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Doxorubicin (DOX) is an extremely effective and wide-spectrum anticancer drug, but its

long-term use can lead to heart failure, which presents a serious problem to millions

of cancer survivors who have been treated with DOX. Thus, identifying agents that

can reduce DOX cardiotoxicity and concurrently enhance its antitumor efficacy would

be of great clinical value. In this respect, the classical antidiabetic drug metformin

(MET) has stood out, appearing to have both antitumor and cardioprotective properties.

MET is proposed to achieve these beneficial effects through the activation of AMP-

activated protein kinase (AMPK), an essential regulator of mitochondrial homeostasis

and energy metabolism. AMPK itself has been shown to protect the heart and modulate

tumor growth under certain conditions. However, the role and mechanism of the

hypothesized MET-AMPK axis in DOX cardiotoxicity and antitumor efficacy remain to

be firmly established by in vivo studies using tumor-bearing animal models and large-

scale prospective clinical trials. This review summarizes currently available literature for

or against a role of AMPK in MET-mediated protection against DOX cardiotoxicity. It

also highlights the emerging evidence suggesting distinct roles of the AMPK subunit

isoforms in mediating the functions of unique AMPK holoenzymes composed of different

combinations of isoforms. Moreover, the review provides a perspective regarding

future studies that may help fully elucidate the relationship between MET, AMPK and

DOX cardiotoxicity.
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INTRODUCTION

The anthracycline doxorubicin (DOX) has been widely used for over 5 decades and is a
highly effective chemotherapeutic agent for the treatment of a broad spectrum of cancers
including various solid tumors and leukemia. Unfortunately, DOX chemotherapy can cause severe
cardiotoxic effects (1–3). Acute toxicity occurs immediately after treatment and is generally
transient. Chronic cardiotoxicity is more serious and culminates in irreversible congestive heart
failure. Currently, only the iron chelator dexrazoxane has been approved for limited clinical
use for reducing DOX cardiotoxicity in certain pediatric or breast cancer patients (4–7). Given
the continuing widespread use of DOX in cancer chemotherapies, it is imperative to identify
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new strategies that can protect against DOX cardiotoxicity
without compromising the anti-tumor activity of DOX.
Metformin (MET), a drug used for the first-line treatment of
type 2 diabetes, has been suggested as such a dual-function agent
that can simultaneously decrease DOX cardiotoxicity (8–11) and
increase its anticancer activity (12, 13). The differential effects
of MET on cardiomyocytes and cancer cells may be related to
the differences in cellular energy metabolism. Cardiomyocytes
are highly dependent on mitochondria for energy supply, while
cancer cells primarily use glycolysis-generated ATP. Therefore,
drugs such as MET that modulate mitochondrial function may
have substantially different effects on the heart as compared
to tumors. AMP-activated protein kinase (AMPK), a cellular
energy sensor, is activated by MET and implicated in both
cardioprotection and tumor growth. Most cell-based studies
have suggested AMPK as a downstream effector of MET that
functions to reduce DOX cardiotoxicity (9, 11, 14–17). However,
the role of AMPK in cancer has been controversial (18). It
remains uncertain whether and how AMPK affects the ability of
MET to modulate DOX cardiotoxicity or tumor growth in vivo.
This mini-review will extract evidence from currently available
literature for or against a role of AMPK in MET-mediated
protection against DOX cardiotoxicity. For the effects of MET
and AMPK in antitumor therapies, the readers are referred to
other review articles published elsewhere (18–24).

DOX CARDIOTOXICITY IS A SERIOUS
CLINICAL PROBLEM

Dox is an extremely effective and wide-spectrum antineoplastic
drug that can lead to dose-dependent cardiotoxicity, culminating
in heart failure (1–3). This presents a serious problem to millions
of cancer survivors who have been treated with DOX. Indeed, the
cardiovascular mortality in cancer survivors exceeds that caused
by cancer per se (25). DOX cardiotoxicity is even more significant
in childhood cancer since about half of all pediatric patients are
treated with anthracyclines andmany childhood cancer survivors
go on to develop cardiac dysfunction (26–28). Due to the dose-
dependent risk, the lifetime cumulative dose of DOX has been
recommended not to exceed 450 mg/m2 per patient (1). Thus,
DOX cardiotoxicity is a significant life-long health concern for
cancer survivors.

DOX INDUCES CARDIOTOXICITY VIA
MULTIPLE MECHANISMS

Several mechanisms have been proposed to account for the
ability of DOX to produce cardiotoxicity. DOX is concentrated
in the mitochondria and its quinone moiety is reduced by the
oxidoreductases to a semiquinone form which in turn donates
its excess electron to O2, leading to the formation of reactive
oxygen species (ROS) including superoxide anions (29, 30).

Abbreviations: DOX, doxorubicin; MET, metformin; ROS, reactive oxygen

species; AMPK, AMP-activated protein kinase; TOPIIα/β, topoisomerase IIα/β;

ACE, angiotensin-converting enzyme; IGF1, Insulin-like growth factor 1; P-gp,

P-glycoprotein; LKB1, Liver Kinase B1; MEFs, mouse embryonic fibroblasts.

Although the long-held ROS and oxidative stress theory of
DOX cardiotoxicity is strongly supported by numerous animal
studies (31–33), clinical trials have failed to demonstrate the
efficacy of antioxidant supplements in reducing DOX-triggered
cardiac injury (34, 35), suggesting that oxidative stress is not the
only mechanism that mediates DOX cardiotoxicity. Interestingly,
DOX has been shown to either bind with free iron (36)
or cause mitochondrial iron accumulation in the heart (37),
which may directly cause mitochondria-dependent ferroptosis
or produce additional ROS intensifying the oxidative stress (38).
The contribution of iron to DOX cardiotoxicity is demonstrated
by the ability of the iron chelator dexrazoxane to attenuate
DOX-induced cardiomyopathy (4, 5, 37). Another recognized
culprit of DOX cardiotoxicity is mitochondrial dysfunction
(39). Being the major site of DOX-induced ROS production,
mitochondria themselves are vulnerable to oxidative injury.
DOX interacts with the acidic lipoprotein cardiolipin in the
inner mitochondrial membrane, resulting in its peroxidation
and the opening of mitochondrial permeability transition pores
which in turn triggers cytochrome c release and apoptosis (40,
41). The third mechanism proposed for DOX cardiotoxicity is
through its effect on topoisomerase IIβ (TOPIIβ). While the
antitumor effect of DOX is through DNA intercalation and
TOPIIα inhibition (42–44), DOX also binds to TOPIIβ which
is expressed mainly in quiescent cells such as cardiomyocytes.
Mice null for TOPIIβ do not exhibit cardiotoxic effects with
DOX treatment (45), suggesting that TOPIIβ is a major mediator
of DOX cardiotoxicity. DOX is proposed to complex with
TOPIIβ, leading to the activation of p53 mediated DNA
damage pathways and the inhibition of genes implicated in
mitochondrial biogenesis. Interestingly, dexrazoxane is shown
to protect the heart by transiently depleting TOPIIβ levels in
cardiomyocytes, suggesting that dexrazoxane may reduce DOX
cardiotoxicity via both TOPIIβ depletion and iron chelation (46).
The last potential mechanism of DOX cardiotoxicity relates to
autophagy, a catabolic process for the cell to degrade long-lived
proteins and organelles in the lysosome. The exact function
of autophagy in DOX cardiotoxicity remains hotly debated,
which is not surprising given the dynamic nature of the multi-
step autophagic process and the numerous pathways implicated
in its regulation. Indeed, DOX has been shown to either
activate autophagy (17, 47–50) or inhibit autophagy (51–53),
paradoxically, both of which contribute to cardiotoxicity. Adding
to the confusion, DOX-triggered suppression of autophagy is
seemingly cardioprotective (54). These conflicting results may
be attributable to the differences in the experimental models
used, the developmental stages of cardiomyopathy, and the
dose and duration of DOX treatment, as well as the methods
applied to manipulate different steps of the autophagic process
and the techniques used to measure autophagic activities (49,
55). An early sign of DOX-induced mitochondrial damage
is the loss of mitochondrial membrane potential (56–58).
The latter is a major mechanism that triggers mitochondrial
degradation by autophagy, a process known as mitophagy.
However, as with autophagy, it remains controversial whether
DOX activates or inhibits mitophagy and whether mitophagy
contributes to or protects against DOX cardiotoxicity (59–62).
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FIGURE 1 | DOX induces cardiotoxicity via multiple mechanisms. DOX enters mitochondria triggering increased production of ROS, iron accumulation, cardiolipin

peroxidation, and mitochondrial injury. DOX also binds to topoisomerase IIβ (TOPIIβ), resulting in DNA damage and reduced mitochondrial biogenesis. In addition,

DOX causes autophagy/mitophagy dysfunction, leading to either reduced or excessive elimination of injured mitochondria, worsening cardiac injury.

Further investigation is needed to measure mitophagy flux and
elucidate the role of mitophagy in DOX cardiotoxicity by using
more reliable approaches and more clinically relevant animal
models. In summary, it is likely that DOX induces cardiotoxicity
via multiple mechanisms, including ROS generation, iron
accumulation, cardiolipin peroxidation/mitochondrial injury,
topoisomerase binding, and autophagy/mitophagy dysfunction
(Figure 1).

NEW STRATEGIES TO DIMINISH DOX
CARDIOTOXICITY IN CANCER PATIENTS
ARE DESPERATELY NEEDED

The current approach for reducing DOX cardiotoxicity is to
limit the overall cumulative dose of the drug. However, this
also narrows the therapeutic window for cancer treatment.
Other strategies for limiting its cardiotoxicity have been pursued.
Attempts to develop chemical analogs that retain anti-tumor
properties but have reduced cardiotoxicity have had minimal
success (63). Liposomal DOX has improved pharmacokinetics
and reduced accumulation in the heart (64) but has failed
to replace conventional DOX for treatment of most solid
tumors (65). An additional approach is to combine DOX
with a cardioprotective agent during treatment. Common
neurohormonal antagonists, such as β-adrenergic receptor
blockers and angiotensin-converting enzyme inhibitors, are
routinely used for treating non-cancer-related heart failure, but
they are not recommended for preventing and managing DOX
cardiotoxicity due to the marginal benefits and related adverse
events (66). Currently, only the iron chelator dexrazoxane has
been approved for clinical use for reducing DOX cardiotoxicity
(4, 5). Unfortunately, dexrazoxane is not a ubiquitous treatment
for anthracycline cardiotoxicity, and its use has been limited to
pediatric patients with high risk acute lymphoblastic leukemia

and breast cancer patients on high doses of DOX, given
the possibility of dexrazoxane to cause myelosuppression and
secondary malignancies (6, 67, 68). Therefore, it is imperative
to develop new strategies to protecting against DOX-induced
heart damage without compromising the anti-tumor activity of
DOX. In this regard, the antidiabetic drug metformin (MET) has
appeared to be such a promising dual-function agent that can
improve the clinical use of DOX.

METFORMIN PROTECTS THE HEART
AGAINST VARIOUS PATHOLOGICAL
CONDITIONS INCLUDING DOX
CARDIOTOXICITY

Metformin (MET) is an oral biguanide agent that was first
utilized to treat diabetes in France in 1957 (69) and approved
by the US FDA in 1994 and has since been widely used as
the first-line treatment for Type II diabetes due to its safety,
efficacy and tolerability (70, 71). MET has been shown to
protect the heart in people with or without diabetes mellitus
(72). Indeed, MET is associated with decreased risk of heart
failure (73) and reduced cardiovascular mortality independent
of its glucose lowering effects (74). The cardioprotective effects
of MET have been repeatedly confirmed by numerous pre-
clinical studies under various cardiac conditions (75–79). Not
surprisingly, MET can also reduce DOX cardiotoxicity in
many animal studies (8–11). This may hold true in humans
as well, given the ability of MET to attenuate radiation
cardiotoxicity in breast cancer patients (80). Unfortunately, a
phase II clinical trial “Use of Metformin to Reduce Cardiac
Toxicity in Breast Cancer” was prematurely terminated due to its
failure to meet target accrual (https://clinicaltrials.gov/ct2/show/
NCT02472353). Apparently, further clinical trials are needed to
confirm the cardioprotective effects of MET in cancer patients
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FIGURE 2 | MET reduces the toxic effects of DOX on cardiomyocytes but concurrently enhances the anticancer effects of DOX on tumor cells. As shown in the left

panel (heart), MET antagonizes DOX cardiotoxicity through several mechanisms, including attenuation of ROS generation and oxidative stress, inhibition of

mitochondrial damage and maintenance of energy production, increased expression of ferritin heavy chain, and activation of AMPK. At the same time, MET enhances

DOX antitumor effects (tumor, the right panel) through reduction of blood glucose, inhibition of cancer stem cells, reduction of IGF-1, modulation of adenosine A1

receptor (A1R), down-regulation of drug-resistant gene P-glycoprotein (P-gp), induction of apoptosis, inhibition of midkine, inhibition of mTOR, and activation of

AMPK. Of note, AMPK activation has been suggested to be the major mechanism that mediates both the anti-tumor and cardioprotective effects of MET. On the other

hand, the effects of MET on autophagy/mitophagy are not very clear. ↑, increase or upregulation; ↓, inhibition or downregulation; ROS, Reactive oxygen species;

TOPII, Topoisomerase II; A1R, Adenosine A1 receptor; IGF1, Insulin-like growth factor 1; P-gp, P-glycoprotein.

treated with DOX. MET has been suggested to antagonize
DOX cardiotoxicity through several mechanisms (left panel in
Figure 2), including attenuation of ROS generation and oxidative
stress, inhibition of mitochondrial damage and maintenance of
energy production (82), normalization of autophagy markers (8),
increased expression of ferritin heavy chain in cardiomyocytes,
and activation of AMP-activated protein kinase (AMPK) (11).
The role of AMPK in MET-induced protection against DOX
cardiotoxicity has been supported by numerous studies either in
cultured cells or in animals (8–11).

METFORMIN HAS ANTITUMOR
PROPERTIES THAT MAY SYNERGIZE
WITH THE ANTITUMOR ACTIVITY OF DOX

Several epidemiological studies, meta-analyses and animal
studies have revealed that MET has anti-neoplastic and
chemopreventive activities (20, 81) despite mixed results
observed in other studies (82, 83). Indeed, diabetic patients

taking MET have significantly reduced risk of cancer and lower
cancer-related mortality (84–89). Several small-scale clinical
trials have shown the ability of MET to induce favorable
cellular and molecular changes in cancer patients (90–93).
For example, clinical trials in pre-surgical endometrial cancer
patients exhibited a significant decrease in Ki67 with MET
monotherapy (19). Another study showed the ability of MET
to inhibit the increase of Insulin-like growth factor 1 (IGF-
1) and maintain the levels of IGF binding protein-1 although
the progression-free survival was not affected (91). In addition,
numerous animal studies have shown that MET can enhance
the anticancer activity of DOX (11–13, 94, 95). Thus, it
is highly desirable that large scale randomized clinical trials
be conducted to confirm the usefulness of MET in cancer
chemotherapy. Nevertheless, given the demonstrated anti-tumor
and cardioprotective properties ofMET, it is reasonable to believe
that MET can be used in DOX-containing chemotherapy to
enhance the antitumor activity of DOX and at the same time to
reduce its cardiotoxic effect (96). Metformin is believed to exert
its antitumor effects via multiple mechanisms (right panel in
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Figure 2), including activation of AMPK and inhibition ofmTOR
(13, 97, 98), reduction of blood glucose (21), reduction of insulin
and IGF-1(98), inhibition of cancer stem cells (99), modulation
of adenosine A1 receptor (100), down-regulating drug-resistant
gene P-glycoprotein (P-gp) (94), inhibition of midkine (101),
and induction of apoptosis (102, 103). Among them, AMPK
activation has been suggested to be the major mechanism
that mediates both the anti-tumor and cardioprotective effects
of metformin (11, 13, 21, 97). If this is true, modulation
of AMPK per se should improve the application of DOX in
antitumor therapy.

AMPK SIGNALING MAY PROTECT
AGAINST DOX CARDIOTOXICITY

AMP-activated protein kinase (AMPK) is a heterotrimeric
protein kinase composed of a catalytic α subunit and two
regulatory subunits (β and γ). Each subunit hasmultiple isoforms
encoded by distinct genes (α1, α2, β1, β2, γ1, γ2, and γ3),
and they combine to form 12 different AMPK holoenzymes
(104). All isoforms except for γ3 are expressed in mouse and
human heart, which can form 8 AMPK holoenzymes (105).
As an energy sensor, AMPK detects and reacts to fluctuations
in intracellular ATP levels under normal and stress conditions.
The activated AMPK affects multiple metabolic pathways to
maintain an energy homeostasis conducive to stress resistance
and cell survival (106). There has been continuous intense
research targeting AMPK for the treatment of multiple prevalent
diseases, such as obesity, diabetes, cancer and cardiovascular
diseases (107–109). Using AMPK deficient mice and chemical
activators of AMPK such as AICAR and MET, numerous studies
have shown that AMPK exerts a cardioprotective effect against
myocardial ischemic injury (110, 111), diabetic cardiomyopathy
(112), pathological cardiac remodeling (113), and heart failure
(109). However, the use of MK-8722, a pan-AMPK activator,
induces cardiac hypertrophy despite its ability to improve glucose
homeostasis in rodents and rhesus monkeys (114), casting some
doubt on the notion that AMPK activation always benefits the
heart. Indeed, the gain-of-function mutations of the AMPK
γ2 subunit result in severe cardiomyopathy in humans (115,
116), suggesting that the activation of some AMPK isoforms
or holoenzymes can be detrimental to the heart under certain
conditions. Interestingly, AMPK holoenzymes containing the
α2 rather than the α1 subunit are the primary mediators of
the cardiac phenotype of γ2 mutations (117), suggesting that
α1-AMPK may play a different role than α2-AMPK, which
underscores the complexity of isoform-specific functions of
AMPK. This isoform-specific phenomenon was also observed
in skeletal muscle where α2 but not α1 AMPK is responsible
for AICAR-induced glucose uptake (118). When it comes to
DOX cardiotoxicity, most cell-based studies have suggested
AMPK as cardioprotective (9, 11, 14–17) despite the fact that
DOX has been reported to either increase or decrease cardiac
AMPK activity depending on the dose and duration of DOX
treatment as well as the experimental models used (59, 119, 120).
Pharmacological agents including MET, statins and many others

can simultaneously activate AMPK and protect against DOX
cardiotoxicity, but this remains an association and the causality
between these two effects has not been established (119, 120).
For example, the proposed role of AMPK in MET-mediated
protection against DOX cardiotoxicity remains to be determined
by using genetic animal models lacking AMPK function. Also,
it remains essentially unknown which of the 8 isoform-specific
AMPK holoenzymes mediates the putative protective effects on
DOX cardiotoxicity in vivo.

AMPK PLAYS TEMPORAL AND
ISOFORM-DEPENDENT DICHOTOMOUS
ROLES IN CANCER

AMPK is considered to be both a tumor suppressor and an
oncogene depending on the context (22). Studies have suggested
AMPK as a tumor suppressor before disease arises, which is
further enhanced by the biguanide phenformin. However, once
cancer has occurred, AMPK becomes a tumor promoter to
enhance cancer cell survival by protecting against metabolic,
oxidative and genotoxic stresses (23). Indeed, the Liver Kinase
B1 (LKB1)/AMPK pathway contributes to tumor cell survival
by promoting cellular sensing of and adaptation to bioenergetic
stress. Repression of LKB1 by miR-17∼92 sensitizes MYC-
dependent lymphoma to biguanide treatment (121). In addition,
a loss of both AMPK α1 and α2 subunit isoforms in H-
Ras-transformed mouse embryonic fibroblasts (MEFs) caused a
complete failure of their growth in vivo in immunodeficient mice
(122). However, a loss of AMPK α2 alone caused the tumors
to grow more rapidly (123), suggesting isoform-dependent
differential effects of AMPK on tumor growth. In summary,
whether AMPK behaves as a tumor suppressor or a promoter
depends on the developmental stage of the tumor and the specific
isoform of the AMPK subunits.

MET ACTIVATES AMPK, BUT IT IS
UNKNOWN IF AMPK IS RESPONSIBLE
FOR CARDIOPROTECTION BY MET

Met has been shown to activate the AMPK pathway, and this
has been proposed as the major mechanism that mediates
the cardioprotective (9, 11, 109, 119, 120) and antitumor
(13, 96, 97, 124) effects of MET. Thus, pharmacologically
activating the AMPK pathway seems to be a two-birds-with-
one-stone strategy to simultaneously reduce DOX cardiotoxicity
and enhance its antitumor activity. However, it remains to
be determined whether AMPK is indeed responsible for the
potential double benefits of MET in humans or in clinically
relevant animal models. Indeed, MET is shown to reduce
pathological cardiac remodeling in the absence of AMPKα2
(76), suggesting the possibility that MET may reduce DOX
cardiotoxicity independently of AMPK. Given the dual role of
AMPK in tumor growth, it is equally unclear if the antitumor
effects of MET are mediated by AMPK or its subunit isoforms.
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SUMMARY AND FUTURE PERSPECTIVES

MET has been safely used to treat diabetes for several decades,
making it a good candidate for repurposing (19). Indeed, many
animal and preclinical studies suggest that MET has both
cardioprotective and antitumor properties, which lends itself
as a promising adjuvant drug for DOX anticancer therapies
to reduce cardiotoxicity. MET is proposed to achieve these
beneficial effects through the activation of AMPK that itself has
been shown to protect the heart and modulate tumor growth
under certain conditions. However, the role and mechanism of
the hypothesized MET-AMPK axis in DOX cardiotoxicity and
antitumor efficacy have not been firmly established. Convincing
in vivo studies using tumor-bearing animal models and large-
scale prospective clinical trials are needed to fully establish
MET as an effective antitumor agent either alone or together
with DOX. Also, the proposed role of AMPK in MET-mediated
protection against DOX cardiotoxicity should be validated in
genetic animal models lacking AMPK in the heart. Given
the emerging evidence suggesting distinct functional roles
of the AMPK isoforms, it is important to investigate how
different AMPK holoenzymes containing unique combinations
of isoforms will modulate the ability of DOX to affect either
heart function or tumor growth. Future studies should also
explore the cellular and molecular mechanisms that account for
the differential responses of cardiomyocytes vs. cancer cells to
DOX and MET, either individually or in combination. Without
any doubt, answers to the above questions are expected to have
a positive impact on the treatment of many types of cancers
with DOX. For example, if it is firmly established that MET

can reduce DOX cardiotoxicity and concurrently maintain its
antitumor activity, the results could be rapidly translated into
use for cancer patients because MET has been used in diabetic
patients for decades. Specifically, including MET in a therapeutic
protocol could reduce the amount of DOX needed to achieve
the same antitumor effect. Alternatively, MET could make it
possible to use larger doses of DOX to eradicate cancer more
effectively without increasing cardiac damage. In short, MET
could improve the therapeutic window for DOX, allowing greater
flexibility in designing regimens for treating cancer. Finally, a
comprehensive understanding of the relationship between DOX
cardiotoxicity, antitumor efficacy, and individual isoforms of
AMPK will guide novel mechanism-based therapeutic strategies
that target AMPK.
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