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Abstract: In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge
worldwide. Vaccines have been the most effective intervention for reducing virus transmission and
disease severity. However, genetic virus variants are still circulating among vaccinated individuals
with different disease symptomatology. Understanding the protective- or disease-associated mecha-
nisms in vaccinated individuals is relevant to advances in vaccine development and implementation.
To address this objective, serum-protein profiles were characterized by quantitative proteomics and
data-analysis algorithms in four cohorts of uninfected and SARS-CoV-2-infected vaccinated indi-
viduals with asymptomatic, non-severe, and severe disease symptomatology. The results show that
immunoglobulins were the most overrepresented proteins in infected cohorts when compared to
PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts
and correlated with protective- or disease-associated capacity. Overrepresented immunoglobulins in
PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and
thrombosis in asymptomatic cases. In non-severe cases, correlates of protection against SARS-CoV-2
and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed.
Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic
purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive
compared to PCR-negative individuals identified vaccine-induced protective epitopes in various
coronavirus proteins, including the spike receptor-binding domain RBD. Non-immunoglobulin pro-
teins were associated with COVID-19 symptoms and biological processes. These results evidence
host-associated differences in response to vaccination and the possibility of improving vaccine efficacy
against SARS-CoV-2.

Keywords: COVID-19; proteomic; vaccine; immunology; biomarker

1. Introduction

Millions of deaths have been reported worldwide associated with coronavirus disease
19 (COVID-19), a pandemic caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) (https://www.google.com/search?client=safari&rls=en&q=COVID-19
+worldwide+cases&ie=UTF-8&oe=UTF-8#colocmid=/m/02j71&coasync=0).
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Furthermore, the global number of deaths caused by COVID-19 may be up to four
times this figure [1]. Vaccines using different platforms have been developed as the most
safe and effective intervention for reducing SARS-CoV-2-virus transmission and disease
severity [2,3]. However, genetic variants of the coronavirus are still circulating among
vaccinated individuals with different disease symptomatology [4,5]. Understanding the
protective- or disease host-associated mechanisms in vaccinated individuals is relevant to
advances in vaccine development and implementation [6].

To address this challenge, understanding the protective- or disease-associated mech-
anisms in vaccinated individuals is relevant to advances in vaccine development and
implementation. Previous proteomics studies, e.g., [7,8], have addressed response to infec-
tion and vaccination, but our study addressed for the first time the immune response to
COVID-19 vaccination in uninfected and SARS-CoV-2-infected individuals with asymp-
tomatic, non-severe, and severe disease symptomatology. In this study, serum-protein
profiles were characterized by previously validated quantitative proteomics [7] in four
cohorts of uninfected and SARS-CoV-2-infected vaccinated individuals with asymptomatic,
non-severe, and severe disease symptomatology. The results evidence host-associated dif-
ferences in response to vaccination and the possibility of advances in vaccine development
and implementation against SARS-CoV-2.

2. Materials and Methods
2.1. Study Design with Serum Samples from Different Cohorts

The study design is described in Figure 1. A retrospective case-control study was
conducted in patients suffering from COVID-19 and healthy controls sampled at the Uni-
versity General Hospital of Ciudad Real (HGUCR), Spain [8]. Individuals were confirmed
as SARS-CoV-2-infected by reverse transcriptase-polymerase chain reaction (RT-PCR) and
sampled between November and December 2021 (Table 1). In this study with individuals
vaccinated against COVID-19, vaccine administration, clinical symptoms, and laboratory
determinations associated with COVID-19 were obtained from patients’ medical records
to create cohorts of PCR– and PCR+ asymptomatic, non-severe, and severe individuals
(Table 1). Patient symptoms can be found in Table 1. Blood samples were drawn in a
vacutainer tube without anticoagulant. The tube remained at rest for 15–30 min at room
temperature (RT) for clotting. Subsequently, the tube was centrifuged at 1500× g for 10 min
at RT to remove the clot and obtain serum. Serum samples were heat-inactivated for 30 min
at 56 ◦C and conserved at −20 ◦C until used for analysis. The use of samples and individu-
als’ data was approved by the Ethical and Scientific Committees (University Hospital of
Ciudad Real C-352 and SESCAM C-73).

Table 1. Data on serum samples included in the analysis.

Lab, Proteome ID Age (y/o) Sex Sample Date (*) Vaccine Doses
SARS-CoV-2-
Neutralizing
Antibodies

Dates of
Vaccination

Cohort PCR–

16107663, C1 79 F 15.12.2021
(247 days)

Pfizer
Pfizer

Moderna
95.2%

13.04.2021
11.05.2021
11.11.2021

16107723, C2 54 M 15.12.2021
(323 days)

Pfizer
Pfizer 32.0% 27.01.2021

22.02.2021

39385248, C3 60 F 15.12.2021
(323 days)

Pfizer
Pfizer

Moderna
95.3%

27.01.2021
22.02.2021
30.11.2021

39385665, C4 82 F 15.12.2021
(255 days)

Pfizer
Pfizer
Pfizer

92.4%
05.04.2021
26.04.2021
08.11.2021

39386122, C5 54 F 16.12.2021
(342 days)

Pfizer
Pfizer 2.3% (negative) 09.01.2021

30.01.2021
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Table 1. Cont.

Lab, Proteome ID Age (y/o) Sex Sample Date (*) Vaccine Doses
SARS-CoV-2-
Neutralizing
Antibodies

Dates of
Vaccination

Cohort PCR+ Asymptomatic

16107241, A1 84 F 09.12.2021
(255 days)

Pfizer
Pfizer 39.4% 30.03.2021

20.04.2021

1433003, A2 88 F 12.12.2021
(272 days)

Pfizer
Pfizer
Pfizer

95.6%
16.03.2021
06.04.2021
29.10.2021

161082999, A3 89 F 23.12.2021
(351 days)

Pfizer
Pfizer
Pfizer

51.4%
07.01.2021
28.01.2021
04.10.2021

1437141, A4 68 M 26.12.2021
(229 days)

Pfizer
Pfizer
Pfizer

94.1%
12.05.2021
04.06.2021
24.11.2021

88403647, A5 46 F 30.12.2021
(205 days)

Pfizer
Pfizer 70.2% 09.06.2021

30.06.2021
Cohort PCR+ Non-severe Hospital Discharge. Symptoms: fever, cough

1429191, L1 41 F 28.11.2021
(170 days) Pfizer 95.6% 12.06.2021

1433753, L2 19 M 14.12.2021
(140 days)

Pfizer
Pfizer 75.6% 28.07.2021

18.08.2021

1433789, L3 25 F 14.12.2021
(103 days) Pfizer 45.0% 03.09.2021

1435300, L4 26 M 20.12.2021
(168 days)

Pfizer
Pfizer 62.8% 06.07.2021

27.07.2021

1435504, L5 47 M 20.12.2021
(199 days)

Pfizer
Pfizer 96.1% 05.06.2021

26.06.2021
Cohort PCR+ Severe Hospitalized. Symptoms: pneumonia, diarrhea, body weakness

16105221, S1 79 M 10.11.2021
(209 days)

Pfizer
Pfizer 7.3% (negative) 16.04.2021

07.05.2021

16106123, S2 77 F 22.11.2021
(223 days)

Pfizer
Pfizer 94.6% 14.04.2021

05.05.2021

1431680, S3 91 M 08.12.2021
(251 days)

Pfizer
Pfizer
Pfizer

61.7%
03.03.2021
24.03.2021
03.11.2021

1432590, S4 73 M 10.12.2021
(229 days)

Pfizer
Pfizer 95.5% 26.04.2021

17.05.2021

1434692, S5 75 F 17.12.2021
(225 days)

Pfizer
Pfizer

Moderna
92.9%

07.05.2021
28.05.2021
09.12.2021

Cohort PCR+ ICU. Symptoms: severe bilateral pneumonia with acute respiratory distress

1432410, U1 52 F 10.12.2021
(194 days)

Janssen
Moderna 95.0% 31.05.2021

23.11.2021

1434573, U2 52 M 17.12.2021
(201 days)

Janssen
Moderna 94.7% 31.05.2021

23.11.2021

(*) Days between first vaccine dose and serum sampling are shown in parentheses.
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Figure 1. Experimental design and rationale. The experimental design used in our study was
based on sera collected from vaccinated individuals (mostly with Pfizer and Moderna-BioNTech)
and SARS-CoV-2 PCR-negative (PCR–) or infected PCR-positive (PCR+) and with asymptomatic,
non-severe, and severe COVID-19 symptomatology (Table 1). Two PCR+ cases with severe symptoms
and in the hospital intensive-care unit (ICU) were included only as reference for selected proteins.
Sera were collected between 156 and 298 days after first vaccine-dose administration and subjected
to SWATH-MS quantitative proteomics to characterize serum-protein profiles in different cohorts.
The proteomics results were then translated into the identification of correlates with protective- or
disease-associated capacity and vaccine-induced protective epitopes.

2.2. Serum Proteomics

The methodology and algorithms for serum proteomics were as previously described [8].
Serum samples from PCR– controls and PCR+ COVID-19 asymptomatic, non-severe, and
severe individuals (n = 5 each) were individually analyzed. Two PCR+ cases with se-
vere symptoms and in the hospital ICU were included only as reference for the selected
proteins. Protein concentration in samples was determined using the BCA Protein As-
say with BSA (Sigma-Aldrich) as standard. Protein-serum samples (100 µg per sample)
were trypsin digested using the FASP Protein Digestion Kit (Expedeon Ltd., UK) and
sequencing-grade trypsin (Promega, Madison, WI, USA) following the manufacturer’s
recommendations. The resulting tryptic peptides were desalted onto OMIX Pipette tips C18
(Agilent Technologies, Santa Clara, CA, USA), dried down, and stored at−20 ◦C until mass-
spectrometry analysis. The desalted protein digests were resuspended in 2% acetonitrile,
5% acetic acid in water, and analyzed by reverse-phase liquid chromatography coupled
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with mass spectrometry (RP-LC-MS/MS) using an EkspertTM nanoLC 415 system coupled
online with a 6600 TripleTOF® mass spectrometer (AB SCIEX; Framingham, MA, USA)
through Information-Dependent Acquisition (IDA) followed by Sequential Windowed
data-independent Acquisition of the Total High-resolution Mass Spectra (SWATH-MS). The
peptides were concentrated in a 0.1 × 20 mm C18 RP precolumn (Thermo Fisher Scientific,
Waltham, MA, USA) with a flow rate of 2 µL/min for 10 min in solvent A. Then, peptides
were separated in a 0.075 × 250 mm C18 RP column (New Objective, Woburn, MA, USA)
with a flow rate of 300 nl/min. Elution was carried out in a 120 min gradient from 5%
B to 30% B followed by a 15 min gradient from 30% B to 60% B (Solvent A: 0.1% formic
acid in water, solvent B: 0.1% formic acid in acetonitrile) and directly injected into the
mass spectrometer for analysis. For IDA experiments, the mass spectrometer was set to
scanning full spectra from 350 m/z to 1400 m/z (250 ms accumulation time), followed by up
to 50 MS/MS scans (100–1500 m/z). Candidate ions with a charge state between +2 and +5
and counts per second above a minimum threshold of 100 were isolated for fragmentation.
One MS/MS spectrum was collected for 100 ms before adding those precursor ions to the
exclusion list for 15 s (mass spectrometer operated by Analyst® TF 1.6, ABSciex®). Dynamic
background subtraction was turned off. Data were acquired in high-sensitivity mode with
rolling collision energy on and a collision energy spread of 5. An equal amount of the five
samples for each experimental group joined together as a representative mixed sample of
each of the 4 experimental groups, which were used for the generation of the reference
spectral-ion library as part of SWATH-MS analysis. A total amount of 4 µg protein digests
for each mixed sample was injected. For SWATH quantitative analysis, 50 independent
samples (2 technical replicates from each of the 5 biological replicates for each of the 4 ex-
perimental groups and 5 technical replicates from each of the 2 biological replicates in the
case of ICU samples) (6 µg each) were subjected to the cyclic data-independent acquisition
(DIA) of mass spectra using the SWATH variable-window calculator (V 1.0, AB SCIEX) and
the SWATH acquisition-method editor (AB SCIEX), similar to established methods [8]. A
set of 50 overlapping windows was constructed (containing 1 m/z for the window overlap),
covering the precursor mass range of 400–1250 m/z. For these experiments, a 50 ms survey
scan (350–1400 m/z) was acquired at the beginning of each cycle, and SWATH-MS/MS
spectra were collected from 100–1500 m/z for 70 ms in high-sensitivity mode, resulting in
a cycle time of 3.6 s. Collision energy for each window was determined according to the
calculation for a charge +2 ion centered upon the window with a collision-energy spread
of 15. To create a spectral library of all the detectable peptides in the samples, the IDA
MS raw files were combined and subjected to database searches in unison using Protein-
Pilot software v. 5.0.1 (AB SCIEX) with the Paragon algorithm. Spectra identification was
performed by searching against the Uniprot human-proteome database (79,038 entries in
January 2022) with the following parameters: iodoacetamide cysteine alkylation, trypsin
digestion, identification focus on biological modification, and thorough ID as search effort.
The detected protein threshold was set at 0.05. To assess the quality of identifications, an
independent False Discovery Rate (FDR) analysis with the target-decoy approach provided
by Protein PilotTM was performed. Positive identifications were considered when identified
proteins reached a 1% global FDR. The mass-spectrometry proteomics data were deposited
in the Proteome Xchange Consortium via the PRIDE partner repository with the dataset
identifier PXD031969 and 10.6019/PXD031969.

2.3. Quality Control of Proteomics Data

The quality of the proteomics data was controlled at multiple levels. First, a rat-ileum
digest was used for the evaluation of instrument performance. Buffer A samples were
run as blanks every two injections to prevent carryover. Two technical replicates were
injected for each sample. For validation of serum-proteomics data, protein representation
for previously identified selected biomarkers for COVID-19 and proteomics studies were
used to show correlation with disease severity. An enrichment analysis was conducted
using the Coronascape COVID database (https://metascape.org/COVID; [8]) to identify

https://metascape.org/COVID
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proteins found in our study as differentially represented in response to COVID-19 and
reported in previous COVID-19 omics datasets.

2.4. Data Analysis

For SWATH processing, up to 10 peptides with 7 transitions per protein were auto-
matically selected by the SWATH Acquisition MicroApp 2.0 in the PeakView 2.2 software
with the following parameters: 15 ppm ion library tolerance, 5 min XIC extraction win-
dow, 0.01 Da XIC width, and considering only peptides with at least 99% confidence and
excluding those that were shared or contained modifications. However, to ensure reliable
quantitation, only proteins with 3 or more peptides available for quantitation were selected
for XIC peak-area extraction and exported for analysis in the MarkerView 1.3 software
(AB SCIEX). Global normalization according to the total area sums of all detected proteins
in the samples was conducted (Supplementary Materials Data File S1). The Student’s
t-test (p < 0.05) was used to perform two-sample comparisons between the averaged area
sums of all the transitions derived for each protein across the 10 replicate runs for each
group under comparison to identify proteins that were significantly represented between
groups (Supplementary Materials Data File S1). Protein representation was compared
between groups by One-way ANOVA test followed by post-hoc Bonferroni and Holm mul-
tiple comparisons tests (p < 0.05; https://astatsa.com/OneWay_Anova_with_TukeyHSD/),
and relative intensity was compared between PCR- and PCR+ cohorts by Welch’s un-
paired t-test (p < 0.05; https://www.graphpad.com/quickcalcs/ttest1/?Format=C) [8].
Data were separately analyzed for overrepresented and underrepresented proteins us-
ing the Metascape gene annotation and analysis resource (https://metascape.org/gp/
index.html#/main/step1). The analytical algorithm developed using Protein BLAST se-
quence alignment against non-redundant protein database (nr) using compositional matrix
adjustment (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=
BlastSearch&LINK_LOC=blasthome) and Paratome (http://www.ofranlab.org) was used
for the identification of antigen-binding regions and vaccine-induced antibody-protective
epitopes and correlates of identified proteins with protective- or disease-associated capacity
(Supplementary Materials Data Files S2 and S4).

2.5. Antibody Neutralization Test

Antibody titers specific for the neutralization of SARS-CoV-2 virus were determined
with a cPass SARS-CoV-2 neutralization antibody-detection kit (Genscript, Piscataway,
NJ, USA) following the manufacturer′s instructions. Briefly, 100 µL of the positive and
negative controls and serum samples at 1:100 dilution and previously incubated with HRP
conjugated RBD during 30 min at 37 ◦C were added to the 96-microwell plate coated with
RBD-SARS-CoV-2 protein and incubated for 15 min at 37 ◦C. After washing four times with
260 µL/well of wash buffer, 100 µL/well of chromogen-substrate solution were added and
incubated for 15 min at RT. Finally, the colorimetric reaction was stopped with 50 µL/well
of stop solution and the absorbance was measured in a spectrophotometer (Thermo Fisher
Scientific) at O.D. 450 nm. Results were evaluated by calculating the ratio between the O.D.
of the sample and the O.D. of the calibrator using the following formula: Inhibition = (1 −
O.D. value of sample/O.D. value of negative control) × 100.

2.6. Antibody Levels against HBV and Zika Virus

Individual sera from all cohorts included in the study were characterized for antibody
levels against HBV and Zika virus using pathogen-specific ELISA tests. The ELISA kits are
designed for the detection of antibodies to hepatitis B-virus surface antigen: Hepatitis B
surface antigen Ab ELISA kit (AB-KA0287; Biogen Científica, Madrid, Spain) or anti-Zika
Virus Non-structural Protein, Anti-Zika virus IgG ELISA kit (ab221844; Abcam, Cambridge,
UK) in human serum. Antibody levels were compared between PCR– and PCR+ cohorts
by Chi-squared test (p < 0.05). A Spearman’s Rho (rs) correlation analysis was conducted

https://astatsa.com/OneWay_Anova_with_TukeyHSD/
https://www.graphpad.com/quickcalcs/ttest1/?Format=C
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM = blastp&PAGE_TYPE = BlastSearch&LINK_LOC = blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM = blastp&PAGE_TYPE = BlastSearch&LINK_LOC = blasthome
http://www.ofranlab.org
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between virus cross-reactive Ig levels and proteomic-protein relative intensity (p < 0.05;
https://www.socscistatistics.com/tests/spearman/default2.aspx).

2.7. Human Autoantibody General Survey Microarray

Reactive autoantibodies were characterized with individual sera from all cohorts using
the Human Autoantigens General Survey Antigen Microarray (GeneCopoeia’s OmicsArray;
Rockville, MD, USA), a protein microarray enabling powerful detection of autoantibodies
associated with many diseases, including rheumatoid arthritis, muscular dystrophy, sys-
temic lupus erythematosus, and type-1 diabetes. The array carries 120 superior-quality
purified proteins spotted onto nitrocellulose filters, which are adhered to glass slides.
Antigens known to be associated with specific autoimmune diseases are chosen based
on a thorough review of peer-reviewed publications. Data interpretation: NSI, net signal
intensity, averaged fluorescent-signal intensity for each antigen subtracted by local back-
ground and negative control signal; NSI-nor, NSI normalized to internal Ig controls; SBR,
averaged signal-to-background ratio of each antigen; SBR-nor, SBR normalized to internal
Ig controls; SNR, signal-to-noise ratio that represents the significance of the signal above
the background (SNR ≥ 3 means the signal is significantly higher than the background).
Additional information is in Supplementary Materials Data File S3.

3. Results and Discussion
3.1. Characterization of Immunoglobulin Protein Profiles and Correlation with Protective- or
Disease-Associated Capacity

The experimental design used in our study was based on sera collected from SARS-
CoV-2 PCR-negative (PCR–) or infected PCR-positive (PCR+) vaccinated individuals
(mostly with Pfizer and Moderna-BioNTech) and with asymptomatic, non-severe, and
severe COVID-19 symptomatology (Figure 1, Table 1). Two PCR+ cases with severe symp-
toms and in the hospital intensive-care unit (ICU) were included only as reference for
selected proteins. Sera were collected in November–December 2021 before the appearance
of the SARS-CoV-2 Omicron variant in Spain, and thus most PCR+ cases were probably
of the Delta virus variant (Table 1). As expected, 91% of the individuals’ serum samples
(20 out of 22 except for samples C5 and S1; Table 1) showed neutralization antibodies
against SARS-CoV-2. Nevertheless, the characterization of antibody- and non-antibody-
mediated immune response to vaccination is important to understanding the response
to COVID-19 vaccines. Proteomics analysis identified significantly dysregulated proteins
in vaccinated and infected cohorts (asymptomatic, n = 134; non-severe, n = 117; severe,
n = 230) when compared to vaccinated PCR– individuals (Figure 2A, Supplementary Mate-
rials Data File S1). More than 55% of the dysregulated proteins identified in infected cohorts
when compared to PCR– individuals were immunoglobulins (Igs), mostly overrepresented
in asymptomatic and severely infected cohorts (Figure 2A,B). This result is associated with
response to vaccination, as supported by the finding using a similar serum-proteomics ap-
proach in healthy, unvaccinated individuals and with different COVID-19 symptomatology,
in whom only 32% (60/189) of the dysregulated proteins were Igs [8].

An analytical workflow was developed to characterize selected Ig proteins identified
as significantly dysregulated in vaccinated and infected cohorts when compared to vacci-
nated PCR– individuals (Supplementary Materials Data File S2). The use of the Paratome
web server (http://www.ofranlab.org) allowed for the identification of antigen-binding
regions in identified Ig light- or heavy-chain variable regions, including but not limited
to complementarity-determining regions (CDRs) [9]. As has been discussed, heavy-chain
complementarity-determining region 3 (HCDR3) is necessary, but insufficient for specific
antibody binding [10].

https://www.socscistatistics.com/tests/spearman/default2.aspx
http://www.ofranlab.org
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Figure 2. Serum-protein profiles and correlation of Ig overrepresented in vaccinated infected co-
horts with protective- or disease-associated capacity. (A) Number of identified overrepresented or
underrepresented Ig and non-Ig proteins in infected asymptomatic, non-severe, and severe cohorts
when compared to PCR– individuals. (B) Change in Ig-protein levels in PCR+ cohorts. PCR+/− Log
fold-change relative intensity was compared between groups by One-way ANOVA test followed
by post-hoc Bonferroni and Holm multiple comparisons tests (p < 0.05). (C) Heatmap of PCR+/−
Log fold-change relative intensity (Z-scored original value) for Ig proteins overrepresented in in-
fected cohorts. Correlates with protective- or disease-associated capacity are shown for Igs highly
overrepresented in PCR+ individuals.

Focusing on Igs highly overrepresented in PCR+ individuals, the results showed
differences between infected cohorts (Figure 2C, Supplementary Materials Data File S2).
In vaccinated and infected asymptomatic cases, predictive models associated the Igs with
protection against SARS-CoV-2, Zika virus, rotavirus, Hepatitis B virus (HBV), and throm-
bosis. However, in cases with COVID-19 symptoms, Igs associated with protection against
SARS-CoV-2 and HBV were only identified in non-severe cases, whereas Igs associated
with autoantibodies and risk of allergic reactions and diseases such as myasthenia gravis
and chronic idiopathic thrombocytopenic purpura (ITP) were identified only in non-severe
and severe patients (Figure 2C, Supplementary Materials Data File S2). Additionally, au-
toantibodies were identified in all PCR+ cohorts. The analysis of mass-spectra relative
intensity for selected overrepresented Ig proteins corroborated in individual samples the
cohort-dependent results (Figure 3A). Then, an independent analysis of predicted biomark-
ers was used to validate these results for Zika virus, HBV, and a human-autoantibody
general survey (Figure 3B–D).
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Figure 3. Validation of serum Ig proteins overrepresented in vaccinated infected individuals.
(A) Changes in Ig-protein mass-spectra relative intensity for selected overrepresented Ig in individual
samples in all PCR– and PCR+ cohorts. Relative intensity was compared between PCR– and PCR+
cohorts by Welch’s unpaired t-test (* p < 0.05, ** p < 0.005; n = 5 biological replicates). Samples
from individuals in the ICU were only included as reference for selected proteins. (B) Independent
analysis of predicted biomarker A0A5C2FZ03 for anti-Zika virus Ig levels. Antibody levels were
compared between PCR– and PCR+ cohorts by Chi-squared test (p = 0.004 for asymptomatic cohort).
A Spearman’s Rho correlation analysis was conducted between virus cross-reactive Ig levels and
proteomics-protein relative intensity (p < 0.05). (C) Independent analysis of predicted biomarkers
A0A5C2FZ03 and A0A5C2GPZ0 for anti-HBV Ig levels in asymptomatic and non-severe cohorts,
respectively. A Spearman’s Rho correlation analysis was conducted between HBV cross-reactive Ig
levels and proteomics-protein relative intensity (p < 0.05). (D) A human-autoantibody general survey
identified proteins reactive to IgM and IgG autoantibodies with significant NSI-nor values in PCR–
and PCR+ cohorts. Proteins were distributed based on the highest NSI-nor average IgM+IgG value.

In agreement with serum-protein profiles and correlation of Igs overrepresented in vac-
cinated infected cohorts with protective-associated capacity (Figures 2C and 3A), the results
showed that the anti-Zika-virus IgG levels were significantly higher in the asymptomatic
cohort only (Figure 3B). Furthermore, a significant positive correlation between Zika-virus
cross-reactive Ig levels and relative intensity of associated A0A5C2FZ03 protein was ob-
tained (Figure 3B, Supplementary Materials Data File S2). For HBV, the sensitivity of the
surface-antigen ELISA (positive values > 0.034) did not allow for identification of positive
individuals in PCR+ cohorts and allowed identification of only one individual in the PCR–
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cohort (C2 in Table 1, value = 0.079). Nevertheless, as predicted for serum-protein profiles
(Figures 2C and 3A), a significant positive correlation was obtained between mean HBV
ELISA O.D. 450 nm values and relative intensity of associated proteins A0A5C2FZ03 and
A0A5C2GPZ0 only in asymptomatic and non-severe individuals, respectively (Figure 3C,
Supplementary Materials Data File S2).

Autoantibodies in COVID-19 patients have been recently correlated with increased
antiviral humoral and inflammatory immune responses [11]. In our study regarding au-
toantibodies, the survey identified 120 target proteins with significant signal-to-noise ratio
(SNR ≥ 3; Figure 3D, Supplementary Materials Data File S3). The net signal intensity
for each antigen subtracted by the local background and negative control signal and nor-
malized to internal Ig controls (NSI-nor; Supplementary Materials Data File S3) showed a
distribution by different cohorts with the highest NSI-nor average IgM+IgG value (IgM+IgG
NSI-nor; Figure 3D). In accordance with serum-protein profiles, autoantibodies were identi-
fied mostly in PCR+ cohorts with only one protein (Histone H1), with the highest IgM+IgG
NSI-nor value in PCR– individuals (Figures 3D and 4, Supplementary Materials Data File
S3). As predicted by our analysis (Supplementary Materials Data File S2), most of the
identified proteins reactive to autoantibodies were involved in the regulation of the immune
system and/or associated with different diseases (Figure 4, Supplementary Materials Data
File S3). For example, nuclear pore-membrane glycoprotein GP210 identified with the
highest IgM+IgG NSI-nor value in the severe cohort is a prognostic marker in patients with
primary biliary cirrhosis [12]. Another protein with significant signal-to-noise ratio in all
PCR– and PCR+ cohorts (SNR ≥ 4.5) and the highest IgM+IgG NSI-nor in severe patients
(SNR > 12) was the Type-1 angiotensin II receptor (AGTR; Supplementary Materials Data
File S3), which during SARS-CoV-2 infection can recognize and internalize the soluble
angiotensin-converting enzyme 2 (ACE2)–coronavirus spike protein complex through dy-
namin 2-dependent endocytosis [13]. In accordance with our results, these autoantibodies
are associated with an unfavorable COVID-19 disease course [14].

The Igs identified as underrepresented in infected cohorts and thus with higher relative
levels in PCR– individuals (Figure 5A, Supplementary Materials Data File S2) were used
for the identification of vaccine-induced protective epitopes using a designed analytical
workflow (Figure 5B, Supplementary Materials Data File S2). The results showed that the
protective epitopes were not only identified in the SARS-CoV-2 spike (S) receptor-binding
domain (RBD) associated with vaccine-protective capacity [15], but also in other virus
proteins such as envelope small-membrane glycoprotein M (ORF3a), membrane-protein
E, and nucleocapsid phosphoprotein N (ORF1ab) (Figure 5C, Supplementary Materials
Data File S2). A correlation analysis was conducted between SARS-CoV-2-neutralizing
antibodies (Table 1) and mass-spectra relative intensity of identified Igs with vaccine-
induced protective epitopes (Supplementary Materials Data Files S1 and S2). The results
showed no significant correlation for all cohorts together (R2 = 0.182) but revealed a positive
correlation in PCR– individuals in whom these proteins were overrepresented (R2 = 0.826),
thus providing support to the predicted protective epitopes in response to vaccination
(Figure 5D).
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Figure 4. Heatmap of IgM and IgG autoantibodies overrepresented in vaccinated infected cohorts.
According to the NSI-nor value, log2 (NSI+1) is calculated, the data are normalized, and a heat map
is generated. The antigens are clustered according to Euclidean distance. Additional information is
in Supplementary Materials Data File S3. Abbreviations: S, severe; L, non-severe: A, asymptomatic;
C, PCR– (Table 1).

These results further advance our knowledge on the antibody response in vaccinated
uninfected (fully protected) and vaccinated SARS-CoV-2-infected (partially protected)
individuals associated with host factors such as age, comorbidities, and coronavirus in-
fection [16–19]. Whereas vaccinated PCR– individuals developed a protective response
mediated by Igs against multiple SARS-CoV-2 proteins to prevent infection, PCR+ individ-
uals showed overrepresented Ig profiles associated with COVID-19 symptomatology with
protective Igs to control virus infection and thrombosis in asymptomatic cases and limited
or no protective response against SARS-CoV-2 with Ig-associated risk of allergy and other
diseases in non-severe and severe patients.
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Figure 5. Serum-protein profiles of Ig underrepresented in vaccinated infected cohorts and identifi-
cation of vaccine-induced protective epitopes. (A) Heatmap of PCR+/− Log fold-change relative
intensity (Z-scored original value) for Ig proteins underrepresented in infected cohorts. (B) Analytical
workflow developed for the dentification of vaccine-induced protective epitopes. (C) Identification
of SARS-CoV-2 proteins with predicted reactive epitopes to Ig underrepresented in infected cohorts
and thus overrepresented in PCR– individuals. All methods and results are disclosed in Supplemen-
tary Materials Data File S2. (D) Correlation analysis between SARS-CoV-2-neutralizing antibodies
(Table 1) and mass-spectra relative intensity of identified Igs with vaccine-induced protective epitopes
(Supplementary Materials Data Files S1 and S2).

3.2. Characterization of Non-Ig Protein Profiles and Correlation with COVID-19

As reported in previous proteomics studies [7,8], identified dysregulated non-Ig pro-
teins and biological processes in vaccinated infected PCR+ cohorts when compared to
vaccinated PCR– individuals were associated with SARS-CoV-2 infection and COVID-
19 (Figures 6A,B and 7, Supplementary Materials Data Files S1 and S4). As expected,
PCR+/− Log fold-change relative intensity was higher in individuals with severe symptoms
(Figure 6A,B). Accordingly, protein–protein-interaction networks and components for non-
Ig proteins over and underrepresented in infected cohorts showed a higher representation in
the severe cohort when compared to PCR– cases (Figure 7). Gene-ontology (GO) categories
with overrepresented proteins involved in the regulation of complement and coagulation
cascades and antibody-mediated complement activation were the most represented in
protein–protein interactions (Figure 7; identified with yellow stars). Hyperactivation of
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the complement and coagulation systems are associated with the clinical syndrome of
COVID-19 [20].
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Figure 6. Multiple differential representation and enrichment ontology clusters for non-Ig proteins.
(A) Heatmap of PCR+/− Log fold-change relative intensity (Z-scored original value). (B) Enriched
GO/KEGG ontology clusters for proteins over- and underrepresented in infected cohorts when
compared to PCR– cases. Accumulative hypergeometric p-values and enrichment factors were
calculated and used for filtering. Remaining significant terms were then hierarchically clustered into
a tree based on Kappa-statistical similarities among their gene memberships. Then, the 0.3 kappa
score was applied as the threshold to cast the tree into term clusters. The term with the best p-value
within each cluster was selected as its representative term and displayed in a dendrogram.

The other GO identified in the protein–protein-interaction network of overrepresented
proteins was the insulin-like growth factor (IGF) pathway as seen in Figure 7. Although
an association has been proposed between low IGF1 levels and poor outcome in patients
with COVID-19 [21], an epidemiological study provided evidence that higher IGF-1 con-
centrations are associated with a lower risk of COVID-19 mortality [22]. The results of our
study suggested that activation of the IGF pathway may occur in response to vaccination
by regulating immune-cell homeostasis to reduce risk for COVID-19 mortality [23].



Molecules 2022, 27, 5933 14 of 17Molecules 2021, 26, x FOR PEER REVIEW 14 of 17 
 

 

 

Figure 7. Protein–protein-interaction networks and components for non-Ig proteins over- and un-

derrepresented in infected cohorts when compared to PCR– cases. The MCODE algorithm was ap-

plied to networks to identify neighborhoods where proteins are densely connected. GO enrichment 

analysis was applied to the original protein–protein-interaction network and its MCODE network 

components to extract their “biological meanings,” where the top three best p-value terms were 

retained. GOs with proteins involved in the regulation of complement and coagulation cascades 

and antibody-mediated complement activation are identified with yellow stars. 

The other GO identified in the protein–protein-interaction network of overrepre-

sented proteins was the insulin-like growth factor (IGF) pathway as seen in Figure 7. Alt-

hough an association has been proposed between low IGF1 levels and poor outcome in 

patients with COVID-19 [21], an epidemiological study provided evidence that higher 

IGF-1 concentrations are associated with a lower risk of COVID-19 mortality [22]. The 

results of our study suggested that activation of the IGF pathway may occur in response 

to vaccination by regulating immune-cell homeostasis to reduce risk for COVID-19 mor-

tality [23]. 

Another finding of our study was related to severe-cohort overrepresented proteins 

in the biological process involved in interaction with symbiont (GO:0051702) (Figure 6B, 

Supplementary Materials Data File S4). One of the proteins identified in this biological 

process, Apolipoprotein E isoform 1 (APOE1; A0A0S2Z3D5), was overrepresented in se-

vere (Log fold-change = 0.157) and UCI (Log fold-change = 0.081) patients (Supplementary 

Materials Data File S1). The expression of ApoE proteins, including APOE1, is critical for 

the assembly of infectious Hepatitis C virus (HCV) in a strain-specific and cell-type de-

pendent manner [24]. Related to COVID-19, higher disease risk has been associated with 

Asymptomatic

Nonsevere

Severe

WP558|Complement and coagulation 

cascades (p = -14.8)
hsa04610|Complement and coagulation 
cascades (p = -13.7)

R-HSA-381426|Regulation of Insulin-like 
Growth Factor (IGF) transport and uptake 

by Insulin-like Growth Factor Binding 
Proteins (IGFBPs) (p = -12.5)

R-HSA-166663|Initial triggering of complement (p = -19.0)

R-HSA-173623|Classical antibody-mediated complement 
activation (p = 18.8)
R-HSA-166658|Complement cascade (p = -16.4)

R-HSA-977606|Regulation of Complement 
cascade (p = -14.1)
R-HSA-166665|Terminal pathway of complement 
(p = -14.0)

R-HSA-166658|Complement cascade (p = -13.7)

R-HSA-977606|Regulation of Complement cascade (p = -8.5)
R-HSA-166658|Complement cascade (p = -8.2)
hsa04610|Complement and coagulation cascades (p = -7.7)

APOA4
APOA1

APOA2
APOC1

GO:0010873|Positive 
regulation of cholesterol 
esterification (p = -14.4)
GO:0033700|Phospholi
pid efflux (p = -13.8)
GO:0010872|Regulation 
of cholesterol 
esterification (p = -13.5)

Underrepresented proteins

Overrepresented proteins

Figure 7. Protein–protein-interaction networks and components for non-Ig proteins over- and
underrepresented in infected cohorts when compared to PCR– cases. The MCODE algorithm was
applied to networks to identify neighborhoods where proteins are densely connected. GO enrichment
analysis was applied to the original protein–protein-interaction network and its MCODE network
components to extract their “biological meanings,” where the top three best p-value terms were
retained. GOs with proteins involved in the regulation of complement and coagulation cascades and
antibody-mediated complement activation are identified with yellow stars.

Another finding of our study was related to severe-cohort overrepresented proteins
in the biological process involved in interaction with symbiont (GO:0051702) (Figure 6B,
Supplementary Materials Data File S4). One of the proteins identified in this biological
process, Apolipoprotein E isoform 1 (APOE1; A0A0S2Z3D5), was overrepresented in severe
(Log fold-change = 0.157) and UCI (Log fold-change = 0.081) patients (Supplementary
Materials Data File S1). The expression of ApoE proteins, including APOE1, is critical
for the assembly of infectious Hepatitis C virus (HCV) in a strain-specific and cell-type
dependent manner [24]. Related to COVID-19, higher disease risk has been associated with
apoE4 genetic variants [25], but this is the first possible implication of ApoE1 in this process.
Therefore, APOE1-protein levels and genetic variants may be a biomarker associated with
disease severity in vaccinated and SARS-CoV-2-infected individuals.

As in recent studies [26], the interacting underrepresented proteins in vaccinated and
infected cohorts were apolipoproteins APOA1, APOA2, APOA4, and APOC1 involved in
the regulation of cholesterol esterification and phospholipid efflux (Figure 7). Higher levels
of APOA1 have been correlated with protection from COVID-19 severity [27]. Furthermore,
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cholesterol esterification may counteract the normally exacerbating effect of cholesterol
on coronavirus cytopathology [28]. Consequently, our results suggest that higher levels
of some apolipoproteins in PCR– individuals may be associated with a vaccine-protective
effect.

4. Conclusions

In summary, novel findings of the study include (a) characterization of Ig and non-Ig
protein profiles in vaccinated uninfected (fully protected) and vaccinated SARS-CoV-2-
infected (partially protected) individuals with identification of disease and protection-
associated biomarkers; (b) identification of candidate-protective epitopes not only in SARS-
CoV-2 RBD but also in glycoprotein M (ORF3a), membrane protein E, and nucleocapsid
phosphoprotein N (ORF1ab); (c) analysis of autoantibody profiles that are associated with
an unfavorable COVID-19 disease course even after vaccination; and (d) prediction on
non-Ig serum biomarkers associated with vaccine-protective capacity or disease severity in
vaccinated and SARS-CoV-2-infected individuals.

The main limitation of this study is that serum-proteomics analysis was conducted
with five samples from each cohort, which may have reduced the effect of case-by-case
differences in serum-protein representation. Nevertheless, the results of this study using a
serum-proteomics approach to characterize host-associated factors to COVID-19-vaccine
response suggest protective- and disease-associated mechanisms in vaccinated individuals.
Despite differences in individual age, sex, vaccine provider, and doses, the results were
consistent between different cohorts. These results may lead to studies with a higher
number of individuals and including different vaccine formulations to improve vaccine
efficacy and implementation against SARS-CoV-2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27185933/s1, Data File S1. Serum proteomics analy-
sis; Data File S2. Analysis of immunoglobulin proteins underrepresented and overrepresented in
infected cohorts when compared to PCR– individuals; Data File S3. Human-autoantibody general
survey in PCR– and PCR+ cohorts; Data File S4. Analysis of selected non-immunoglobulin proteins
underrepresented and overrepresented in infected cohorts when compared to PCR– individuals.
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