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Abstract

Motivation: Single-cell RNA-seq allows researchers to identify cell populations based on unsupervised clustering of
the transcriptome. However, subpopulations can have only subtle transcriptomic differences and the high dimen-
sionality of the data makes their identification challenging.

Results: We introduce ILoReg, an R package implementing a new cell population identification method that
improves identification of cell populations with subtle differences through a probabilistic feature extraction step that
is applied before clustering and visualization. The feature extraction is performed using a novel machine learning al-
gorithm, called iterative clustering projection (ICP), that uses logistic regression and clustering similarity comparison
to iteratively cluster data. Remarkably, ICP also manages to integrate feature selection with the clustering through
L1-regularization, enabling the identification of genes that are differentially expressed between cell populations. By
combining solutions of multiple ICP runs into a single consensus solution, ILoReg creates a representation that ena-
bles investigating cell populations with a high resolution. In particular, we show that the visualization of ILoReg
allows segregation of immune and pancreatic cell populations in a more pronounced manner compared with cur-
rent state-of-the-art methods.

Availability and implementation: ILoReg is available as an R package at https://bioconductor.org/packages/ILoReg.

Contact: laura.elo@utu.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-seq (scRNA-seq) enables identification of known
and novel cell populations by unsupervised clustering of tran-
scriptomic profiles of individual cells. However, the high number
of genes presents a major challenge for the analysis of scRNA-
seq data by increasing the similarity of distances between the
cells, a phenomenon known as the ‘curse of dimensionality’
(Kiselev et al., 2019). To reduce its effect, scRNA-seq pipelines
typically apply a feature selection step that selects a set of highly
variable genes prior to unsupervised clustering (Andrews et al.,
2019). However, this approach can eliminate genes that are im-
portant for the identification of the underlying cell populations
of a sample or add unwanted variation if irrelevant features are
chosen. Moreover, the number of remaining genes is typically
still in the thousands and detecting cell populations with subtle
differences remains challenging.

To address this issue, we have developed a cell population
identification method (ILoReg) that takes an alternative approach
to dimensionality reduction by means of feature extraction.

At the core of ILoReg lies a new clustering algorithm, iterative
clustering projection (ICP), which transforms a gene expression
matrix into a probability matrix containing probabilities of
each cell belonging to k clusters. These continuous cluster
probabilities provide a more practical representation of the
clustering than discrete cluster labels, as they can be handled
like extracted features, and they are then utilized in the consen-
sus clustering approach that combines multiple randomly
subsampled ICP solutions into a consensus solution. The consen-
sus approach acts as a noise-reducing step prior to
hierarchical clustering and visualization by non-linear dimension-
ality reduction, such as t-distributed stochastic neighbor
embedding (t-SNE) (Maaten et al., 2008) or uniform manifold
approximation and projection (UMAP) (McInnes et al., 2018).
We have implemented this method as a user-friendly R package,
ILoReg (https://bioconductor.org/packages/ILoReg), and demon-
strate that it can greatly aid the identification of cell populations
with subtle transcriptomic differences by increasing the cell
population identification resolution of both clustering and
visualization.
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2 Methods and materials

2.1 Iterative clustering projection
As a basis of ILoReg, we first introduce a new clustering algorithm,
iterative clustering projection (ICP), that utilizes random down- and
oversampling, supervised learning and clustering comparison to it-
eratively cluster the data (Figs 1a and 2). Specifically, the objective
of ICP is to seek a clustering S ¼ fS1; . . . ; Skg with k clusters that
maximizes the adjusted Rand index (ARI) between S and its projec-
tion S0 by logistic regression:

arg max
S

ARIðS; SÞ

In the following, we describe the four steps of the algorithm.

1. Initialization. Given a normalized gene expression matrix,

X ¼ x1; . . . ; xi; . . . ;xN½ �T , where N is the number of cells and xi

is the transcriptional profile of the ith cell across M genes that

are expressed in at least one of the N cells, the algorithm first

randomly partitions the cells into k clusters, St ¼ fS1;t; . . . ; Sk;tg,
in which each cluster has the same probability of being assigned

to a cell, each subset contains the cell identifiers belonging to

that cluster and t denotes the epoch, where t ¼ 1.

2. Creating balanced training data. To form a balanced training

dataset Xt and training labels Yt ¼ fY1;t; . . . ;Yk;tg with an

equal number of cells n in each cluster of Yt, down- and over-

sampling of St and X are carried out. If a cluster has fewer than

n cells, then its cells are oversampled with replacement.

Otherwise, the cells are randomly downsampled by selecting n

cells from the cluster without replacement. Since scRNA-seq

datasets have very different sample sizes, n is determined by

n ¼ dNd=ke, where d 2 ð0; 1Þ and d�e denotes the ceiling func-

tion. Due to the sensitivity of the logistic regression model (Step

3) to unbalanced training data, the balancing is necessary to en-

sure that k remains unchanged during the iteration.

3. Classifier training and projection. An L1-regularized logistic

regression classifier is trained on the training data Xt and

labels Yt using the LIBLINEAR library (Fan et al., 2008). X is

projected onto itself with the classifier, i.e. the cluster label of

each of the N cells is predicted with X as input data, which

yields the projected clustering S0t ¼ fS01;t; . . . ; S0k;tg and the

probability matrix Pt ¼ p1;t; . . . ; pN;t½ �T , where pi;t is a real vec-

tor containing the probabilities of the ith cell belonging to the k

clusters.

The objective function of the L1-regularized logistic regression
model is

min
w
kwk1 þ C

Xn

i¼1
logð1þ e�yiw

T xi Þ

where w is the model weight vector, n the number of training sam-
ples in a cluster, yi 2 f�1; 1g and k � k1 the 1-norm. The constant
C > 0 determines the trade-off between regularization and correct
classification, a lower value selecting fewer genes. To perform multi-
class classification, the LIBLINEAR library uses the one-versus-rest
scheme, in which k binary classifiers are trained using the samples
belonging to one of the k clusters as positive samples and all other
samples from the k� 1 clusters as negatives.

4. Clustering comparison. The similarity between clusterings St and

S0t is measured by ARI (Hubert and Arabie, 1985):

ARI ¼
P
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Here N is the total number of cells, nij is the number of overlapping
cells in clusters i and j from St and S0t respectively, ai and bj are the
total number of cells in clusters i and j from St and S0t respectively. If
ARI increases from its previous value (initialized to 0 with t ¼ 1),
then Stþ1 is set to S0t and steps 2, 3 and 4 are repeated for Stþ1 in the
next epoch. If ARI does not increase, the steps 2, 3 and 4 are
repeated for St until the maximum number of reiterations r is
reached. At the start of every new epoch, the number of reiterations
is set to 0. After the last reiteration, Pt and S0t are returned as out-
put, where t is the last epoch.

2.2 Consensus clustering method
A consensus method (Fig. 1b) is used to obtain a more accurate and
robust clustering of the cells than the clusterings obtained by the in-
dividual ICP runs (Fig. 3), which is also not constrained to the num-
ber of initial clusters k. The ICP algorithm is run L times with
different random seeds and their probability matrices are merged to
create the joint probability matrix, P ¼ ½P1; . . . ; PL�. The dimen-
sionality of the data is reduced with principal component analysis
(PCA) by performing eigendecomposition of the cross-product of
the centered P using the RSpectra R package. Finally, the N � p di-
mensional consensus matrix is clustered using hierarchical clustering
with the Ward’s method from the fastcluster R package (Müllner,
2013). The tree dendrogram from the hierarchical clustering is
cut into K consensus clusters with the dendextend R package

Fig. 1. Overview of ILoReg. (a) Schematic of the iterative clustering projection (ICP) clustering algorithm. (b) Schematic of the ILoReg consensus approach for cell population

identification
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(Galili, 2015). The optimal number of consensus clusters can be
determined automatically by the silhouette method from the cluster
R package.

2.3 Visualization
ILoReg supports visualization using two popular non-linear dimen-
sionality reduction methods: t-distributed stochastic neighbor

embedding (t-SNE) from the Rtsne R package and uniform manifold
approximation and projection (UMAP) from the umap R package.

The N � p dimensional PCA-transformed matrix is used as input in
both of the methods.

2.4 Benchmarking
To benchmark ILoReg against other scRNA-seq clustering methods,
we considered four state-of-the-art methods: Seurat (Butler et al.,
2018), SC3 (Kiselev et al., 2017), CIDR (Lin et al., 2017) and

RaceID3 (Herman et al., 2018). Details of the methods are listed in
Table 1. We carried out the benchmarking assuming that the true
number of clusters is unknown, and therefore, used the default

parameter values with each method. With RaceID3 we used the ini-
tial clustering by k-medoids without the subsequent outlier detection
step that adds further clusters. With Seurat we used the number of
clusters determined by the default resolution value 0.8. To measure

clustering accuracy, we used ARI between the ground truth and
inferred clusterings. Additionally, we compared the estimated and
ground truth values of k. The related code is available online at
https://github.com/elolab/iloreg-benchmarking, from which the

calculating process and the parameters can be examined in more
detail.

For benchmarking we selected eleven public scRNA-seq datasets

from three studies, in which each cell has been categorized by the
authors of the original publication. The benchmarking datasets that
we used are listed in Table 2. The Baron and Galen datasets are sil-
ver standard datasets, i.e. their clusters were identified by the

authors based on gene markers. The Pollen dataset is a gold stand-
ard dataset with information on which cell line each cell originated
from. Before clustering we removed spike-ins from the Pollen data-
set. The normalization of each dataset was performed using the
same method that was given in the original study.

Fig. 2. Convergence of the iterative clustering projection (ICP) clustering algorithm. (a) t-distributed stochastic neighbor embedding (t-SNE) transformations of the N � k di-

mensional probability matrix at different epochs of ICP, where N is the total number of cells and k is the number of clusters. The expression levels of the T cell marker gene

CD3D are highlighted. (b) Clustering comparison measures calculated between the clustering and its projection at every epoch: adjusted Rand index (ARI), normalized mutual

information (NMI), normalized variation information (NVI) and normalized information distance (NID). ARI at the final epoch is denoted as the projection accuracy of ICP.

In this example, we used the pbmc3k dataset with k ¼ 15; C ¼ 0:3; d ¼ 0:3 and r ¼ 5 parameter values. The clustering comparison measures in (b) were calculated using the

aricode R package. See Supplementary Note S2 for an analysis on how the d and C parameters affected the projection accuracy of ICP

Fig. 3. Comparison of ICP and the ILoReg consensus method. (a) Colored line plots showing the average adjusted Rand index (ARI) achieved by the ILoReg consensus cluster-

ing method using different values of the initial number of clusters (k) in iterative clustering projection (ICP) and the number of ICP runs (L). The average was taken over 50 dif-

ferent randomly initialized ILoReg consensus clustering solutions, where ARI was calculated between the inferred clustering and the reference clustering from the Pollen study.

Additionally, two approaches for selecting the number of consensus clusters from the dendrogram (K) were compared: the silhouette method (Silhouette) and selecting the

same number of clusters as in the reference clustering (Manual). The black horizontal line denotes the average ARI achieved by 500 individual ICP runs with the same number

of clusters as in the reference clustering (k¼11). (b) Line plots depicting the variability of the results in (a): 1.5* the interquartile range (IQR) of the ARI values. (c) The average

number of estimated clusters by the silhouette method. The error bars depict 1.5*IQR of the estimated K from 50 different ILoReg consensus solutions. The rest of the ILoReg

parameters were fixed to C¼ 0.3, d¼ 0.3, r¼ 5 and p¼50
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2.5 Preprocessing of the pbmc3k dataset
We used a peripheral blood mononuclear cell (PBMC) dataset
(pbmc3k) to compare the cell subsets found by the benchmarked
methods. The raw FASTQ reads of the pbmc3k dataset were down-
loaded from the public database of the 10X Genomics company
(https://support.10xgenomics.com/single-cell-gene-expression/data
sets) and the preprocessing was performed using Cell Ranger v2.2.0
and the GRCh38.p12 human reference genome. The unique molecu-
lar identifier (UMI) counts were normalized using the LogNormalize
method from the Seurat R package.

2.6 Functional analysis of the Baron1 dataset
To identify enriched biological pathways among the differentially
expressed genes between the healthy and injured beta cell popula-
tions from the Baron1 dataset, we used the Metascape web tool
(Zhou et al., 2019) .

2.7 Run time and memory usage
The run time and maximal resident set size (RSS) of the five bench-
marked methods were measured using two PBMC datasets: pbmc3k
(�3k cells) and a subset of the fresh_68k_pbmc_donor_a dataset
(20k cells) on a cluster node with CentOS Linux 7 operating system,
12-core 2.66 GHz Intel Xeon X5650 processor and 96 GB
1066 MHz DDR3 of RAM. The workflow steps that were included
in this comparison were dimensionality reduction, clustering and
estimating the optimal number of clusters. In contrast to the other
methods, changing the number of clusters k with SC3 can be time-
consuming due to the computational bottleneck step involving k-
means clustering. Since in practice the user needs to run the consen-
sus clustering with a range of different k values, we adjusted the SC3
workflow to use k values ranging from 2 to 50. 12 threads were
used with the methods that support parallel computing (SC3 and
ILoReg).

2.8 Differential expression analysis
The ILoReg R package provides user-friendly functions that enable
identification of gene markers for clusters and visualization of gene
expression across cells and between clusters (Supplementary Note
S1). The current implementation of ILoReg supports two functions

for gene marker identification. The first function,
FindAllGeneMarkers, allows simultaneous identification of gene
markers for all K clusters. Differential expression analysis is per-

formed using the one-versus-rest scheme, in which cells from each
cluster are compared against the rest of the cells. To accelerate the

analysis, the user can apply filters to remove genes that are less likely
to be good marker genes or downsample cells. The differential ex-
pression analysis uses the Wilcoxon rank-sum test to calculate a P-

value representing the statistical significance of a gene. The P-value
adjustment for multiple comparisons is carried out using the

Bonferroni method. A second function, FindGeneMarkers, enables
comparison between any two arbitrary sets of clusters.

3 Results

3.1 Benchmarking
We benchmarked ILoReg against four other clustering methods
(Butler et al., 2018; Herman et al., 2018; Kiselev et al., 2017; Lin

et al., 2017), Seurat, SC3, CIDR and RaceID3, each functioning on
a largely different principle (Table 1), using eleven gold (Pollen) or
silver (Baron and van Galen data) standard datasets from three pub-

licly available studies (Baron et al., 2016; van Galen et al., 2019;
Pollen et al., 2014) (Table 2). Although in many cases the numbers

of clusters estimated by the algorithms were close to what the
authors of the original studies reported (Supplementary Fig. S1),
comparison by ARI between the inferred and original clusterings

revealed considerable inaccuracies (Fig. 4a). ILoReg performed gen-
erally well regardless of the sample size, whereas CIDR and
RaceID3 performed worse on average. In contrast to the other meth-

ods, SC3 tended to overestimate the number of clusters for larger
datasets (e.g. Baron) and it was more accurate with smaller datasets

(e.g. Pollen). Seurat performed consistently across the datasets, but
for most datasets worse than ILoReg. In two of the datasets from
the van Galen study (BM5-34p and BM5-34p38n), none of the

methods were able to achieve even moderate accuracy for them.
These datasets were sorted by flow cytometry and had highly unbal-

anced cluster labels in the original study, whereas in our comparison
the inferred clusterings were more uniformly distributed, explaining
the discrepancy.

Table 2. Summary of the datasets used in benchmarking

Study Organism No. of cells No. of clusters Protocol Units Standard

Pollen (Pollen et al., 2014) Human 301 11 SMARTer TPM Gold

Baron (Baron et al., 2016) Human 1303–3605 14 inDrop UMI Silver

Galen (van Galen et al., 2019) Human 108–3738 5–15 Seq-Well UMI Silver

Table 1. Clustering algorithms used in benchmarking

SC3 Seurat RaceID3 ILoReg CIDR

Clustering workflow Feature selection þ
Distance matrices

with three measures

þ PCA þ k-means

þ CSPA þ
hierarchical

Feature selection þ
PCA þ graph-based

Feature selection þ k-

medoids

ICP L times þ PCA þ
hierarchical

Imputation þ PCoA þ
hierarchical

Visualization

workflow

None (via Scater R

package)

Feature selection þ
PCA þ t-SNE,

UMAP etc.

Feature selection þ t-

SNE or kNN graph

ICP L times þ PCA þ
t-SNE or UMAP

Imputation þ PCoA

Method for estimating

the number of clus-

ters (k)

Random matrix

theory

None (k by default

resolution value)

Saturation Silhouette Calinski-Harabasz

Index

Version 1.12.00 3.0.0 0.1.3 0.1.0 (Git reference ID

‘85196be6’)

0.1.5
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3.2 Segregation of healthy and injured pancreatic beta

cells
From the Baron1 dataset ILoReg identified a subpopulation of pan-
creatic beta cells (Fig. 4b) with MALAT1 downregulated (Wilcoxon
rank-sum test, adjusted P<0.01, log2 FC � -1.5). MALAT1 is a
gene that inhibits apoptosis and has been found to be negatively cor-
related with post-isolation islet cell death (Wong et al., 2019). In
line with this, functional analysis of the differentially expressed
genes between the two beta cell populations revealed a process that
has been previously linked to beta cell destruction, i.e. endoplasmic
reticulum stress (Supplementary File S1), further indicating the clus-
ter indeed comprises injured beta cells (Eizirik et al., 2008). By con-
trast, the beta cells in the t-SNE representation of Seurat distributed
more densely and there was no clear distinction between the
MALAT1- and MALAT1þ cell populations (Fig. 4b).

3.3 Identification of peripheral blood mononuclear cell

subsets
In the pbmc3k dataset, a comparison between the five benchmarked
methods (Fig. 5) showed that the two-dimensional visualizations of
Seurat, SC3 and RaceID3 were similar, containing three main clus-
ters: (i) T cells and NK cells; (ii) dendritic cells and monocytes and
(iii) B cells. With CIDR, the B and T cells were overlapping in the
visualization, suggesting its representation to be least optimal
among the five methods. On the contrary, multiple distinct subpo-
pulations were clearly visible within each main cell type in the t-

SNE representation of ILoReg. Interestingly, unlike the other meth-
ods, ILoReg identified a cluster that expressed CD3D, CD8B,
CCR7 and S100B genes (Fig. 4c); corresponding to naive CD8þ T

cells (Oetjen et al., 2018). Overall, based on the expression of
CD8B the segregation of CD8- and CD8þ T cells by ILoReg was

clearly most accurate. A more comprehensive analysis
(Supplementary Note S1) revealed further cell populations that are
in agreement with past studies, such as CD56þ and CD56þþ NK

cells (Stoeckius et al., 2017), naive and memory B cells with lambda
or kappa light chain (Agematsu et al., 2000, 27; Giachino et al.,
1995; Monaco et al., 2019), as well as rare platelets, which typically

constitute less than 1% of PBMCs (Zheng et al., 2017).
To investigate the inability of Seurat to identify the naı̈ve CD8þ

T cells, we first discovered that many of the important naı̈ve CD8þ
T cell markers were missing from the set of 2000 highly variable

genes (HVG) selected by Seurat, S100B being the only gene from the
visualization in Figure 4c that was present in the set. Next, we
adjusted the number of principal components to rule out that the

number of principal components would be causing the issue and
found that the naı̈ve CD8þ T cell population was still not identifi-
able in the t-SNE plots (Supplementary Fig. S2). Therefore, it is

highly likely that the naı̈ve CD8þ T cell markers have either too
weak signal for PCA to form the correct principal component or too

many of the relevant genes are missing from the HVG set. The ana-
lysis shows that the selection of a fixed number of highly variable
can be suboptimal, preventing identification of important cell types,

Fig. 4. Benchmarking and identification of cell populations with subtle transcriptomic differences. (a) Benchmarking of ILoReg against four other scRNA-seq clustering meth-

ods: Seurat, SC3, CIDR and RaceID3. To compare the methods, the adjusted Rand index (ARI) was calculated in eleven datasets between the inferred clustering of each

method and the reference clustering from the original study. The respective cluster number estimates are provided in Supplementary Figure S1. The datasets with the ‘BM’ pre-

fix are from the van Galen study. (b) Comparison of t-distributed stochastic neighbor embedding (t-SNE) plots generated by ILoReg and Seurat for the Baron1 dataset, high-

lighting the expression levels of MALAT1 that differentiates injured from healthy beta cells. The cells were colored by the reference labels of the original study. (c) Comparison

of t-SNE plots generated by ILoReg and Seurat for the pbmc3k dataset, highlighting the expression levels of four genes (CD3D, CD8B, CCR7, S100B) that distinguish naive

CD8þ T cells. All the analyses were carried out using the default parameter values of Seurat and ILoReg (k¼15, C¼0.3, d¼0.3, r¼5, p¼ 50, L¼ 200)
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and that the L1-regularization based approach of ILoReg can be
used to identify these cell types.

3.4 Adjustment of ILoReg parameters
To set default values for the parameters of ILoReg and understand

their functioning better, we performed various analyses to investi-
gate how the parameters affected the result. A full description of the

investigation is included in Supplementary Note S2. ICP has in total
four parameters, for which we determined the following descending
order of importance: (i) the number of clusters (k), (ii) d that con-

trols the number of cells (n), (iii) C that controls the trade-off be-
tween correct classification and regularization in the logistic

regression model and (iv) the maximum number of reiterations (r).

Both k and d were clearly important determinants of the resolution
of the cell population identification. As a higher k leads to a higher
number of predicted cell populations, this is also reflected in the
consensus clustering. Interestingly, the relation between d and the
resolution was inverse, a higher value resulting in a smaller reso-
lution. As C and r had less effect on the results, the user should pri-
marily tune k and d to fine-tune the clustering. As two general
guidelines, increasing d from 0.3 to 0.4–0.7 helps if the result feels
over-clustered, and testing a k value higher (e.g. 30) than k¼15 is
recommended to ascertain the full potential of ILoReg. The consen-
sus approach has two additional parameters: the number of ICP
runs (L) and the number of principal components (p). Changing L
from its default (200) is not recommended, but tuning p from its de-
fault (50) with the help of the elbow plot provides a fast way to

Fig. 5. Visualization comparison between the five benchmarked methods in the pbmc3k dataset. Expression levels of gene markers for major peripheral blood mononuclear

cell (PBMC) types are highlighted over two-dimensional visualizations of each benchmarked method: CD3D (a T cell marker), CD79A (a B cell marker), CST3 (a marker for

monocytes, dendritic cells and platelets) and CD8B (a CD8þ T cell marker). SC3 is the only method without its own two-dimensional visualization function, but the scater R

package (McCarthy et al., 2017) was used to perform the visualization, as recommended in the manual of the SC3 R package
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control the resolution by including a different number of uncorre-
lated probabilities into the consensus solution.

3.5 Run time and memory usage
The most computationally intensive part of ILoReg is running ICP L
times (default L¼200). To accelerate it, the R package supports
computing the ICP runs in parallel. Using the default parameter val-
ues and 12 threads, the run times for �3000 cells and �20 000 cells
were �1 and �10 h, respectively (Table 3). It should be noted, how-
ever, that although the run time of a single workflow was relatively
long, the workflow is generally simple and the number of consensus
clusters K is very fast to change (�1 s with �3000 cells). By contrast,
with SC3 the user must repeat the clustering for each number of
clusters k separately, thus roughly multiplying the run time by the
number of different k values. Similarly, with Seurat the user must re-
peat the graph-based clustering with different resolution values
without knowing how many clusters a resolution value gives.
Another considerable benefit of ILoReg is its ability to find subpo-
pulations without the need for further sub-clustering, therefore con-
siderably simplifying the analysis workflow and saving further time.

4 Discussion

While many methods have been developed for the unsupervised clus-
tering of scRNA-seq data, one of the persisting challenges in the
clustering of scRNA-seq data is the high dimensionality of the data.
In scRNA-seq data the number of features is typically in tens of
thousands, but many cell populations of potential interest can be dif-
ferentiable by the expression of only a few genes. Therefore, the tar-
geted biological signal is hidden in the vast amount of technical and
biological noise present in the data. To mitigate the noise, dimen-
sionality reduction through feature selection is routinely performed
prior to clustering. However, this approach suffers from the conse-
quence of selecting only a fixed number of highly variable genes, some
of which can be irrelevant to the biological signal the user aims to
extract, whereas others that are discarded can be relevant to it.

In this article, we have introduced a new method (ILoReg) to cell
population identification that utilizes a novel unsupervised learning
algorithm (ICP) that performs both clustering and feature extraction
by iteratively seeking a clustering that maximizes the predictability
of the clustering by supervised learning. The simultaneous feature
extraction is performed through logistic regression, which provides
the cluster probabilities for the clustering. Remarkably, through in-
tegration of feature selection and clustering by L1-regularization
ICP manages to overcome the issue of selecting a fixed number of
genes. Instead, genes are selected and weighted during every step of
the iteration by their relevance in predicting the current clustering,
helping to assure that only such genes are selected that are differen-
tially expressed among populations of cells. To mitigate the irrepro-
ducibility of ICP, ILoReg uses the consensus approach that runs ICP
multiple times and combines their results by PCA and hierarchical
clustering.

The approach introduced in this article falls into machine learn-
ing categories that have so far had relatively few applications in
computational biology. As the cluster labels are not strictly defined
in the probability space, ICP can be conceptually regarded as a fuzzy
(soft) clustering algorithm. Moreover, one can consider ICP a self-
supervised learning algorithm, because it trains a classifier using un-
labeled data. To our knowledge, this is the first study to demonstrate
the applicability of this type of self-supervised learning methods to
downstream analysis of scRNA-seq data.

To demonstrate the ability of ILoReg to identify biologically
meaningful cell subsets from scRNA-seq data, we first showed that
ILoReg identified several PBMC subsets that are differentiable by
the expression of only a few genes. This included naive CD8þ and
CD4þ T cells, multiple effector T cell subtypes, as well as some un-
conventional subsets, such as B cells with lambda and kappa light
chains. In our second experiment, we studied pancreatic cell sub-
types using ILoReg and found MALAT1- beta cells, which corres-
pond to injured beta cells. Importantly, these experiments
demonstrated the superiority of ILoReg in finding rare cell subsets
compared to current state-of-the-art methods (Seurat, SC3, CIDR
and RaceID3). Another significant advantage of ILoReg is that it
enables more accurate visualization of cells with existing non-linear
dimensionality reduction methods, such as t-SNE and UMAP, be-
cause like in the clustering, the input of these methods is derived
probabilistically. By first forwarding the cluster probabilities
extracted by ICP to PCA, and subsequently to a non-linear dimen-
sionality reduction method, ILoReg provided a representation that
segregated the different immune and pancreas cell subsets into more
distinct clusters compared to the other benchmarked methods.

The approach introduced in this article raises also new chal-
lenges. First, the run time of ILoReg was significantly higher (1 and
10 h for 3 k and 20 k cells, respectively) than for the fastest method
of the comparison (Seurat), but comparable with the three other
benchmarked methods (CIDR, SC3, RaceID3). Since scRNA-seq
datasets are expected to continue to grow in size, further develop-
ment is necessary to improve the efficiency of the algorithm. One so-
lution could be GPU computation that has already shown great
potential in computational genomics, with up to > 200-fold
decreases in run times (Taylor-Weiner et al., 2019). Secondly, the
clustering can be sensitive to the hyperparameters of ILoReg, most
importantly the number of clusters in ICP (k) and the d parameter
that controls the number of cells in the training data. Since finding
an optimal clustering may require tuning the hyperparameters, we
have provided instructions for tuning them in the Results section.
Thirdly, ICP is stochastic, which forces setting a seed for the random
number generation to obtain reproducible results. However, our
results suggested that the consensus method performs robustly and
the effect of the initialization is generally small. Fourthly, loss of in-
terpretation may be experienced as the components of PCA are no
longer gene-derived, but instead based on the ICP cluster probabil-
ities, preventing the use of gene-component heatmaps to determine
which components to include for further downstream analysis.
Finally, due to the training data balancing the clusters that ICP finds
have, on average, similar size, but in real tissue-specific scRNA-seq
data the cell numbers across cell types can greatly vary. However,
our results showed that the ILoReg consensus method was able to
identify even extremely rare cell populations, such as dendritic cells
and platelets, that have a prevalence of only few percentages in
PBMC tissue. More investigation is needed to determine whether
the method could be improved by modifying ICP to better account
for cell populations of different sizes.

In conclusion, ILoReg is a promising new method for clustering
and visualization of high-dimensional data. In particular, our results
demonstrate that ILoReg can greatly aid the identification of cell
populations with subtle transcriptomic differences.
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Table 3. Run time and memory usage

Method Number of cells Run time Max. resident set size (kB)

CIDR 3000 00h05m50s 3 106 072

CIDR 20 000 10h09m22s 36 010 516

ILoReg 3000 01h15m32s 660 792

ILoReg 20 000 10h05m38s 13 916 804

RaceID3 3000 00h08m47s 3 038 620

RaceID3 20 000 37h56m31s 21 633 488

SC3 3000 05h37m04s 5 472 304

SC3 20 000 44h42m48s 29 116 792

Seurat 3000 00h00m58s 819 452

Seurat 20 000 00h04m47s 5 283 004
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