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A risk signature based on
necroptotic-process-related
genes predicts prognosis and
immune therapy response
in kidney cell carcinoma

Jingxian Li †, Xun Liu †, Yuanjiong Qi †, Yang Liu, E. Du*

and Zhihong Zhang*

Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
Necroptosis is a regulated form of cell necroptotic process, playing a pivotal

role in tumors. In renal cell cancer (RCC), inhibiting necroptosis could promote

the proliferation of tumor cells. However, the molecular mechanisms and

prognosis prediction of necroptotic-process-related genes in RCC are still

unclear. In this study, we first identified the necroptotic process prognosis-

related genes (NPRGss) by analyzing the kidney renal clear cell carcinoma

(KIRC) data in The Cancer Genome Atlas (TCGA, n=607). We systematically

analyzed the expression alteration, clinical relevance, and molecular

mechanisms of NPRGss in renal clear cell carcinoma. We constructed an

NPRGs risk signature utilizing the least absolute shrinkage and selection

operator (LASSO) Cox regression analysis on the basis of the expression of

seven NPRGss. We discovered that the overall survival (OS) of KIRC patients

differed significantly in high- or low-NPRGs-risk groups. The univariate/

multivariate Cox regression revealed that the NPRGs risk signature was an

independent prognosis factor in RCC. The gene set enrichment analysis (GSEA)

and gene set variation analysis (GSVA) were used to explore the molecular

mechanisms of NPRGss. Immune-/metabolism-related pathways showed

differential enrichment in high-/low-NPRGs-risk groups. The E-MTAB-1980,

TCGA-KIRP, GSE78220, the cohort of Alexandra et al., and IMvigor210 cohort

datasets were respectively used as independent validation cohorts of NPRGs

risk signature. The patients in high- or low-NPRGs-risk groups showed

different drug sensitivity, immune checkpoint expression, and immune

therapy response. Finally, we established a nomogram based on the NPRGs

risk signature, stage, grade, and age for eventual clinical translation; the

nomogram possesses an accurate and stable prediction effect. The signature

could predict patients’ prognosis and therapy response, which provides the

foundation for further clinical therapeutic strategies for RCC patients.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.922929/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.922929/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.922929/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.922929/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.922929/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.922929&domain=pdf&date_stamp=2022-09-16
mailto:duedoc@tmu.edu.cn
mailto:zhangzhihongtianj@163.com
https://doi.org/10.3389/fimmu.2022.922929
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.922929
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2022.922929
Introduction

As the third most commonly diagnosed urological cancer,

renal cell carcinoma (RCC) causes over 179,000 deaths every

year worldwide (1). Approximately 70% of patients are

diagnosed with kidney renal clear cell carcinoma (KIRC).

KIRC is a highly immuno-invasive tumor (2). Several studies

have reported that renal cancer progression is correlated with the

disturbance of the tumor ’s metabolism and immune

microenvironment (3). Although a range of approaches such

as surgery, chemotherapy, targeted therapy, radiotherapy, and

recently immunotherapy has been used in the clinical treatment

of KIRC, the efficacy of these agents is still limited (4, 5).

Therefore, KIRC is still one of the most challenging clinical

problems. It is necessary to find new therapeutic targets

for KIRC.

Necroptosis is a tightly regulated cell death (RCD)

mimicking the morphological features of necrosis (6), which is

primarily mediated by receptor-interacting protein kinase 1

(RIPK1), receptor interacting serine/threonine kinase 3

(RIPK3), and mixed lineage kinase domain-like pseudokinase

(MLKL) and characterized to be inhibited by the necrostatin-1

(Nec-1). Necroptosis plays an important role in regulating

cancer biologies, such as oncogenesis, cancer metastasis,

cancer subtypes, and cancer immunity (3). The necroptosis-

related pathway and core regulators are correlated with

metabolic signaling and cancer immune surveillance. Targeting

necroptosis via a series of compounds, drugs, and agents

inducing or manipulating the necroptosis-related pathway has

also emerged as a novel approach for bypassing apoptosis

resistance and supporting antitumor immunity in cancer

therapy. Necroptosis is considered to play an important role in

renal carcinoma cells. Necroptosis resistance has been reported

to promote the proliferation of renal carcinoma cells (7). High

expression of RIPK1/3 in KIRC tumor cells increases the

sensitivity of tumor necrosis factor alpha 1 (TNF-1) receptor-

induced necroptosis (8). Exploring the potential function,

molecular mechanism, and clinical relevance of necroptosis in

KIRC could provide a theoretical foundation for subsequent

target therapy.

This study identified necroptotic process prognosis-related

genes (NPRGss) and explored the molecular mechanism and

clinical relevance of these genes in KIRC. Although previous

research has constructed the necroptosis-related genes risk

signature in KIRC, these models still have limitations in

predicting prognosis and guiding clinical treatment (9).

Herein, we constructed a novel seven genes risk signature

called NPRGs risk signature based on the expression of

NPRGss in The Cancer Genome Atlas Kidney Renal Clear Cell

Carcinoma (TCGA-KIRC). We found that the prognosis of the

patients, immune checkpoint expression, gene ontology, and

pathways enrichment were significantly different in high- or
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low-NPRGs-risk groups. The univariate and multivariate Cox

regression analyses reveal that the NPRGs risk signature was an

independent prognostic factor for KIRC. Furthermore, we found

that the IC50 of drugs targeting KIRC showed a significant

difference in the high- or low-NPRGs-risk groups, revealing that

the patients in different NPRGs-risk groups have various

sensitivities to drugs. The NPRGs risk signature was validated

in E-MTAB-1980 and TCGA-KIRP cohorts, suggesting that this

signature is practical in predicting the prognosis for RCC. In

KIRC and KIRP cohorts, we found the that NPRGs risk in

patients with progressive disease (PD) is higher. In three

independent immune therapy cohorts, the patients of the

high-NPRGs-risk group are more accessible to SD/PD. Finally,

we constructed a nomogram model based on the NPRGs risk

signature and other clinical variables. The nomogram showed an

accurate and stable forecasting ability for patients with 3-/5-/7-

year overall survival. These results revealed that NPRGs risk

signature could predict prognosis and immune therapy response

for tumor patients. In conclusion, our study revealed the role of

NPRGss in KIRC and constructed a feasible risk signature to

predict patients’ prognosis and therapy response.
Materials and methods

Identification of
necroptotic-process-related
genes and acquisition of public data

To identify necroptotic-process-related genes, we referred to

high-quality articles (10) and a public database (https://www.ebi.

ac.uk/QuickGO/) (11). Thirty-six genes were determined. The

information on genes is shown in Supplementary Table S1. The

gene RNA-seq expression profiles of KIRC and adjacent normal

tissues were downloaded from TCGA (https://xena.ucsc.edu/)

and Array Express database (https://www.ebi.ac.uk/

arrayexpress). The TCGA-KIRC includes 535 tumors and 72

normal samples. E-MTAB-1980 dataset includes 101 RCC

samples with exactly clinical survival information. The TCGA-

KIRP includes 285 tumor samples. The TCGA-KIRC and

TCGA-KIRP mRNA expression value was normalized and

transformed to a CPM unit utilizing the edgeR packages.

Furthermore, patients’ clinical information from the TCGA-

KIRC and E-MTAB-1980 were respectively collected for

subsequent analysis.

Then, we downloaded three external cohorts with immune

therapy, including GSE78220 (12), IMvigor210 (13), and the UC

cohort of Alexandra et al. (14), for subsequent immune therapy

response validation. The edge packages normalized the IMvigor210

cohorts. The read counts data of GSE78220 and cohorts of

Alexandra et al. were transformed to log2(TPM+1) unit. The

GSE78220 dataset includes 28 anti-PD-1 therapy melanoma
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patients, the IMvigor210 includes 348 anti-PD-1 therapy patients

with different types of cancer, and the cohort of Alexandra et al.

includes 25 anti-PD-1 therapy urothelial cancer patients.

The lncRNA annotation data were obtained from the

Gencode database (https://www.gencodegenes.org/human/).

The highly conserved microRNA family data were downloaded

from the miRcode database to conduct microRNA and lncRNA

target prediction (http://www.mircode.org/).
Differential expression analysis and
identification of NPRGss

The differential expression genes (DEGs) between two

groups were screened using the limma R package downloaded

from the Bioconductor (https://www.bioconductor.org/). We

have adjusted the p-value by the Benjamini–Hochberg method

to control the false discovery rate (FDR). The gene with an

adjusted p-value (FDR)<0.05 and a |log2(fold change)| > 0.5 was

regarded as DEG. To determine the NPRGss, we matched the

TCGA-KIRC clinical information and mRNA expression data of

genes. Then, we conducted the univariate Cox progression

analysis by utilizing the coin R-package. The prediction

performance was evaluated using the hazard regression model.

We further used the VennDiagram R-package to depict a Venn

diagram to represent the overlapping genes between the DEGs

and prognosis-related genes. These overlapping genes were

defined as NPRGss. A p-value<0.05 was considered statistically

significant difference. To validate the expression alteration of

NPRGs, we downloaded the immunohistochemistry data from

the Human Protein Atlas (HPA) database (https://www.

proteinatlas.org/) for further validation. This database

currently contains 44 human tissue protein data, and the

protein data cover 15,323 genes for which there are available

antibodies. In the selection of protein immunohistochemistry,

we selected data from the same antibody and tried to select the

same patient on this basis.
Survival prediction verification

The Kaplan–Meier survival curves were portrayed using

survminer and survival R-package. The ideal cutoff point of

NPRGs expression was determined by X-tile software (15). The

relationship between different objects and patient survival was

estimated by applying the log-rank test.
The cross-talk of NPRGss

The Pearson correlation coefficient (PCC) among genes was

calculated by applying theHmisc R-package to explore the cross-

talk between the NPRGss. Then, we used the corrplot R-package
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to depict the correlation coefficient diagram. To understand the

potential target, we respectively presented NPRGss to the

STRING database (https://string-db.org/cgi/input.pl), and

then, the protein–protein interaction (PPI) network was

visualized by the Cytoscape software.
Analysis of gene set enrichment and
gene set variation analysis

The dataset of the cancer-related hallmark pathways, cell

components, biological process, molecular functions, and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways were

downloaded from the GSEA website (https://www.gsea-msigdb.

org/gsea/index.jsp). The TCGA-KIRC expression dataset was

subjected to the gene set variation analysis (GSVA) to calculate

the activity score of different terms. The relationship between the

NPRGss expression and activity scores was estimated by

calculating the Pearson correlation coefficient (PCC). The

|PCC| > 0.3 and p-value< 0.05 were considered moderately

correlated. The |PCC| > 0.6 and p-value< 0.05 were considered

as highly correlated.
Construction and validation of a NPRGss
risk signature

The patients were randomly divided into the training and

testing cohorts with a ratio of 1:1 using the “createDataPartition”

R-function. Then, the LASSO-penalized Cox (LASSO-Cox)

regression analysis was carried out to rule out genes with an

overfitting tendency and construct a prognosis-related signature

with the glmnet R-package. In the TCGA training cohort, the

characteristic gene signatures were established by the LASSO-

Cox regression analysis. The optimal penalty parameter l that

correlated with the minimum 10-fold cross-validation was

selected to screen the signatures. The lambda value with the

minimum mean square error was used to reduce the prediction

error of the model. Then, we used the coefficients obtained from

the LASSO-Cox regression algorithm and gene expression level

to yield a risk score. The risk-score equation was shown as

follows:

Riskscore ¼  sum ðExpgene*coefÞ
Meanwhile, we also use the TCGA-KIRC testing cohort, E-

MTAB-1980 cohort, and TCGA-KIRP cohort to verify the risk

model. Receiver operating characteristic (ROC) curve analyses

were performed to estimate the accuracy of models by

employing the survivalROC R-package. Kaplan–Meier survival

curve demonstrated the prognosis difference between high- and

low-risk cohorts. The univariate and multivariate Cox regression

analyses were carried out for risk scores and clinical variables.
frontiersin.org

https://www.gencodegenes.org/human/
http://www.mircode.org/
https://www.bioconductor.org/
https://www. proteinatlas.org/
https://www. proteinatlas.org/
https://string-db.org/cgi/input.pl
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://doi.org/10.3389/fimmu.2022.922929
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.922929
The variables with p<0.05 in both univariate and multivariate

Cox regressions were considered independent risk factors.
Molecular mechanism in high- or low-
NPRGs-risk groups

The TCGA-KIRC cohort was divided into high- or low-

NPRGs-risk groups based on the median NPRGs risk score. We

first calculated the DEGs between the high- and the low-risk

group. The gene with |logFC|>0.5 and adjusted p-value was

regarded as expressed differently. Then, all DEGs were ranked by

logFC and subjected to clusterProfiler R-package to conduct a

pre-ranked gene set enrichment analysis (GSEA). The top 10

significant enrichment terms of hallmark pathways, KEGG

pathways, and Gene Ontology (GO) (including cell

component, biological progression, and molecular functions)

were demonstrated.
Analysis of immune infiltration and
metabolic reprogramming

The immune score, tumor purity, and stromal score of each

patient were estimated by estimate R-package. The gene sets

representing 24 immune cell types across tumors were obtained

from the published research (16). Then, the single-sample gene set

enrichment (ssGSEA) method in GSVA R-package was carried out

to quantitate the infiltration levels of these gene sets. The ssGSEA

score of individual immune cell types was standardized by the

equation of our previous study (17). The proportion of 22 immune

cell types for an individual sample was computed by Cell Type

Identification by Estimating Relative Subsets of RNA Transcripts

(CIBERSORT). We further obtained the metabolic signature gene

sets from the previous study (18), which include carbohydrate

metabolism (286 genes), amino acid metabolism (348 genes),

nucleotide metabolism (90 genes), tricarboxylic acid cycle (TCA

cycle, 148 genes), integrated energy metabolism (110 genes), lipid

metabolism (766 genes), and vitamin cofactor metabolism (168

genes). Then, we evaluated the activity score of the metabolic

signatures for each sample using the ssGSEA method. The

correlation between NPRGss and metabolic signature was

calculated by the Pearson method.
Drug sensitivity analysis

The DEGs between the high- and the low-NPRGs-risk group

were subjected to public drug prediction (https://design-v2.

cancerresearch.my/query) (19). A ranked-based list of inhibitors is

generated, and every drug has a connectivity score. A connectivity

score closer to 1 indicates that the drug has the most excellent

efficacy, and closer to −1 indicates that the drug has minimal
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efficacy. To analyze the target drug sensitivity of the patients, we

identified the targeting drugs treated for KIRC patients from

published literature (20). Then, we obtained the large-scale gene

expression (GDSC1_Expr) and drug screening data (GDSC1_Res)

as a training cohort to build ridge regression models. The models

were applied to TCGA-KIRC datasets (testing cohort) to yield drug

sensitivity predictions for each patient using the oncoPredict R

Packages (21). Through this analysis, we determined the IC50 value

that indicated each patient’s drug sensitivity and compared it in

high- or low-NPRGs-risk groups.
Construction of nomogram

The variables (including age, gender, grade, stage, and risk score)

that correlatedwith the prognosis of patients estimated by univariate

Cox regression analysis in TCGA-KIRC, E-MTAB-1980, and

TCGA-KIRP cohorts were subjected to multivariate Cox regression

analysis. Due to the lack of grade data in TCGA-KIRP, the variables

(including age, gender, stage, and risk score) were used to construct

the analysis. The stepwise regressionmethod based on theminimum

ofAkaike informationcriterionwasutilized to screenvariables.Then,

we utilized the rms R-package to construct a nomogram to evaluate

the probability of 3-/5-/7-year overall survival (OS). The area under

the time-dependent receiver operating characteristic curve (time-

dependent AUC), concordance index (C-index), and calibration

plots were utilized to estimate the discriminative accuracy. The

AUC values and C-index >0.7 were regarded as reasonable

estimations. Then, we depicted the decision curve analysis (DCA)

to estimate the clinical benefits of the nomogram.
Statistical analysis

The unpaired t-test analysis was performed to compare the

differences between the two groups. The log-rank test was

utilized to evaluate prognosis differences. The chi-square test

was used to test the constituent ratio differences between

different groups. The univariate/multivariate Cox regression

analysis was employed to estimate the relationship between

variables and patients’ prognoses. The Pearson method was

calculated to evaluate the correlation between the two groups.
Results

Identification of NPRGss

The specific workflow of this study is shown in Figure 1. First,

we determined 36 necroptotic process-related genes from the

previous paper and database (Supplementary Table S1). The

expression of these genes could significantly distinguish the

tumor and normal tissues (Figures 2A, B). Nineteen (51.35%)
frontiersin.org
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genes were related to the OS of KIRC patients (Figure 2C), and 20

(55.56%) genes showed differential expression between KIRC and

normal tissues (Figure 2D). We ultimately determined 12

overlapping genes through intersection analysis and named them

necroptotic process prognosis-related genes (NPRGss) (Figure 2E).

Among these, CD14, LY96, RBCK1, YBX3, and TLR3 showed

upregulated tumors compared to adjacent normal tissues

(Supplementary Figure S1A). IST1, PGAM5, PPM1B, SLC25A4,

PPIF, VPS4B, and TRPM7 showed downregulated tumors

compared to adjacent normal tissues. The alteration of these

gene-encoding protein levels was verified on the HPA database

(Supplementary Figure S1B). The results showed that the

expression alteration of CD14, TLR3, IST1, SLC25A4, PGAM5,

and YBX3 at the protein level was consistent with its expression at

RNA-seq. However, the PPM1B and VPS4B showed no difference,

and other gene protein expression data cannot be found in the HPA

database. We determined the ideal cutoff of 12 NPRGss expressions

by X-tile software (15) and ulteriorly depicted the Kaplan–Meier

survival curve (Supplementary Figure S2). The result displayed that

the high expression of YBX3, PPIF, PGAM5, CD14, RBCK1, and

LY96 were related to poor outcomes in KIRC patients. On the

contrary, the patients with low expression of PPMIB, IST1,

SLC25A4, TRPM7, VPS4B, and TLR3 showed a worse prognosis.

Meanwhile, we used gene dependency score (gDS) to estimate the

“essentiality” of NPRGss (22). gDS< −1 of genes indicated that the

deletion severely affects cell viability. Genes with gDS > 0 indicated

that the deletion has no effect on cell viability. Genes with gDS

between −1 and 0 indicated that the deletion influences cell viability

to some extent but is not fatal. Our results showed that the deletion
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of risk genes, such as TLR3 and LY96, were lethal for kidney cancer

cells (Figure 2F). On the contrary, some protective genes, such as

TRPM7 and VPS4B, were not affected in most cells.

To further detect the contribution of NPRGss for KIRC

patients, we established an NPRGs signature using the LASSO

Cox regression analysis based on OS. The TCGA-KIRC cohort

was divided into the TCGA training and testing cohorts at 1:1.

Then, a prognostic model was established applying LASSO Cox

regression analysis based on the expression values of 12 NPRGss

in the TCGA training cohort (Figures 2G, H). Ultimately, seven

NPRGss, namely, LY96, PGAM5, PPIF, TLR3, YBX3, SLC25A4,

and VPS4B, were identified. The coefficients obtained by the

LASSO algorithm were used to determine the NPRGs signatures

of the KIRC training and testing cohorts. The risk score was

calculated as follows (Figure 2I):

NPRGss riskscore  ¼  LY96  �  0:0726 +PGAM5  �  0:0987
+ PPIF  �  0:2752 -TLR3  �  0:0865 + YBX3 

�  0:2452 -SLC25A4  �  0:3386 -VPS4B  �  0:5309
The cross-talk and mechanisms
of NPRGss

To explore the cross-talk of seven NPRGss in KIRC, the

Pearson correlation coefficient (PCC) among the mRNA

expression of these genes was calculated (Supplementary

Figure S3A). We observed that different genes correlated
FIGURE 1

Flow chart of the research.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.922929
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.922929
negatively or positively with other genes. PPIF showed a highly

positive correlation with PGAM5 and SLC25A4. SLC25A4

showed a highly positive correlation with PPIF, PGAM5, and

VPS4B. TLR3 showed a highly negative correlation with

PGAM5 and PPIF. LY96 showed a highly negative correlation

with SLC25A4. We further explored the potential target proteins

directly interacting with these genes based on the STRING

interaction database (Supplementary Figure S3B, details in

Supplementary Table S2). We found that SLC25A4 interacted

with PPIF, TLR3 interacted with LY96 and PGAM5, and they

have the same target proteins. However, VPS4B and YBX3 have

no interaction with other NPRGss. Then, the underlying

mechanisms of NPRGss in KIRC were explored by calculating

the activity score of different cancer-related hallmark pathways,

GO terms (including cell components, biological progressions,

and molecular functions), and KEGG pathways. The PCCs
Frontiers in Immunology 06
between seven NPRGss expressions and these activity scores

were further computed, and the correlation with |PCC|≥0.6 and

adjusted p-value< 0.5 were depicted by the network diagram

(Supplementary Figure S3C, details in Supplementary Table S3).

The results showed that LY96, VPS4B, SLC25A4, and PPIF were

highly correlated with multiple GO terms and KEGG pathways.

Interestingly, we discovered that more GO terms and KEGG

pathways were correlated with the expression of LY96, revealing

that LY96 may play an essential role in regulating KIRC

development. Meanwhile, we conducted the same analysis

between seven NPRGss and hallmark-related cancer pathways.

The results showed that different genes might be involved in

various pathways (Supplementary Figure S3D, details in

Supplementary Table S3). For example, the expression of LY96

showed a positive correlation with the activity of apoptosis,

complement, and inflammatory response-related pathways. The
A

B

D

E

F

G IH

C

FIGURE 2

Identification of NPRGss and NPRGs risk signature. (A) Heatmap showing the expression of necroptotic-process-related genes. (B) The t-SNE
analysis in tumor and normal groups. (C) The forest plots were depicted to show the prognosis-related genes determined by the univariate Cox
regression analysis. (D) The volcano figure shows the necroptotic-process-related DEGs. (E) Venn diagram showing the overlapping NPRGss.
(F) Heatmap showing the gDS (gene dependency score) of NPRGss in a renal cancer cell. (G, H) LASSO regression analyses of NPRGss using the
OS model. (I) The bar chart displays LASSO regression coefficients of the NPRGss.
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expression of SLC25A4 showed a negative correlation with most

hallmark pathways. In summary, different NPRGss possess

different functions and involve different mechanisms, which

provided a foundation for further experiments about NPRGss

in regulating KIRC. We analyzed the expression of NPRGss and

lncRNA in KIRC to explore NPRGs-related regulatory factors.

The interactions with |PCC|>0.5 are shown in Supplementary

Figure S4A. Meanwhile, we downloaded the highly conserved

microRNA families from the mircode to predict the potential

miRNA that interacted with lncRNA. A ceRNA network

between lncRNA–miRNA–NPRGss was establ ished

(Supplementary Figure S4A, details in Supplementary Table

S4). The result showed that VPS4B and TLR3 have an

abundant regulatory network. However, YBX3 and LY96 have

only a small amount of regulation. Furthermore, RNA

modification is also associated with KIRC in the published

literature (23, 24). Hence, we collected genes associated with

RNA methylation and calculated the correlation between RNA

regulators and NPRGss expression (Supplementary Table S5).

As shown in Supplementary Figure S4B, NPRGss is highly

associated with multiple RNA regulator, revealing that these

regulators may regulate NPRGss in RNA expression.
The prognosis prediction of
NPRGs risk signature

To further explore the predictive ability of NPRGs risk

signature in patients’ prognosis, we stratified the KIRC

training cohort into a high- or low-NPRGs-risk groups

according to the median risk score. In the training cohort, the

number of death increased, accompanied by the increasing risk

score (Figure 3A). The patients of the high-NPRGs-risk group

showed a worse prognosis than those of the low-NPRGs-risk

group. The time-dependent AUC showed a discriminative

accuracy in 3- and 5-year survival (3-year AUC = 0.7041, 5-

year AUC = 0.7290). We further divided the subgroups

according to clinical features of TCGA-KIRC. Patient

outcomes with different risk scores were assessed in different

subgroups, and the results showed that in most subgroups of

clinical features, patients with high NPRGs risk showed worse

prognosis than those with low NPRGs risk, suggesting that the

NPRGs risk signature has strong robustness (Supplementary

Figure S5A). The same study was performed in the TCGA-KIRC

validation cohort and an external validation cohort (E-MTAB-

1980) (Figures 3B, C). The results indicated that the NPRGs risk

signatures showed discrimination performance in 3- and 5-year

survival. Intriguingly, the expression of YBX3, LY96, PGAM5,

and PPIF were higher in the high-NPRGs-risk group than in the

low-NPRGs-risk group, which is consistent in TCGA training,

TCGA validation, and E-MTAB-1980 cohort, suggesting that
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high co-expression of these genes promotes the poor outcome of

KIRC patients. We apply the NPRGs risk signature to TCGA-

KIRP cohort. Excitingly, the NPRGs risk signature also showed a

feasible prediction performance in the KIRP cohort (Figure 3D),

indicating that the NPRGs risk signature can be applied to the

prognostic prediction of most RCC patients not just KIRC.
Clinical relevance and mechanisms
based on NPRGs signature

We further analyzed the clinical characteristics, potential

molecular mechanism, immunity, and metabolism of TCGA-

KIRC patients based on the seven NPRGss. In the KIRC cohort,

the survival difference of the high- or low-NPRGs-risk group and

predictive performance of NPRGs risk signature and the expression

alteration of seven NPRGss were consistent with previous studies

(Figures 4A–C). With the increase in risk score, we observed that

pathological grade and tumor stage also increased (Figure 4D). In

addition, we found that patients with progressive disease (PD)

showed a high risk score, revealing that seven NPRGs signatures

could predict therapy response. We further explored the distinction

in genetic alteration between high- or low-NPRGs-risk groups. The

missense mutation, SNP, and C>T are the main type of variant

classification (Supplementary Figure S5B). The median number of

variants per sample in the high-NPRGs-risk group is 52, whereas

that in the low-NPRGs group is 44. Moreover, 87.01% of samples of

the high-NPRGs-risk group have a mutation, which was higher

than the low-NPRGs-risk group (84.27%) (Figures 4E, F). In the top

20 mutated rate genes, the PBRM1’s mutation rate in the high-

NPRGs-risk group (34%) was lower than that in the low-NPRGs-

risk group (48%). The SETD2’ mutation rate in the high NPRGs-

risk group (18%) was higher than in the low NPRGs-risk group

(8%). BAP1 had a high mutation rate (18%) in the high-NPRGs-

risk group, whereas the low-NPRGs-risk group had not. Previous

literature has shown that these gene mutations were associated with

KIRC survival and response to immunotherapy (25). These results

revealed that the mutation burden in the high-NPRGs-risk group is

higher than that in the low-NPRGs-risk group.We further explored

the underlying molecular mechanisms of NPRGs risk signature.

The DEGs in the high-NPRGs-risk group compared to the low-

NPRGs-risk group were calculated and subjected to clusterProfiler

R-package (Supplementary Table S6). We found that multiple

immune-related pathways or GO terms were highly enriched in

the high-NPRGs-risk group, such as complement and coagulation

cascades, humoral immune response, and antigen binding

(Figure 4G; Supplementary Figure S5C, detail in Supplementary

Table S7). However, metabolism-related pathways or GO terms are

highly enriched in low-NPRGs risk. Furthermore, the activity of

lipid, carbohydrate, and amino acid pathways was significantly

different in high- or low-NPRGs-risk groups (Figures 4H, I).
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Construction of a nomogram
model based on the clinical
signature and NPRGss

To further explore the independent prediction value of NPRGs

risk signature, the univariate or multivariate Cox regression analysis

was conducted utilizing age, gender, pathological stage, histological

grade, and NPRGs risk signature in the TCGA-KIRC cohort. The

results pointed out that NPRGs risk signature (HR = 2.061, p-

value< 0.001, multivariate Cox regression) was the independent

prognostic factor for TCGA-KIRC patients (Figure 5A). We further

used these independent prognostic factors estimated bymultivariate

Cox regression analysis based on the stepwise regression method to

construct a nomogram model to predict the survival probability of

3/5/7 years of patients (Figure 5B). ROC and calibration curve

analysis indicated that the model possesses a discriminative
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accuracy for 3-/5-/7-year survival (Figures 5C, D). Furthermore,

DCA curves showed that the model consisting of risk score,

pathological stage, age, and histological grade has the best clinical

application value for patient prognosis prediction (Supplementary

Figure S5D). We conducted the same study in the E-MTAB-1980

cohort (Figures 5E–H, Supplementary Figure S5D) and got similar

results. Interestingly, the total points calculated based on the

nomogram were highly consistent in predicting 3-/5-/7-year

survival probability in the TCGA-KIRC and E-MTAB-1980

cohort, which further highlighted the predictive power of

the prognostic model for KIRC patient prognosis. To improve the

applicability of NPRGs risk signature, we also conducted the same

study in the TCGA-KIRP cohort. We were excited that the results

were still highly similar, which means that our signature may be

applicable to other RCC tumors (Figures 5I–L; Supplementary

Figure S5D).
A

B

D

C

FIGURE 3

Prognostic analyses of NPRGs risk signature in TCGA-KIRC training cohort, TCGA-KIRC testing cohort, E-MTAB-1980 cohort, and TCGA-KIRP
cohort. (A) Distribution of OS, OS status, and risk score in the TCGA-KIRC training cohort; the Kaplan–Meier curves of the high- or low-NPRGs-
risk cohort in TCGA-KIRC training cohort; AUC of time-dependent ROC curves was used to evaluate the prognostic performance of the NPRGs
risk score; the heatmap of the expression of NPRGss in high- or low-NPRGs-risk groups. (B–D) The same analyses in the TCGA-KIRC testing
cohort, E-MTAB-1980 cohort, and TCGA-KIRP cohort.
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Prediction of targeted drugs and immune
therapy response of NPRGs risk
signature

Previous studies have confirmed that patients with PD

showed high NPRGs risk scores. Thus, we speculate that

NPRGs risk signature could predict drug therapy response.

We first provided the DEGs in high- or low-NPRGs-risk

groups to a drug prediction website—DeSigN (19). A

connectivity score closer to 1 indicates that the drug has the

most excellent efficacy in the high-NPRGs-risk group. The

results suggested that patients in the high-NPRGs-risk group

might benefit better when treated with etoposide, DMOG, BMS-

754807, and lenalidomide (Supplementary Figure S6A). Further
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analysis showed that the estimated IC50 values of rapamycin,

sorafenib, and pazopanib were lower in the low-NPRGs-risk

group, revealing that the patients in low-NPRGs-risk groups

may be more sensitive to these three targeted drugs

(Supplementary Figure S6B, detail in Supplementary Table S8).

We further explored the immune therapy response based on

the NPRGs risk signature. We found that the activity and

percentage of immune cells showed a significant difference in

high- or low-NPRGs-risk groups (Supplementary Figures 6C–

E). The immune-inhibited cell, macrophage M2, and Tregs,

which have been found to promote tumor growth, showed

high activity and percentage in high-NPRGs-risk groups.

Furthermore, we found that the expressions of PD1, CD274,

TIGIT, LAG3, and CD27 were higher in the high-NPRGs-risk
A B
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FIGURE 4

Analysis of clinical relevance, somatic mutation, mechanisms, and metabolism reprogramming based on the NPRGss-risk signature. (A–C) The
Kaplan–Meier survival curves, ROC curve, and heatmap based on the NPRGs risk signature. (D) The comparison of the gender, age, stage, grade,
and therapy response in the high- or low-NPRGs-risk group. (E, F) The waterfall diagram shows the somatic mutation situation of the top 20
genes in the high- or low-NPRGs-risk group of the TCGA-KIRC cohort. (G) GSEA-enrichment plot of top 10 KEGG pathways. (H) Heatmap
shows the activity of seven metabolic signatures in the high- or low-NPRGs-risk group of the TCGA-KIRC cohort. (I) Heatmap displays the
correlation between NPRGss and seven metabolic signatures in the high- or low-NPRGs-risk group of the TCGA-KIRC cohort, respectively.
*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, ****p-value < 0.0001.
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group. The expressions of PDL1 and IDO1 were higher in the

low-NPRGs-risk group (Figure 6A). These results may imply

that patients in different risk groups may discrepantly respond to

immunotherapy. As we did not have access to data from KIRC

treated with immune therapy, we collected three external

publicly available immunotherapy data (IMvigor210,

GES78220, and the UC cohort of Alexandra et al.), which

represent different cancer types treated with anti-PD1 therapy

to verify our NPRGs risk signature and provide indirect evidence

for predicting response to immunotherapy for renal cell

carcinoma patients. The Kaplan–Meier curve indicated that

patients in the high-NPRGs-risk group showed a poor

prognosis (Figures 6B–D), and the NPRGs risk score showed a

feasible prediction performance. In addition, we found that

patients with progressive disease (PD) and stable disease (SD)

showed a high NPRGs risk. Most patients in the low-NPRGs-

risk groups could receive a complete response (CR) and partial
Frontiers in Immunology 10
response (PR). These results suggested that the patients with low

NPRGs risk may not be sensitive to immunotherapy.
Discussion

Necroptosis was found as a novel regulated cell death that

shows a morphological resemblance to necrosis and a

mechanistic resemblance to apoptosis (26). Necroptosis is

pivotal in regulating cancer biology, including oncogenesis,

immunity, metabolism, and metastasis (3). The plasma

membrane rupture caused by necroptosis leads to the release

of cell components, which could cause a robust inflammatory

response and trigger an anticancer immune response through

mediating the interaction between immune cells and cancer cells

(27). Meanwhile, necroptosis was also involved in maintaining

T-cell homeostasis by clearing up abnormal and excessive T cells
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FIGURE 5

Clinical model construction of NPRGss-risk signature. (A) Univariate/multivariate Cox regression analysis regarding the OS in the TCGA-KIRC
cohorts. (B) Nomogram model in TCGA-KIRC cohort. (C) The ROC curves of the nomogram model in the TCGA-KIRC cohort. (D) Calibration
curves of OS probability over 3, 5, and 7 years based on nomogram model in TCGA-KIRC cohort. (E–H) Univariate/multivariate Cox regression
analysis, nomogram construction, ROC curve analysis, and calibration curve analysis in the E-MTAB-1980 cohort. (I–L) Univariate/multivariate
Cox regression analysis, nomogram construction, ROC curve analysis, and calibration curve analysis in the TCGA-KIRP cohort, ns, no
significance.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.922929
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.922929
without CASP8 (28). Metabolic reprogramming is critical for the

function of carcinogenesis (29). Necroptosis could activate

immune response by regulating metabolism programming

(30). Hence, targeting immune metabolism based on

necroptosis was considered to be a tumor therapy strategy.

Renal cell carcinoma (RCC) is considered an immunogenic

tumor (31). The interaction between tumor cells and the tumor

immune microenvironment (TIME) relates to the molecular

drivers underlying RCC occurrence, metastasis, and recurrence.

Furthermore, mutations in kidney cancer genes are implicated in

many diverse aspects of cellular metabolisms, such as oxygen,

glutamine metabolism, and the tricarboxylic acid (TCA) cycle, so

kidney cancer has also been labeled as a metabolic disease (32).

Over the past two decades, the treatment of RCC has undergone

extensive alterations. Except for surgical excision, combinations of
Frontiers in Immunology 11
treatment of immune-checkpoint inhibitors (ICIs), mTOR

pathways, and vascular endothelial growth factor (VEGF)

pathway inhibition have shown remarkable efficacy in patients

with metastatic RCC and gradually become the first-line therapies

for patients with this disease (33, 34). However, despite the

relatively high response rates to immune and target therapy for

RCC, most RCC patients do not receive durable clinical benefits

due to drug resistance (35). Therefore, there is an urgent need for a

detailed classification of RCC patients to screen suitable patients

for immune therapy. Previous research revealed that necroptosis

might be the main pathway of cell death based on the TNF-

targeted therapy in RCC (8). Inhibiting necroptosis could promote

RCC cell proliferation (7). Activating necroptosis combining with

immunotherapy has been found to increase anti-tumor immune

responses (36, 37). At present, more and more genes associated
A
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FIGURE 6

(A) The immune checkpoints’ expression in the high- or low-NPRGs-risk group of TCGA-KIRC dataset. (B) Validation of the NPRGs risk
signature in the IMvigor210 cohort with the survival analysis, ROC curves analysis, and immune therapy response analysis. (C) Validation of the
NPRGs risk signature in the UC cohort of Alexandra et al. with the survival analysis, ROC curves analysis, and immune therapy response analysis.
(D) Validation of the NPRGs risk signature in the GSE78220 cohort with the survival analysis, ROC curves analysis, and immune therapy response
analysis. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. *p-value < 0.05, **p-value < 0.01, ****p-value
< 0.0001.
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with necroptosis have been discovered, and drugs targeting

necroptosis-related targets are also being developed in renal

cancer (38). However, the influence or concrete mechanism of

necroptosis on prognosis and immune infiltration in RCC still

needs to be explored further.

Previous research has indicated the importance of

necroptosis-related genes in KIRC and constructed the risk

models to predict the prognosis of patients (9). However, these

models did not validate through multiple KIRC cohorts and

guide clinical therapy. Our study determined 12 NPRGss in

KIRC by analyzing the public database. Then, we further

screened seven NPRGss to construct a novel NPRGs risk

signature by LASSO Cox regression analysis. The model could

predict the prognosis and therapy response of the patients with

KIRC and has a good prediction effect for KIRP. Previous studies

have indicated that specific subtypes of tumors may respond

differently to immunotherapy (39). In multiple immune therapy

cohorts, our NPRGs risk signature showed a good prediction

performance. The SD/PD patients showed a higher NPRGs risk

score. CR/PR patients showed lower NPRGs risk signature.

These anti-PD1 data come from different types of cancer

cohorts, which also provide potential evidence that the NPRGs

risk signature could screen the specific type of RCC patients who

are sensitive to immune therapy. For low-NPRGs-risk patients,

aggressive use of anti-PD1 therapy may be effective for long-

term survival. For high-NPRGs-risk patients, the aggressive use

of current therapies is accompanied by the early consideration of

other better options, such as increased susceptibility to

immunotherapy by targeting NPRGss. In high-NPRGs-risk

groups, YBX3, LY96, PGAM5, and PPIF showed a higher

expression than low-NPRGs-risk groups. These results

indicated that high co-expression of these four genes could

cause poor prognosis in KIRC and KIRP patients, which is

also suitable for KIRP patients. A previous study indicates that

the upregulation of YBX3 increases cancer cell invasion and

tumor chemoresistance (40). Overexpression of PPIF confers

poor prognosis in endometrial cancer (41). Depleting PGAM5

expression inhibited tumor growth, and restoring PGAM5

expression could enhance tumor resistance (42). LY96, which

is known as MD-2, targeting it therapies have been shown to

prevent colon cancer growth and lung metastasis. (43). However,

the concrete mechanism of these genes on tumor prognosis and

immune therapy response still remains unclear. Therefore,

exploring the specific mechanism of function of NPRGss in

KIRC may provide a foundation for further targeted therapeutic

strategies based on necroptosis and further understanding of

their promoting or suppressing roles in immunotherapy

response. In addition, we also observed that prognosis, stage,

grade, immune checkpoint expression, immune cell activity,

immune cell fraction, and metabolism signature activity were

discrepant in these two cohorts. Among these, the Treg activity
Frontiers in Immunology 12
is higher in high-NPRGs-risk groups. Tregs are mainly

responsible for regulating the immune system, maintaining

self-antigens’ tolerance, and preventing autoimmune disease

(44). Elevated infiltration levels of Treg cells were correlated

with a worse prognosis in tumor tissues (45). There is sufficient

evidence that the depletion and inhibition of Treg function could

enhance anti-tumor effects (46). Tregs play an important role in

immune suppression, which could control B cells and NK cells,

T cells, dendritic cells (DCs), and macrophage cell–cell contact

mechanisms (47). Furthermore, the M2 macrophage fraction is

higher in high-NPRGs-risk groups, which have been reported to

be related to worse outcomes in KIRC (48). Macrophages play a

pivotal role in stimulating proliferation, angiogenesis, and

metastasis in tumors (49). The sum of pre-clinical human and

animal studies reveals that targeting tumor-associated

macrophages (TAMs) could significantly improve the clinical

efficacy of conventional and immune therapeutics (50).

Metabolic reprogramming has been an area of intense research

over the last decade (51). The metabolic signatures analysis

showed that LIPID signature activity was significantly highly

expressed in the high-NPRGs-risk group. Reprogramming of

lipid metabolism is a newly recognized malignancy hallmark

(52); defects in lipid metabolism induce abnormal gene

expression and rewire many oncogenesis-/metastasis-related

pathways (53). Therefore, interfering with lipid metabolism

within the tumor may be a novel target for tumor

immunotherapy (54). These results suggest that necroptosis

may affect the prognosis of patients by regulating immunity

and metabolism. Studying immune and metabolism

dysregulation based on necroptosis may further understand

the specific mechanisms of tumor progression.

Although the NPRGs risk signature is more robust for

predicting prognosis and immune therapy response, there are

several limitations, including the various cohorts with different

cancer types or sample numbers, data format, and gene detecting

technology. The retrospective collection of clinical data and lack

of clinical information of the therapy cohort could cause

different prediction discrepancies and instability of the model.

Validating our models as an independent predictor of prognosis

and therapy response required prospective studies. In addition,

the molecular mechanism of NPRGss in KIRC is still unclear,

and individual bioinformatic analyses still need further

experimental validation.

In conclusion, our study highlighted the importance of

NPRGss in KIRC and established a novel NPRGs risk

signature that was verified to be an independent prognostic

factor for OS in KIRC. The signature could be extended to the

prognosis prediction of KIRP patients. The NPRGs risk

signature can predict immunotherapeutic response, which

provides a foundation for developing therapeutic strategies

based on NPRGss in KIRC.
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SUPPLEMENTARY FIGURE 1

Expression alteration of NPRGss in KIRC. (A) The boxplots show the

expression of 12 NPRGss in the TCGA-KIRC tumor and adjacent normal
tissues. The significance level between the two groups was calculated

with a t-test. (B) Immunohistochemistry of the NPRGss in KIRC and
adjacent normal tissues.

SUPPLEMENTARY FIGURE 2

The Kaplan-Meier survival curves showed the relationship between the

individual NPRGs’s expression in TCGA-KIRC. The log-rank test was used
to calculate the P-value.

SUPPLEMENTARY FIGURE 3

Cross-talk and mechanisms of 7 NPRGss in KIRC. (A) The correlation
diagrams show the correlation among the expression of 7 NPRGss in

TCGA-KIRC. Red represents the positive correlations, and blue represents

the negative correlations. The size of the point showed a significant level.
(B) The PPI network plot showed the cross-talk of NPRGss in protein

levels. (C) The PPI network diagram shows the cell components,
molecular functions, biological processes, and KEGG that are highly

correlated with the expression of 7 NPRGss. (D) The heatmap shows the
correlations between the activity score of cancer-related hallmark

pathways and the NPRGss’ expression.

SUPPLEMENTARY FIGURE 4

(A) The interaction between NPRGss, miRNAs, and LncRNAs. (B) The
interaction between NPRGss and the regulators of RNA modification.

SUPPLEMENTARY FIGURE 5

(A) Validation of the NPRGss-risk signature in TCGA-KIRC cohort divided

by clinicopathologic features with the Kaplan-Meier analysis. (B) The
variant situations in the high- or low-NPRGss-risk group of the TCGA-

KIRC cohort. (C) Bar plot showing the top10 significant enrichment terms
of cell component, biological progression, and molecular functions in the

high- or low-NPRGss-risk group of TCGA-KIRC cohort. (D)DCA curves of
3, 5, and 7 years based on the clinical models in the TCGA-KIRC cohort, E-

MTAB-1980 cohort, and TCGA-KIRP cohort.

SUPPLEMENTARY FIGURE 6

(A) Drug prediction outcome is utilizing the DeSigN website. (B) The
estimated IC50 of chemotherapy and targeted therapy drugs in the high-

or low-NPRGss-risk group. (C) The percentage of immunity cells in the
high- or low-NPRGss-risk group. (D) The activity scores of adaptive

immunity cells in the high/low-NPRGs-risk group. (E) The activity

scores of innate immunity cells in the high/low-NPRGs-risk group.
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