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Abstract

Stabilizing the dynamics of complex, non-linear systems is a major concern across several scientific disciplines including
ecology and conservation biology. Unfortunately, most methods proposed to reduce the fluctuations in chaotic systems are
not applicable to real, biological populations. This is because such methods typically require detailed knowledge of system
specific parameters and the ability to manipulate them in real time; conditions often not met by most real populations.
Moreover, real populations are often noisy and extinction-prone, which can sometimes render such methods ineffective.
Here, we investigate a control strategy, which works by perturbing the population size, and is robust to reasonable amounts
of noise and extinction probability. This strategy, called the Adaptive Limiter Control (ALC), has been previously shown to
increase constancy and persistence of laboratory populations and metapopulations of Drosophila melanogaster. Here, we
present a detailed numerical investigation of the effects of ALC on the fluctuations and persistence of metapopulations. We
show that at high migration rates, application of ALC does not require a priori information about the population growth
rates. We also show that ALC can stabilize metapopulations even when applied to as low as one-tenth of the total number
of subpopulations. Moreover, ALC is effective even when the subpopulations have high extinction rates: conditions under
which another control algorithm had previously failed to attain stability. Importantly, ALC not only reduces the fluctuation
in metapopulation sizes, but also the global extinction probability. Finally, the method is robust to moderate levels of noise
in the dynamics and the carrying capacity of the environment. These results, coupled with our earlier empirical findings,
establish ALC to be a strong candidate for stabilizing real biological metapopulations.
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Introduction

Controlling chaotically fluctuating and extinction-prone popu-

lations is of major interest to ecologists and conservation biologists

and has been an active area of investigation for the last two

decades [1]. Although substantial progress has been made in terms

of ameliorating chaos in the fields of chemical sciences, physical

sciences, electrical engineering, medicine and economics (reviewed

in [2,3]), few strategies have been demonstrated to be successful in

stabilizing biological populations. One reason for this is the fact

that short and noisy time series typical of most biological

populations make it statistically difficult to distinguish noisy limit

cycles from chaotic trajectories. Moreover, the parameters of

biological populations (e.g. intrinsic growth rate or carrying

capacity) are typically estimated a posteriori through model-fitting,

and are almost never available for perturbation. This precludes the

usage of many techniques that demand substantial knowledge of

the dynamics of the system (e.g. [4]). To alleviate some of the

above-mentioned problems, a number of methods have been

proposed that stabilize a system through perturbation of the state-

variable, i.e. the population size [5,6,7,8,9]. For example, it has

been theoretically shown that constant immigration can convert

chaotic trajectories into limit cycles in spatially homogeneous

[8,10] as well as spatially-structured [5,7] populations. Similarly,

regular perturbation towards a target population size can also

reduce the overall temporal fluctuations in the time series [11].

Among the methods that perturb the state-variable, one of the

promising strategies in the context of biological populations is the

so-called ‘‘limiter’’ family of algorithms. Broadly speaking, the

limiter strategy works by not allowing the population size to go

above or below some pre-determined threshold, and typically

requires some a priori information about the dynamics of the

system. Although proposed and verified in the context of physical

systems like double diode circuits [12], later theoretical investiga-

tions have established the generalizability of the concept to other

systems (e.g. [13]) including models of population dynamics

[14,15]. However, until recently, there was no empirical support

for the efficacy of any of the several limiter control algorithms in

the context of biological populations or metapopulations.

Recently, we proposed a novel limiter strategy, called the

Adaptive Limiter Control (ALC), to stabilize the dynamics of

spatially-unstructured and –structured populations [16]. ALC is a

restocking strategy that seeks to maintain populations and

metapopulations above a threshold. However, instead of a fixed

threshold [14,15], the magnitude of the perturbation is a function

of the difference in the population size in two successive

generations. We also empirically demonstrated the effectiveness
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of ALC in reducing the amplitude of fluctuations in size of

replicate laboratory populations and metapopulations of Drosoph-
ila melanogaster. Interestingly, ALC was able to reduce the

extinction probability of the said populations as well. Biologically

realistic simulations of ALC using three different non-species-

specific models which also incorporated noise, extinction proba-

bilities and lattice effects [17], were able to capture most of the

trends of the data. These simulations showed that the obtained

experimental results were not due to some idiosyncratic features of

the experimental system but are likely to be generalizable. The

latter conclusion was bolstered by an analytical investigation

suggesting that ALC will always stabilize the dynamics of spatially-

unstructured populations represented by unimodal maps [18].

Since the focus of the previous studies were either in vivo empirical

(i.e. using living organisms like fruit-flies) validation [16] or analysis

of spatially-unstructured populations [18], there has been little

exploration of ALC in terms of its effects on the dynamics of

spatially-structured populations. We aim to address that issue in

this paper.

In this study, we further explore the efficacy of ALC in silico (i.e.

using numerical simulations) in stabilizing the dynamics of

metapopulations governed by coupled Ricker maps. We do not

seek to establish any analytical results in this paper as such results

are typically difficult to attain in the context of spatially-structured,

stochastically fluctuating, extinction-prone populations. We dem-

onstrate that compared to an unperturbed system, ALC-controlled

metapopulations are more stable over a wide range of intrinsic

population growth rate, carrying capacity and extinction proba-

bility. The controller is shown to be effective with as low as 1 out of

9 or 10 subpopulations being controlled on both 1-D and 2-D

lattices. We find that, barring low migration rates (,20%), ALC

either stabilizes metapopulations or fails to have an effect, but

never reduces the global stability (measured in terms of

metapopulation constancy and persistence) as compared to its

uncontrolled counterpart. This implies that one does not require

extensive a priori knowledge of the parameter values of the

metapopulations, which is a definite benefit in terms of the

applicability of the method for practical purposes.

Methods

Adaptive Limiter Control (ALC)
ALC stabilizes populations by preventing a (sub) population

from going below a predefined fraction (c) of its size in the previous

generation. Since c is a fraction and not a fixed number, the

method automatically ‘‘adapts’’ to populations inhabiting envi-

ronments with different carrying capacities or exhibiting an

increasing or decreasing trend in size. This method thus includes

a mechanism for adjusting the magnitude of the perturbation and

hence is related to the ‘‘adaptive control’’ methods in control

theory [19]. The population is perturbed only if the current

population size falls below the ALC threshold and involves

restocking individuals from an external source until the current

population size reaches the ALC threshold. The method can thus

be represented as:

N�t ~
Nt ifNt§c:N�t{1 (1)

c:N�t{1 ifNtvc:N�t{1 (2)

�

where Nt indicates the population size at a particular generation t
before the imposition of ALC, N* is the population size post ALC

treatment and c is the ALC magnitude. Note that N* is also the

breeding population size at the end of a generation. Therefore, the

population size of the t+1th generation before ALC treatment will

beNtz1~f (N�t). It is known that the time series of Nt and N*t

can sometimes exhibit different kinds of dynamics [18,20]. Here,

we restrict ourselves to the dynamics of N*
t which, being the

breeding population size, is more relevant from a biological point

of view.

Clearly, setting c = 1 and implementing ALC in every constit-

uent population of a metapopulation, has the potential of reducing

the dynamics of the system to a fixed point. However, this is

practically difficult to achieve due to the extensive intervention

effort that would be needed to census and perturb each

subpopulation independently. Thus, we focus on the stabilizing

efficacy of much lower values of c applied to only a subset of

subpopulations. Following a previous study [16], the rest of our

analysis and discussion focuses on two values of ALC: c = 0.25 and

c = 0.4 which we refer to as Low Adaptive Limiter Control (LALC)

and High Adaptive Limiter Control (HALC) respectively. We

choose to use these two values again so that the empirical results of

the previous study are directly comparable with the corresponding

numerical results here.

Simulations
We used the Ricker equation [21] to examine the asymptotic

behaviour of ALC. The Ricker equation is given as

(Ntz1~Nt:er:(1{
Nt
K

)) where Nt denotes the population size at

time t, r is the per-capita intrinsic growth rate and K is the carrying

capacity [22]. First-principles derivations indicate that populations

which exhibit scramble competition and random distribution of

individuals over space are expected to follow Ricker dynamics

[23]. These conditions are likely to be applicable to a wide variety

of organisms. Therefore not surprisingly, the model has been

shown to be a good descriptor of the dynamics of populations of a

large number of taxa including bacteria [24], fungi [25], ciliates

[26], crustaceans [27], fruit-flies [28,29], fishes [21] etc. Thus,

insights gained from Ricker-based simulations are likely to be

applicable across wide range of organisms, which was the chief

reason for our adopting it as a descriptor of the unperturbed

dynamics.

Following earlier studies [16,30], noise was added in every

iteration to the r parameter in the form of a random number e
drawn from a uniform random distribution of range 20.2#e#0.2.

The final population growth model can thus be represented as:

Nt+1 = Nt.exp((r+e).(1-Nt/K)). In our simulations, unless otherwise

mentioned, we consider the value of intrinsic growth rate

parameter to be 3.5 which lies within the range of parameter

space representing chaotic region in a Ricker map. This value of r
was chosen primarily due to two reasons. Firstly, the effect of

migration rate on the stability of an unperturbed metapopulation

is observed primarily when the intrinsic growth rate is high,

allowing the dynamics of the neighbouring subpopulations to go

out-of-phase [31]. For the Ricker model, this phenomenon is

observed in the chaotic zone [30]. Thus, considering chaotic

intrinsic growth rates allow us to study the effects of ALC on

metapopulations that actually vary in their inherent levels of

stability due to different rates of migration [30]. Secondly, we were

also interested in observing the interaction of ALC and

subpopulation extinction in affecting the stability of the system,

and a system with high growth rate is more prone to density-

dependent extinctions than one with low growth rates. This is

because when growth rates are high, the population is more likely

to hit low population sizes, thus increasing the chance of extinction

(see next paragraph). We note here that this value of r is within the

range of estimated growth rates from natural populations [32]. We

also explicitly look at the effects of varying the intrinsic growth rate

over a large parameter range including stable points, limit cycles of

Metapopulation Stabilization by ALC

PLOS ONE | www.plosone.org 2 August 2014 | Volume 9 | Issue 8 | e105861



different periodicities and chaos. The initial population size (N0)

and the carrying capacity (K) were arbitrarily fixed at 20 and 30

respectively, unless mentioned otherwise.

The unmodified Ricker model does not takes zero-values and

thus theoretical populations (and metapopulations) governed by

the Ricker population growth function never go extinct. As

subpopulation extinction is known have an impact on the

dynamics of metapopulations [30,33], we explicitly introduced

stochastic extinction in our models by implementing an extinction

probability of 0.5 below a threshold population size of 4 [16,30].

In other words, P(Nt = 0 | Nt9, = 4) = 0.5 (unless explicitly

mentioned otherwise). Here, Nt9 denotes the post-migration

population size of the tth generation while Nt denotes the

population size after the extinction step but before the implemen-

tation of ALC. On the event of metapopulation extinction, the

metapopulation was reset with a population size of 8 per

subpopulation. Note that for c.0, implementation of ALC ensures

that the metapopulation size is more than zero at each generation.

Thus, only the unperturbed (c = 0) metapopulation were reset

during extinction events.

For simulations in this study, a metapopulation is described as

two or more subpopulations connected to each other via

symmetric rate of migration, i.e. the immigration and emigration

rates for all patches were equal. For metapopulations consisting of

more than two subpopulations, the subpopulations were consid-

ered to occupy spaces on the periphery of an imaginary circle so

that dispersal occurred between the two nearest neighbours of a

subpopulation. In other words, the system is a one-dimensional

lattice with periodic boundary conditions (a finite ring). In nature,

such metapopulations can be found along the edge of a lake or a

park. In perturbed metapopulations, ALC was imposed after

migration so that immigration due to ALC for a given generation

would have an impact on the population size of the neighbour only

through migration in the subsequent generation. Except the case

where we study the effects of perturbing different fractions of

subpopulations, ALC was always applied to only one subpopula-

tion in the metapopulation.

The complete sequence of steps in the simulations was as

follows:

Nt-1* R f(Nt-1*) R [migration] R Nt9R[extinction] R Nt R
[ALC] R Nt*

where Nt-1* is the subpopulation size after the application of

ALC in generation t-1; f(Nt-1*) denotes the population size post-

reproduction (i.e. application of the Ricker function) on which we

impose the migration operation to get population size Nt9.

Extinction, if applicable, is imposed at this stage which yields the

pre-ALC value of Nt. This value of Nt is then compared with Nt-1*

to determine whether ALC is to be applied or not (as per equation

1, 2), leading to the final breeding population size of Nt*. When

c = 0, an extinct population is reset to a value of 8. The

metapopulation size of a given generation t is computed as the

sum of the Nt*s for all the subpopulations and indices to measure

global stability are calculated on this metapopulation size.

All simulations were run using MATLAB R2010a (Mathworks

Inc.) and each point in the figures represents an average of 100

simulation runs. The error bars represent standard error of the

mean. The first 400 iterations of each run were rejected, and all

indices of stability (see next section) were computed over the next

100 iterations.

Stability properties and synchrony
The definition of stability happens to be controversial and a

1997 review enumerates no less than 163 definitions pertaining to

70 different stability concepts in the ecological literature alone

[34]. Following the nomenclature of [34], we have considered the

efficacy of ALC w.r.t two kinds of stability properties of the

metapopulation time-series, namely constancy and persistence.

Constancy is defined as the property of a system to stay essentially

unchanged [34]. We quantified constancy using a widely used

[35,36] measure called the Fluctuation Index (FI):

FI~
Xt{1

t~0

abs(Ntz1{Nt)

" #
=( �NN|T)

where Nand T stand for the average population size and total

number of generations respectively. FI is a dimensionless quantity

which measures one-step fluctuation in population or metapopu-

lation size across generations, scaled by the mean population size

[30]. High FI implies reduced constancy and vice versa.

Persistence was quantified as metapopulation extinction fre-

quency, i.e. the average number of generations a metapopulation

records a zero population size (before the application of ALC) as a

proportion of the total number of generations. Thus, high

extinction frequency of the system indicated the system to be less

persistent. We calculated synchrony as the cross-correlation

coefficient at lag zero of the first-differenced log-transformed

values of the two subpopulation sizes [37].

Results and Discussion

Effects of migration rate on constancy
The rate of migration between subpopulations is known to

influence the dynamics of metapopulations [30,31,38] and thereby

can have a major impact on the efficacy of a control technique

[16]. We therefore tested the effect of ALC on the constancy of

two-patch metapopulations at different rates of symmetric

migration. We find that compared to the unperturbed case

(c = 0), both LALC (c = 0.25) and HALC (c = 0.4) increase the

Fluctuation Index (FI) of the metapopulation at low (,20%) rates

of migration (Fig. 1A). However, when migration rates are higher,

the situation reverses and both levels of ALC seem to reduce the

metapopulation fluctuation index. The explanation for this

phenomenon lies in the way ALC affects the synchrony between

the constituent subpopulations (Fig 1B). In an unperturbed system

(c = 0), low rates of migration (,20%) reduces metapopulation FI

by inducing out-of-phase fluctuations (i.e. negative synchrony)

between neighboring sub-populations [30]. This happens because

negative synchrony ensures that crashes in some subpopulations

are accompanied by booms in others. This in turn reduces the

temporal variation in the metapopulation size [30,31,38], which

by definition, is the sum of all subpopulation sizes. Conversely, in-

phase fluctuations between subpopulations at high migration rates

reduce constancy (i.e. increase FI) at the metapopulation level, by

bringing the subpopulations in phase with each other. It has been

earlier shown that ALC reduces both positive and negative

synchrony between subpopulations [16], which has contrasting

effects on constancy stability. While the reduction of positive

synchrony (Fig 1B) reduces metapopulation FI, the lowering of

negative synchrony at low migration rate increases metapopula-

tion FI, leading to the observed opposite effects of ALC at the two

migration rates (Fig 1A).

It is clear from Fig 1A that an unperturbed system has high FI

at higher rates of migration. Since ALC is a perturbation strategy

to stabilize an unstable population [16,18], we focus on a

particular rate of migration ( = 30%) for the rest of our

investigation. The dynamics at this particular rate of migration

has been extensively investigated in previous studies on metapop-

Metapopulation Stabilization by ALC
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ulations of Drosophila melanogaster [16,30,33], is known to induce

high values of metapopulation FI [30,33] and is within the range

of migration rates experienced by natural populations [39].

Effects of r on constancy and persistence
Estimating the precise values of parameters like growth rate or

carrying capacity is typically difficult for any real population, and

often a control strategy will need to be applied without much prior

information about the dynamics of a system. Under such

conditions, a control method that is known to stabilize metapop-

ulations only under a narrow parameter zone is expected to be of

limited use. As part of our investigations on its applicability, we

tested the efficacy of ALC in terms of both constancy and

persistence at various magnitudes of r (+ noise, e drawn from a

uniform random distribution of range 20.2#e#0.2) for the

subpopulations (Fig 2). HALC reduces metapopulation FI for all

values of r.2.2 whereas LALC is effective at a slightly higher

range of r (.2.7) (Fig. 2A). ALC had no discernible effect on the

dynamics at r,2.2. These observations can be explained by an

interaction of the nature of ALC and the Ricker dynamics. The

Ricker model is known to follow a period-doubling route to chaos

with the amplitude of oscillation of the population size becoming

larger with increasing r [40]. ALC perturbations happen only

when the population size in a given generation is less than a

fraction c of its previous generation. In the Ricker model, r,2.0

always leads to a stable point cycle, as a result of which, the ALC

perturbation is never applied, and the dynamics of the

unperturbed population is indistinguishable from the ALC-

controlled ones. When r lies between 2.0 and 2.2, the system

undergoes small amplitude two-point limit cycles in which the

population crashes are not sufficiently large to lead to the

application of ALC. Thus, again, there is no difference between

the control and the perturbed populations. It is only when the

amplitude of the limit cycles become sufficiently large (r.2.2 in

this case) that ALC perturbations are actually applied and there is

an effect of the perturbation on FI. Not surprisingly, this reduction

of FI is visible for lower values of r for HALC (r.2.2) compared to

LALC (r.2.7). This is because the minimum amplitude of the

crash needed for ALC to be applied is 60% and 75% of the

previous population size for HALC and LALC respectively (as

HALC and LALC is imposed only in cases where the current

population size is less than 40% and 25% of previous generation,

respectively). This implies that, compared to LALC, HALC

perturbations begin at lower values of r and therefore the

stabilizing effect also manifests earlier (Fig 2A). Clearly, these

observations should be applicable for all models that follow a

period-doubling route to chaos like the logistic [41] or the Hassell

[42], although the exact values of the growth rate parameter

where ALC becomes effective as a stabilizing factor, would differ.

Since the nature of the dynamics (i.e. stable point, limit cycle or

chaos) of a Ricker model is independent of the carrying capacity

(K), our reasoning suggests that the effect of ALC would also

remain unaffected by the values of K, which was indeed found to

be the case (Fig. S1). The interaction between the intrinsic growth

rate and the ALC magnitude in determining the metapopulation

FI is investigated more thoroughly in Fig S2.

We also investigated the persistence of ALC-perturbed meta-

populations, as preventing extinction can be a more pressing

objective under certain scenarios. Although ALC was in general

effective in reducing the global extinction probability, we did not

find a good correspondence between FI (Fig 2A) and the

corresponding extinction probability (Fig 2B) for different values

of r. This was consistent with previous empirical findings that

indicate constancy and persistence are often uncorrelated [43,44].

The reason behind enhanced persistence of ALC-controlled

populations lies in the ability of ALC to reduce positive synchrony

[16], which in turn reduces the extinction probability of connected

subpopulations [45,46]. This is because a high positive synchrony

between subpopulations causes them to reach lower levels

simultaneously, reducing the chances of each subpopulation to

receive immigrants from their neighbors and thereby increasing

the chances of local (and global) extinction. A reduction in positive

synchrony by ALC desynchronizes the fluctuation of neighboring

populations, which ensures that whenever a population reaches a

low size, it is often ‘‘rescued’’ from extinction by immigrants from

neighbors with higher population size. This phenomenon of

Figure 1. Effects of ALC on metapopulation FI and synchrony at different rates of migration. (A). Both LALC (c = 0.25) and HALC (c = 0.4)
increases metapopulation FI at low migration rates, but reduces the same at high migration rates. This contrasting effect can be explained by (B)
which shows that ALC reduces both positive and negative synchrony, which in turn is expected to have opposite effects on metapopulation
constancy. N0 = 20 and K = 30 for all figures including this one. Intrinsic growth rate, r = 3.5 (for this and all subsequent figures except Figure 2). Each
point in every figure is a mean of 100 independent runs. Error bars denote 6SEM and are too small to be visible.
doi:10.1371/journal.pone.0105861.g001
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reduced synchrony due to ALC going hand-in-hand with

enhanced persistence, has already been observed in the dynamics

of Drosophila metapopulations [16]. Here we provide a numerical

corroboration of the earlier result using biologically realistic

simulations.

It should be noted here that ALC also reduces the extinction

probability of single populations [16], which can conceivably

reduce the metapopulation extinction probability. Although global

extinction probability can also be potentially affected by a change

(here reduction) in local extinction probability, it is not intuitively

obvious how. This is because it is known that local extinctions can

affect synchrony (and hence metapopulation persistence) in rather

complex ways [47,48], particularly when the growth rates are

high. We are not aware of any study that has partitioned the

relative contributions of synchrony and local extinction on

metapopulation persistence. While it would be of considerable

interest to ecologists, figuring this out is clearly beyond the scope of

the current study.

Local extinction probability and constancy
The subpopulations of a metapopulation often go extinct

[49,50], which in turn can play a role in determining the dynamics

of the system [47,51]. Such local extinctions can also modulate the

effects of a control strategy. For example, local extinctions were

implicated when constant immigration [7,52] was found ineffec-

tive in stabilizing laboratory metapopulations of Drosophila
melanogaster [33]. Although ALC has been empirically demon-

strated to be effective in stabilizing the dynamics of extinction-

prone populations [16], a detailed investigation of the effects of

local extinction on metapopulation stability is lacking. In the

simulations of the previous section, we had assumed a particular

probability of extinction ( = 0.5) when a subpopulation touched or

fell below the critical population size threshold of 4. We therefore

investigated the performance of ALC for different values of the

extinction probability of the subpopulations each time they

reached or went below a threshold of 4. We found that increasing

the probability of subpopulation extinction did not reduce the

ability of ALC to induce metapopulation stability (Fig. 3A). This

observation also held true on varying the threshold of critical

population sizes keeping a constant extinction probability of 0.5

(Fig 3B). These observations indicate that, unlike constant

immigration [33], ALC is capable of reducing the FI in the

presence of a range of subpopulation extinction probabilities. The

robustness of ALC towards subpopulation extinction probability

can be explained by the very way in which ALC is designed: in the

time series whenever there are population crashes (including

extinctions), ALC brings the population size back to a higher

number. Thus, extremely low values of the breeding-population

size are never permitted irrespective of the extinction probability

or the critical threshold. This reduces the magnitude of both the

population crashes as well as the subsequent spikes, which in turn

contributes to the reduction in Fluctuation Index.

Larger metapopulations and larger fraction of controlled
patches

So far we have investigated the adaptive limiter control

mechanism on a simple metapopulation consisting of only two

subpopulations. However, it is known that metapopulation

dynamics can be considerably influenced by the number of

constituent subpopulations [53]. Moreover, in our study, we have

perturbed 50% of the subpopulations (i.e. one out of two), a

fraction that might be difficult to achieve in larger metapopula-

tions in practice. We therefore tested the ability of ALC to stabilize

larger metapopulations with only one of the constituent subpop-

ulations being subjected to ALC control. Given that only one

patch in the whole metapopulation is being controlled, intuitively,

the efficacy of ALC should go down sharply as the total number of

subpopulations increases. Surprisingly, ALC perturbed metapop-

ulations with up to 10 subpopulations were still more stable than

their unperturbed counterparts (Fig 4A and 4B), with the effect

being most pronounced for number of patches #5. The FI of an

ALC-controlled metapopulation becomes equivalent to an unper-

turbed metapopulation when there are more than ten subpopu-

lations. This is not surprising since the fraction of perturbed

subpopulations (,0.1) is too little to affect the dynamics at a global

scale. Perturbing large number of subpopulations with LALC

should be avoided as the global FI increases with increasing

number of patches for c,0.3 (Fig 5). This observation is consistent

Figure 2. Effects of ALC on metapopulation stability at different intrinsic growth rate (r) values. ALC enhances (A) constancy and (B)
persistence over a wide parameter range, and has no effects in other zones. See main text for a possible explanation. Migration rate (m) = 0.3 in this
and all subsequent figures. Error bars denote 6SEM and are too small to be visible.
doi:10.1371/journal.pone.0105861.g002
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with an earlier finding that under constant immigration, increasing

the fraction of perturbed patches leads to an increase in

metapopulation FI [33]. This implies that the efficacy of a control

algorithm can be context-specific and ‘‘more control’’ does not

always translate into ‘‘better control’’. This phenomenon was also

observed when ALC was applied to a 2-D 363 lattice with

periodic boundary conditions (Fig S3A). ALC was able to reduce

the metapopulation FI even when only one out of the nine

subpopulations was perturbed. Even greater reductions in global

FI were obtained on increasing the fraction of perturbed

subpopulations to two out of nine and three out of nine. However,

when four subpopulations were perturbed, the reduction in

metapopulation FI was comparatively less, compared to the 3/9

case. It should be noted here that for a 2-D lattice, the efficacy of a

control algorithm can depend on the precise distribution of the

perturbed subpopulations in the lattice [7,54]. For each of the four

fractions reported in Fig S3A (i.e. 1 or 2 or 3 or 4 patches out of

nine), we simulated multiple patch distributions. Although there

were some quantitative differences in the patterns of reduction of

metapopulation FI for different distributions (e.g. Fig S3B), the

broad trends remained the same: ALC was in general able to

enhance global constancy even on a 2-D lattice.

Closing Remarks
The dynamics of spatially-connected populations are crucially

dependent on the life-history of the organisms [55], which in turn

Figure 3. Effects of ALC on metapopulation constancy under different rates of subpopulation extinction. (A). With increasing
extinction probability when the population size goes below 4. (B) With increasing critical population sizes below which, there was a 50% extinction
probability that the population would go extinct. In both cases, increasing the rate of extinction did not reduce the efficacy of ALC in inducing
greater constancy. See main text for a possible explanation. Error bars denote 6SEM and are too small to be visible.
doi:10.1371/journal.pone.0105861.g003

Figure 4. Effects of ALC on constancy in metapopulations with different number of subpopulations. (A) LALC (i.e. c = 0.25), and (B)
HALC (i.e. c = 0.4). In both figures, only one subpopulation is perturbed for increasing number of subpopulations. Perturbing only 1 patch by ALC can
reduce FI of metapopulations with up to 10 subpopulations. Error bars denote 6SEM and are too small to be visible.
doi:10.1371/journal.pone.0105861.g004
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can potentially affect the efficacy of a control algorithm. In this

paper, we explore this aspect and show how the magnitude of the

control parameter (c) interacts with the intrinsic growth rate, to

determine the constancy and persistence stability of the metapop-

ulation. At a practical level, our main message is that as long as

migration rates are high, ALC can either enhance the metapop-

ulation constancy and persistence or have no effect, but can never

reduce the stability of the metapopulation to a level less than that

of the corresponding unperturbed case with unstable dynamics.

This indicates that precise a priori knowledge of the growth rate/

localized extinction rates and carrying capacity of the constituent

subpopulations are not really needed for the application of ALC. It

has recently been shown that given certain conditions, ALC can

reduce the fluctuations of any 1-D map that has a single-humped

first return map and a unique carrying capacity [18]. Since several

models of population dynamics, including the widely used Logistic

[41] and Hassel [42] models, would satisfy these conditions, our

results are generalizable to these systems (Fig S4). However, many

organisms that appear on conservation lists (like reptiles, birds,

mammals) may not satisfy these conditions or their dynamics may

not be well-represented by such 1-D models. Therefore, ALC

should not be applied to such species, until and unless it is shown

to have a stabilizing effect in the context of the appropriate

dynamics. This study did not take into account certain aspects of

the dynamics that can potentially affect the efficacy of a control

method. For example, although ALC was found to be robust to

varying degrees of noise to intrinsic growth rate (Fig S5), natural

populations are typically also exposed to stochasticity in environ-

ments, interactions with other species etc. Similarly, the scheme of

migration [56] and the form of density dependence [57] are

known to affect metapopulation dynamics, two factors which were

not investigated in this study. Therefore, any attempts to use ALC

to control real populations should be based on relevant

information about the biology of the organism. Finally, although

we show that ALC can increase metapopulation stability under

several biologically relevant scenarios, we do not compare its

efficacy under those scenarios against other control methods

proposed in the literature. Incorporation of parameter noise, local

extinctions and spatial structuring typically makes such problems

analytically intractable. On the other hand, numerical compari-

sons are valid only under common conditions, i.e. when the

dynamics of the same model, under similar parameter values are

compared for similar aspects of stability. Although such a

comparison has recently been attempted in the context of

spatially-unstructured populations [58], to the best of our

knowledge, there exists no such comparison in the context of

metapopulations, and might be a fruitful area for future

investigations.

Supporting Information

Figure S1 Effects of ALC on metapopulation constancy
at different magnitudes of carrying capacity. There was

no effect of carrying capacity on the stabilizing efficiency of ALC.

Error bars denote 6SEM and are too small to be visible.

(TIF)

Figure S2 FI of metapopulation with 2 subpopulation as
a function of intrinsic growth rate (r) and ALC magni-
tude (c).

(TIF)

Figure S3 FI of 9-patch 2-D metapopulations for
different ALC magnitude (c). In these simulations, the 9

subpopulations were arranged on a 363 2-D lattice with periodic

boundary conditions for migration. The inset gives the identity of

the individual subpopulations. Each subpopulation exchanged

Figure 5. Effects of increasing the fraction of ALC controlled subpopulation on metapopulation constancy. In this figure, each
metapopulation consists of 10 subpopulations. For low values of c, increasing the fraction of perturbed subpopulations can have a negative effect on
constancy. Error bars denote 6SEM and are too small to be visible.
doi:10.1371/journal.pone.0105861.g005
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migrants with four neighbours (above, below, right and left). Thus,

subpopulation #5 exchanged migrants with subpopulation #
2,8,6,4 and so on. With periodic boundary conditions, the

subpopulations thus inhabit the surface of a 3-D torus. The

migration rate, initial population size, r, and K were 0.3, 20, 3.5

and 30 respectively. All other conditions were similar to the 1-D

migrations. Each point is a mean of 100 independent simulations

and error bars denote the corresponding SEM. a) Metapopulation

stability for different number of perturbed subpopulations (identity

of subpopulations in bracket) at different values of c. ALC was able

to stabilize metapopulations in general, even when applied in only

1/9 subpopulations. However, perturbing too many subpopula-

tions leads to a lesser reduction in global FI. b) Metapopulation

stability when three subpopulations are perturbed but in different

arrangements. Note that although there is an overall decrease in

metapopulation FI, the trends and magnitude of decrease are

different.

(TIF)

Figure S4 Effect of ALC on two-patch Logistic and
Hassell metapopulations. (a) Effects of ALC on metapopu-

lation FI using (a) coupled logistic map (x = r.x(1-x), r = 0.4,

x0 = 0.1) and (b) coupled Hassell map (n~r:n(1z(a:n)){b; a = 0.6,

b = 10, no = 0.4, r = 40) at different migration rates. Both LALC

(c = 0.25) and HALC (c = 0.4) reduces metapopulation FI at all

migration rate values tested. Thus qualitatively, the effects of ALC

on coupled logistic and Hassell map are comparable to those from

Ricker (cf Fig 1A of the main paper).

(TIF)

Figure S5 Effects of noise in growth rate on constancy of
two-patch metapopulations. In this figure, each metapopu-

lation consists of 2 subpopulations. Noise term (e) represents the

magnitude of noise associated with intrinsic growth rate (r) in the

simulations. Both LALC (c = 0.25) and HALC (c = 0.4) are robust

to varying degrees of noises. Migration rate, m = 0.3. Each point is

a mean of 100 independent simulations. Error bars denote 6SEM

and are too small to be visible.

(TIF)

File S1 Matlab Code for the simulations in this paper.
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