplatin-induced pro-survival autophagy in OS cells by
targeting reactive oxygen species (ROS)/JNK and p-
AKT/mTOR signaling pathways and inhibited tumor
growth in an osteosarcoma xenograft model.

Combination of
capsaicin and
cisplatin has strong
inhibitory effects on
osteosarcoma cells.

(161)

Genistein in
combination with
capsaicin

In vitro and in
vivo rat model

Breast cancer Topical
application of
25 µmol/L
genistein and
25 µmol/L Cap
in mice. 50
µmol/L

In vitro MCF-7 breast cancer cells, genistein and
capsaicin exhibited a synergistic anticancer effect by
inducing apoptosis. Genistein in combination with
capsaicin inhibits COX-2 expression by a pathway
involving AMPK activation.

Genistein in
combination with
capsaicin exerts
anti-inflammatory
and
anticarcinogenic
properties.

(162)
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TABLE 2 | Continued

Combination
therapy

Experimental
model

Cancer form Effective
dose

Main findings Conclusion References

genistein and
50 µmol/L Cap
in vitro
administration
in cancer cells.

Capsaicin and
docetaxel
combination

In vitro and in
vivo mice
model

Prostate cancer 20 µM
docetaxel + 40
µM Cap in
vitro
administration.
2 mg/kg Cap
and 10 mg/kg
docetaxel in
vivo treatment
in mice.

Co-treatment with docetaxel and capsaicin notably
decreased Akt and its downstream targets mTOR and
S6 phosphorylation. The combined treatment also
increased the phosphorylation of AMP-activated
kinase (AMPK) and the phosphorylation of its substrate
acetyl CoA carboxylase. In vivo experiments confirmed
the synergistic effects of docetaxel and capsaicin in
reducing the tumor growth of PC3 cells.

Combination of
docetaxel and
capsaicin represents
a therapeutically
relevant approach
for the treatment of
prostate cancer.

(163)

Capsaicin and
camptothecin

In vitro Lung cancer >10 µM
concentration
each of Cap
and
camptothecin.

Human small cell lung cancers (SCLC) cells treated
with 10 mm capsaicin and 1 mm camptothecin show
increased calpain activity relative to each drug alone.
Combination of Cap and camptothecin increases
susceptibility of lung cancer cells to apoptosis. The
synergistic activity of capsaicin and camptothecin is
mediated by the elevation of intracellular calcium and
the calpain pathway.

Combination of
camptothecin and
capsaicin has the
potential to be a
feasible strategy for
therapy and
management of
human SCLCs.

(137)

Curcumin and
capsaicin

In vitro and in
vivo mouse
model

Liver cancer 10 – 27 µmol/
mL capsaicin
and curcumin
combination
were cytotoxic
to cells in vitro.
>5 mg/kg co-
administration
of Cap and
curcumin
reduced tumor
volume in vivo.

Curcumin-capsaicin functionalized with glycyrrhetinic
acid and galactose liposomes (CAPS-CUR/GA&Gal-
Lip) effectively inhibited the expression of P-
glycoprotein (P-gp) and Vimentin in HSCs+HepG2
(human hepatoma cell line) cocultured model in vitro.
CAPS-CUR/GA&Gal-Lip exhibited lesser extracellular
matrix (ECM) deposition, lesser tumor angiogenesis,
and superior antitumor effect compared with the no-
and/or Gal-modified Lip, which was attributed to the
simultaneous blocking of the activation of HSCs and
inhibition of the metastasis of tumor cells.

Co-delivery of
Curcumin and
capsaicin by Dual-
Targeting
Liposomes for
Inhibition of aHSC-
Induced Drug
Resistance and
Metastasis.

(164)

Capsaicin and
sorafenib

In vitro and in
vivo mouse
model

Hepatocellular
carcinoma

Sorafenib at 0-
30 µmol/L in
the presence
of 50-100
µmol/L Cap
inhibits liver
cells. 50 mg/
kg sorafenib
and 200 µmol/
L Cap inhibits
tumor volume
In vivo.

Combining capsaicin and sorafenib significantly
enhanced the suppression of cell proliferation,
achieving a high-level synergistic effect (inhibition rates
over 50%) and promoting hepatocellular carcinoma
(HCC) cell apoptosis. In nude mice with PLC/PRF/5
xenografts, combined administration of capsaicin and
sorafenib significantly enhanced the suppression of
tumor growth without apparent gross toxicity
compared to either agent alone. Mechanistically,
capsaicin (10–200 mmol/L) dose-dependently
increased the levels of phosphorylated ERK (p-ERK) in
PLC/PRF/5 cells, thus leading to enhanced sorafenib
sensitivity and a synergistic suppression on the tumor
cells.

Capsaicin-increased
phosphorylation of
ERK contributes to
the enhanced
antitumor activity of
sorafenib, and
capsaicin may be
useful in improving
the efficacy of
sorafenib for the
treatment of HCC.

(165)

Resveratrol and
capsaicin
combination with
radiotherapy

In vitro and in
vivo mouse
model

Pancreatic
adenocarcinoma

50 mg/kg
Resveratrol
and 5 mg/kg
Cap with 2Gy
irradiation of
mice
xenograft.

Combination of resveratrol and capsaicin
radiosensitized tumor cells, but RT did not increase
BFC combination toxicity in radioresistant tumor cells.
Resveratrol and capsaicin addition to RT increased
ROS production and led to significant tumor volume
reduction in xenografted mouse preclinical model. The
combination of resveratrol and capsaicin inhibited RT-
induced DNA damage by keeping cells in the cell
cycle, provoking exacerbated intrinsic apoptosis.

Resveratrol and
capsaicin
radiosensitize
pancreatic
adenocarcinoma
towards cell death.

(166)

Sorafenib and
capsaicin

In vitro and in
vivo mouse
model

Hepatocellular
carcinoma

2.5 mg/kg
bodyweight
capsaicin
administration

The combination of the two drugs had a much
stronger inhibitory effect on both HepG2 and Huh-7
human HCC cells growth than either drug alone. The
combination of capsaicin and sorafenib induces AMPK

Combined
treatment with
capsaicin and
sorafenib might

(167)
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capsaicin. Studies are required to identify capsaicin analogs with
long-acting and greater anticancer effects. It is envisaged that
promising results from these ongoing approaches (that address the
existing limitations) will surely feed into future clinical studies on
the anti-proliferative potential of capsaicin.
Frontiers in Oncology | www.frontiersin.org 17
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TABLE 2 | Continued

Combination
therapy

Experimental
model

Cancer form Effective
dose

Main findings Conclusion References

in mouse. 40
µM Cap
synergises
with sorafenib
in in vitro liver
cells.

activation and Acetyl CoA carboxylase phosphorylation
in HCC cells. In vivo experiments further showed that
the antitumor effect of sorafenib was enhanced by its
combination with 2.5 mg/Kg of capsaicin.

improve sorafenib
sensitivity, and
therefore represents
a promising and
attractive strategy
for the treatment of
hepatocellular
carcinoma cells.

Capsaicin and
3,3′-
Diindolylmethane
(DIM)

In vitro Colorectal cancer 50 µM Cap
and 12 µM
DIM

Synergistic induction of apoptosis and inhibition of cell
proliferation was observed in human colorectal cancer
cells treated with the combination of capsaicin and
DIM. The two compounds activated transcriptional
activity of NF-kB and p53 synergistically.

Capsaicin and DIM
work synergistically
to inhibit cell
proliferation and
induce apoptosis in
colorectal cancer.

(168)

Capsaicin in
combination with
doxorubicin

In vitro Multiple cancer cells >20 µM Cap
potentiates the
in vitro effect of
Dox

Capsaicin synergistically enhanced the cytotoxicity of
doxorubicin in Caco-2 and CEM/ADR 5000 cells.
Capsaicin increased the intracellular accumulation of
the fluorescent P-glycoprotein (P-gp) substrates
rhodamine and calcein and inhibited their efflux from
the MDR cell lines.

Capsaicin and
piperine can
overcome Multidrug
resistance in cancer
cells to Doxorubicin.

(169)

Capsaicin and
pirarubicin

In vitro Bladder cancer 200 nM
pirarubicin
combined with
150 µM Cap.

The activation of TRPV1 by capsaicin was shown to
induce growth inhibition of 5637 cells in which TRPV1
was highly expressed. Activation of TRPV1 also
enhanced the antiproliferative effects of pirarubicin
using an MTT assay and cell cycle analysis.

Activation of TRPV1
by capsaicin
enhanced the
therapeutic efficacy
of traditional
chemotherapeutic
drugs to treat
bladder cancer.

(170)

Compostable
polymeric
nanoparticles
(PPNPs) co-
delivery of
capsaicin (CAPS)
and biotin (BT)

In vitro Human gastric
carcinoma

≥5 µM Human gastric carcinoma cell lines, such as SGC-791
and NCI-N87, were induced to apoptosis in vitro by
BT/CAPS@PPNPs.

BT/CAPS@PPNPs
could be used as a
new method to
increase the efficacy
of gastric
therapeutics.

(171)

Capsaicin +
radiotherapy (RT)

In vitro and in
vivo nude mice

Prostate cancer 1-10 µM Cap
and 1-8 Gy RT
on pancreatic
cells. Animals
were treated
with 5 mg/kg/
d Cap with 6
Gy RT.

Capsaicin reduced colony formation rates and radio-
sensitized human PCa cells (Sensitizer enhancement
ratio = 1.3), which corresponded to the suppression of
NFkB, independent of TRP-V1 receptor. In vivo, oral
administration of capsaicin with RT resulted in a
‘greater than additive’ growth delay and reduction in
the tumor growth rate greater than capsaicin
(P < 0.001) or RT (P < 0.03) alone.
Immunohistochemical analysis revealed a reduction in
proliferation and NFkB expression, and an increase in
DNA damage.

Capsaicin acts as a
radio-sensitizing
agent for prostate
cancer through the
inhibition of NFkB
signalling.

(172)

Capsaicin and
erlotinib

In vitro Lung cancer Cap (25 and
50 µM) and
erlotinib (5 µM)

Capsaicin synergistically enhanced the cytotoxicity and
cell growth inhibition of erlotinib in NSCLC cells, which
were associated with the downregulation of ERCC1
expression and inactivation of AKT in A549 and
H1975 cells.

Capsaicin with
erlotinib is highly
promising for lung
cancer treatment.

(173)
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