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Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterised by
the accumulation into granulomas of apoptosis-resistant pathological dendritic cells (LCH-
DCs). LCH outcome ranges from self-resolving to fatal. Having previously shown that,
(i) monocyte-derived DCs (Mo-DCs) from LCH patients differentiate into abnormal and
pro-inflammatory IL-17A-producing DCs, and (ii) recombinant IL-17A induces survival
and chemoresistance of healthy Mo-DCs, we investigated the link between IL-17A and
resistance to apoptosis of LCH-DCs. In LCH granulomas, we uncovered the strong
expression of BCL2A1 (alias BFL1), an anti-apoptotic BCL2 family member. In vitro,
intracellular IL-17A expression was correlated with BCL2A1 expression and survival of
Mo-DCs from LCH patients. Based on the chemotherapeutic drugs routinely used as first
or second line LCH therapy, we treated these cells with vinblastine, or cytarabine and
cladribine. Our preclinical results indicate that high doses of these drugs decreased the
expression of Mcl-1, the main anti-apoptotic BCL2 family member for myeloid cells, and
killed Mo-DCs from LCH patients ex vivo, without affecting BCL2A1 expression.
Conversely, neutralizing anti-IL-17A antibodies decreased BCL2A1 expression, the
downregulation of which lowered the survival rate of Mo-DCs from LCH patients.
Interestingly, the in vitro combination of low-dose vinblastine with neutralizing anti-IL-
17A antibodies killed Mo-DCs from LCH patients. In conclusion, we show that BCL2A1
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expression induced by IL-17A links the inflammatory environment to the unusual pro-
survival gene activation in LCH-DCs. Finally, these preclinical data support that targeting
both Mcl-1 and BCL2A1 with low-dose vinblastine and anti-IL-17A biotherapy may
represent a synergistic combination for managing recurrent or severe forms of LCH.
Keywords: langerhans cell histiocytosis (LCH), survival, dendritic cells, cytokine, interleukin-17A (IL-17A),
biotherapy and chemotherapy, vinblastine
INTRODUCTION

Langerhans cell histiocytosis (LCH) is a rare hematologic disorder,
included in the “L” (Langerhans) group of histiocytosis by the
Histiocyte Society (1). LCH cells were initially considered to be
derived from Langerhans cells (LCs), a specialised subset of
epidermal dendritic cells (DCs), according to their membrane
co-expression of CD1a and Langerin (2). However, this origin has
since been challenged by several results showing that LCH cells
arise from different myeloid DC precursors rather than LCs
exclusively (2–7). In 2008, we originally proposed that
monocytes may be a source of pathological DCs (LCH-DCs)
because monocyte-derived DCs (Mo-DCs) from LCH patients
are abnormal. Indeed, they spontaneously undergo cell fusion
under the control of their own IL-17A secretion to form long-lived
multinucleated myeloid giant cells (MGCs), as observed within
LCH lesions (8). Tissue-destructive LCH-DCs and derived giant
cells were shown to accumulate and form granulomas; their
structure being well delineated by CD1a staining, which was
consequently used as a diagnostic marker (9). A minority of
other cell types are also present in LCH granulomas such as
macrophages, T cells and eosinophils. LCH granulomas can be
found in all organs of the body, in particular in bone, with
resorption areas observed in 80% of patients (1).

LCH is now classified as an inflammatory myeloid neoplasm,
acknowledging the role of mutations in mitogen-activated protein
kinase (MAPK) signalling pathways at different levels of myeloid
precursor cells in fostering the disease. Interestingly, proliferating
cells in LCH granulomas are mostly endothelial cells, fibroblasts,
and T cells (10, 11), as CD1a+ LCH-DCs do not proliferate, albeit
they display an extended lifespan due to the activation of survival
pathways and inhibition of apoptosis (12, 13). This suggests that
LCH-DCs accumulate in vivo to form granulomas and evolve into
tumours following the aberrant long-term survival of LCH-DCs
(11). Extended survival may result from the combination of intrinsic
mutations in the MAPK signalling cascade of LCH-DCs (2, 14–16)
with stimulations by abundant local and systemic inflammatory
cytokines (17–24). The abnormal activation of the MAPK pathway
has proven to be a deleterious mechanism in LCH, with 40-60% of
patients harbouring the somatic BRAFV600E mutation (3, 5, 11,
25). Moreover, other rare mutations inMAP2K1, ARAF and ERBB3
stiocytosis; DCs, dendritic cells; Mo-
multinucleated giant cells; MAPK,
-17A, interleukin-17A; rhIL-17A,
L2-related protein A1; Mcl-1, myeloid
ytarabine; 2CdA: Cladribine.
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genes were detected (14, 26–28). Among actors of the cytokine
storm, varying levels of interleukin-17A (IL-17A) were reported in
LCH patient plasma (8, 21, 29–33), likely arising from circulating
monocytes, as well as LCH-DCs and their derived giant cells inside
granulomas (8, 29, 34, 35). IL-17A is assumed to be an important
player in LCH pathogenesis as it induces Mo-DC fusion (8), and its
plasma level is associated with LCH disease and sequelae (33).
Interestingly, recombinant human IL-17A (rhIL-17A) induces
in vitro transcription of BCL2-related protein A1 (BCL2A1, alias
BFL1), an anti-apoptotic member of the BCL2 family,
downstream of NF-kB activation in Mo-DCs from healthy
donors (35, 36). Proteins of the BCL2 family regulate survival and
sensitivity to apoptosis by modulating mitochondrial outer
membrane permeabilization (37, 38). Accordingly, in a large
number of hematopoietic cancer cells, de novo expression of pro-
survival BCL2 proteins induces chemoresistance (37, 39, 40). Mcl-1
is the constitutive pro-survival factor of myeloid cells, includingMo-
DCs (36). The pro-survival BCL2A1 member is highly regulated by
the NF-kB pathway (39, 40). We have previously shown that
recombinant human IL-17A (rhIL-17A) induces BCL2A1
expression; and, importantly, that Mo-DCs from healthy donors
expressing both constitutive Mcl-1 and induced BCL2A1 treated
with rhIL-17A acquired long-term survival and chemoresistance to
11 chemotherapeutic agents (35).

Inducing cell death of tissue-aggressive LCH-DCs is difficult but
may be achieved in most patients by chemotherapy regimens
containing vinblastine (VBL) and corticosteroids or, in salvage
settings, cladribine (2CdA) and cytarabine (AraC) (41–44).
Disseminated forms of LCH in the liver, spleen and
hematopoietic system, especially in patients under 5 years of age
are life-threatening (44). Indeed, among these cases, a third of
patients fail to respond to first-line chemotherapy, including VBL.
Despite the improvement in survival provided by MAPK pathway
inhibitors, most therapies are not curative and result in a high rate of
relapse after treatment (45, 46). Thus, novel therapeutic approaches
are warranted with the aim of improving survival, reducing
morbidity linked with central nervous system (CNS) involvement,
and lowing treatment-related toxicity generally associated with
intensive rescue chemotherapy.

In this study, we first explored BCL2A1 expression in LCH
lesions and in Mo-DCs from LCH patients. We then investigated
the preclinical activity of anti-IL-17A biotherapy on BCL2A1
expression in Mo-DCs from LCH patients. Finally, we evaluated
the toxic activity of either VBL or 2CdA and AraC, combined
with anti-IL-17A biotherapy. This in vitro study supports that
the combination of low-dose VBL with anti-IL-17A biotherapy is
an appealing therapeutic approach for LCH patients.
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MATERIALS AND METHODS

LCH Patient Samples
Patients with biopsy-proven LCH were enrolled in this study by
two major clinical centres with expertise in LCH: Karolinska
University Hospital, Stockholm (SE) and AOU Meyer, Florence
(IT). The study was in agreement with the local ethics
committees upon approval by their Institutional review boards.
Informed consents were obtained. The characteristics of the
study population are described in Table 1. We obtained blood
samples from 20 patients with LCH (12 males and 8 females)
from Sweden (n = 9) and Italy (n = 11). We carried out
immunohistological studies on LCH bone lesions from
Swedish patients exclusively (n = 2, p11 and p12).

Reagents and Antibodies
Recombinant human GM-CSF, IL-4 and IL-17A were purchased
from PeproTech (Neuilly-sur-Seine, France). Antibodies for flow
cytometry: CD14, CD1a, HLA-DR, CD83, CD86 and isotype
controls were purchased from Becton Dickinson (Le Pont de
Claix, France), anti-IL-17A clone 41802 from R&D Systems
(Minneapolis, USA), anti-BCL2A1 (3401 anti-A1) from
BioVision (San Francisco, USA) and anti-Mcl-1 (Y37) from
Abcam (Cambridge, UK). For biological assays, anti-IL-17A
eBio64CAP17 was used (San Diego, USA). Toxic compounds
were kindly provided by the Karolinska University Hospital
pharmacy and their characteristics are listed in Table 2.

Immunohistofluorescence Labeling
4-µm paraffin-embedded bone biopsies were deparaffinized
and rehydrated. Following epitope retrieval, tissue sections
were incubated for 30 minutes in phosphate buffered saline
(PBS-1x) plus 1% bovine serum albumin (BSA) with 3%
human serum to block Fc receptors. They were then
incubated overnight at 37°C with primary antibodies in a
humid chamber. Replacement of the primary antibodies by
non-relevant antibodies of the same immunoglobulin isotype
was used as negative control. We used the following primary
antibodies: mouse anti-CD1a (Acris Antibodies, DM363, 1:20
dilution) and rabbit anti-A1 (BCL2A1, Biovision, 3401-100, 4
mg/mL). The isotype control antibodies were mouse IgG1
(Dako, X0931) and Rabbit IgG (R&D, AB-105-C). Slides
were then washed three times in PBS-1x plus 1% BSA and
detection of the primary antibodies was performed with
suitable isotype-specific secondary Alexa Fluor 488 and 647-
conjugated antibodies (10 mg/mL, Invitrogen) for 30 minutes.
Following three washes in PBS-1x plus 1% BSA, sections were
mounted using Mowiol and then analysed by confocal
microscopy using a Carl Zeiss MicroImaging Inc. LSM 510
confocal microscope. Image acquisition was performed using
MetaMorph 7.0 Software (Molecular Devices).

Mo-DC Differentiation and Cultures
CD14+ monocytes were purified (>95% CD14+) from the peripheral
blood of LCH patients by ficoll and percoll gradients, followed by
negativemagnetic depletion of cells expressing CD3 or CD56 or CD19.
Frontiers in Oncology | www.frontiersin.org 3
Monocytes were treated 6 days with 50 ng/mL GM-CSF and 500
U/mL IL-4 in RPMI (Life Technologies, Carlsbad, CA, USA)
supplemented with 10% FCS, 10 mM Hepes, 2 mM L-glutamine,
40 µg/mL gentamicin (Life Technologies) (47). Cytokines were
then removed by washing DCs twice in cytokine-free medium.
Flow cytometry analysis was routinely used for quality control of
the in vitro immature DC phenotype CD14-CD1a+MHC-
II+CD83- (>98%). On day 0, Mo-DCs were seeded at 4,800
cells/mm2 and cultured for 7 days. Neutralizing anti-IL-17A
antibody (eBio64CAP17 from eBioscience) or isotype control
(Becton Dickinson) used at 15 µg/mL were added at the
beginning of Mo-DC culture (8). VBL and AraC + 2CdA were
respectively added 24 and 48 hours before the apoptosis assay,
performed on day 7. IL-17A, BCL2A1 and Mcl-1 expression were
measured 12 hours before the apoptosis assay.

Flow Cytometry Staining
Immunostaining of cells was performed in 1% BSA and 3%
human serum in PBS-1x. We stained the Mo-DCs for their
intracellular IL-17A expression, using two different neutralizing
anti-IL-17A mouse monoclonal antibodies, previously validated
in biological assay (8). We used 2 µg/mL of primary anti-IL-17A,
anti-BCL2A1 and anti-Mcl-1 and secondary PE-F(ab’)2 goat to
mouse IgG (115-086-062, Jackson Immunoresearch, West
Grove, PA, USA) antibodies. For intracytoplasmic staining, we
blocked the Golgi apparatus with BD GolgiStop™, fixed and
permeabilized the cells with the Cytofix/Cytoperm reagents
according to procedures from the manufacturer (Becton
Dickinson). Fluorescence was quantified on a LSRII (Becton
Dickinson) and analysed using FlowJo software.

Apoptosis Assay by Flow Cytometry
Cell survival was analysed by flow cytometry after DiOC6 (3,39-
diexyloxacarbocyanine, (Molecular Probes) and propidium
iodide (PI, Sigma-Aldrich) double staining. Cells were
incubated 15 minutes at 37°C with 40 nM DiOC6 in culture
medium to evaluate mitochondrial transmembrane potential
(Dym). Viable cells have stable Dym whereas Dym decreases
with cell commitment to apoptosis. 0.5 µg/mL PI was added
before flow cytometry analysis of the cells and incorporated into
DNA of dead cells whose membrane is permeabilized. Apoptotic
cells are DiOC−

6PI
+, while living cells are DiOC+

6PI
–; 106 DCs/

well (survival >98%) were seeded at 4,800 cells/mm2 at day 0.
The total number of viable cells per well was quantified by a
time-monitored flow cytometry analysis during 2 minutes at
high speed (1 µL/s). Cell survival was calculated as the percentage
of viable cells at day 7 related to day 0 for 106 Mo-DCs
introduced at day 0. In the absence of cell division, cell death
percentage is the complement of the survival percentage to 100.

Statistical Analysis
Linear statistical analyses were applied to detect correlation by
using Excel software. Three to five groups were compared with
the Kruskal-Wallis test with Steel-Dwass-Critchlow-Fligner
post-test, and p values were calculated using the XLSTAT-
Biomed module software (Version 19.6, Addinsoft).
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TABLE 1 | Main features of the patients with LCH.

Ongoing LCH chemo-
immunotherapy at

samplings

Sequelaeg % of intracellular
BCL2A1 in
Mo-DCsh

6-MP + MTX + CST !
6-MP + MTX

Panhypopituitarism,
DI, GHD, CNS-ND

49.7

None DI, GHD, CNS-ND 29

None None 37
VBL + CST pulses DI 30

None None 31
6-MP + MTX None 34.4

VBL !None
! None

DI, GHD,
CNS-ND

64

VBL + CST DI 37.5
VBL + CST DI 14.9
VBL + CST DI, CNS-ND 12.9
None Walking impairment na
None None 96
6-MP + MTX None 97

None None 62
None None 54.8
VBL + CST None 23.7
VBL + CST None 75.3
None Coxarthrosis 86
None None 96
VBL + CST None 95

-16, etoposide; IVIG, intravenous immunoglobulin! Second (or further) line

toms; Progression, progressive disease (progression of signs and symptoms

elevation); 2, moderate (moderately active disease; mild thrombocytosis,

ble.
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Casea Sex/Age
at

diagnosisb

Organs involved during
course of disease c

LCH chemo-immunotherapy
receivedd

Age at
study

Disease activity at
evaluatione

Disease
activity
classf

1 (a!b) M/6 yr Bone*, ears*, pituitary*, skin, nd Local (extirpation) + VBL + CST + 6-
MP + MTX ! 2CdA ! 6-MP + MTX
+ CST

18 ! 20
yr

AD, chronic 2 ! 1

2 (a!b) M/4 yr Bone*, pituitary*, nd Local (steroids) 13 ! 15
yr

NAD, sequelae 0

3 M/14 m Bone*, skin*, spleen* VBL+CST ! 2CdA +ARAC 24 m NAD 0
4 M/10 m Skin*, bone, pituitary CST + VBL + 6-MP 3 yr Reactivation

(skin and bone)
3

5 M/7 m Bone*, skin Untreated 7 m Active, diagnosis 3
6 (a!b) F/2 m Skin*, spleen Local (steroids)

! VBL + CST +
6-MP + MTX

4 ! 6 yr AD, chronic 1

7
(a!b!c)

F/5 m Bone*, skin, spleen, liver, bone
marrow, thymus, pituitary, nd

CST !
VBL + MTX + 6-MP ! Etanercept +
2CdA + IVIG !
VBL + 6-MP + MTX + CST
! 6-MP + CST ! VBL

10
!11!11

yr

Progression (CNS) !
AD, Chronic ! AD,
Chronic

2 ! 2 !
2

8 F/14 yr Bone*, mm, lungs, pituitary VBL + CST 15 yr AD, better 1
9 M/2.4 yr Bone*, mm, lungs, pituitary VBL + CST 2.6 yr AD, better 1
10 F/2.5 yr Bone*, central nervous system* VBL + CST 3 yr AD, better 1
11 M/19 yr Bone * Untreated 19 yr Active 2
12 F/4 yr Bone* Untreated 5 yr NAD 0
13 M/8 m Skin*, lymph node*, liver*, ears*,

spleen, bone marrow,
intestines, bone

VBL+CST, MTX, VP-16 ! 2CdA
+ARAC ! VBL+MTX+6-MP+CST !
MTX+6-MP

5 yr AD, better 2

14 M/2.8 yr Skin* Untreated 2.8 yr Active, diagnosis 2
15 F/9.5 yr Skin* Untreated 9.5 yr Active, diagnosis 2
16 M/3 yr Bone* VBL + CST 3.6 yr AD, better 1
17 M/1.5 yr Bone* VBL + CST 3.2 yr AD, better 1
18 F/17 m Skin*, lymph nodes*, bone* CST 19 yr AD, Chronic 1
19 F/7.6 yr Bone* untreated 7.6yr Active, diagnosis 2
20 M/2 yr Bone* VBL + CST 3 yr AD, better 2

a! Sampled two or three times, a, b and c.
bM, male; F, female; yr, year; m, month.
c* indicates organ involved at diagnosis. nd, CNS involvement with neurodegeneration evidenced by MRI; Mm, mucous membranes.
dVBL, vinblastine; CST, corticosteroids; 6-MP, 6-mercaptopurine; MTX, methotrexate; local, local corticosteroid injection; 2CdA, Cladribine; ARAC, Cytarabine; V
treatment.
eAD, active disease (persistence of signs and symptoms; no new lesions); Chronic, Chronic disease; NAD, no active disease, resolution of all clinical signs and symp
and/or appearance of new lesions.
fDisease activity classes: 0, resolution (no signs of active disease); 1, mild (regression of active disease or mild chronic disease; no hypoalbuminemia or ES
hypoalbuminemia, or ESR elevation); 3, marked (progressive disease or constant markedly active disease; marked hypoalbuminemia or ESR elevation).
gDI, Diabetes insipidus; GHD, Growth hormone deficiency; CNS-ND, symptomatic CNS neurodegeneration.
hDetection of intracellular BCL2A1 expression in Mo-DCs from LCH patients was performed after immunostaining and flow cytometry analyses; “na”, not applic
P

R

a
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RESULTS

Improved Delineation of LCH Granulomas
With BCL2A1 Rather Than CD1a Staining
The diagnosis of LCH currently relies on the detection of CD1a
expression. We previously documented that (i) IL-17A is
expressed by DCs and MGCs inside LCH lesions (8) and
(ii) rhIL-17A is able to induce BCL2A1 expression in Mo-DCs
from healthy donors (35). We hypothesized that pathogenic DCs
from LCH lesions may express both CD1a+ and BCL2A1+. To
address this, we double stained CD1a and BCL2A1 in LCH
lesions from two patients (p11, p12) (Table 1 and Figure 1).
Confocal microscopy analysis showed that CD1a was expressed at
the membrane, whereas BCL2A1 was expressed in the cytoplasm
of mononucleated LCH-DCs (Figure 1A). BCL2A1 was
expressed in all CD1a+ LCH-DCs. Interestingly, BCL2A1 was
also expressed in other CD1a– cells in LCH samples, which may
be CD1a–CD68+ and CD1a–CD14+ myeloid cells (48). Hence,
LCH granulomas were better highlighted through BCL2A1
staining rather than CD1a expression in both mononucleated
cells (Figure 1B) and in MGCs (Figures 1A, C, asterisk).

We provide evidence that pathogenic DCs and MGCs that
accumulate in LCH lesions strongly express BCL2A1.

Both IL-17A and BCL2A1 Expression
Are Correlated With Survival of
Mo-DCs From Patients With LCH
Our previous studies indicated that bloodmyeloid cells from healthy
donorsdidnot express intracellular IL-17AorBCL2A1,while IL-17A
wasexpressed inbloodmyeloidcells fromLCHpatients (8,29, 34, 35).
Wehereinanalysedboth IL-17AandBCL2A1expression inMo-DCs
from the blood of LCH patients by flow cytometry (Figures 2A, B).
Our findings substantiate previous studies, as we detected an
intracellular expression of IL-17A (mean 45%, range 4-91%). A
heterogeneous intracellular BCL2A1 protein expression was also
detected in Mo-DCs from LCH patients (mean 53%, range 13-
97%). BCL2A1 mRNA expression was detected both in IL-17A-
treated Mo-DCs from healthy controls and in IL-17A-producing
Mo-DCs from LCH patients, but not in untreated Mo-DCs from
healthy controls (Supplementary Figure 1). These results suggest
that BCL2A1was not induced by GM-CSF plus IL-4 duringMo-DC
differentiation. Interestingly, double staining performed onMo-DCs
fromeleven patients demonstrated that IL-17A+Mo-DCs fromLCH
patients co-expressedBCL2A1(Figure2A rightanddatanot shown).
Similarly to IL-17A expression [Figure 2B and (8)], BCL2A1
expression in Mo-DCs from LCH patients was correlated neither
Frontiers in Oncology | www.frontiersin.org 5
with the disease activity class nor with any chemotherapeutic
treatment (Table 1). Strikingly, in Mo-DCs from each patient, the
percentage of BCL2A1 expression paralleled the percentage of IL-
17A expression (Figure 2C), suggesting that, as observed with Mo-
DCs from healthy donors (35), BCL2A1 expression is under the
control of IL-17A.

We previously documented that Mo-DCs from healthy donors
cultured in medium spontaneously undergo apoptosis after two
days of culture, with less than 5% of the Mo-DCs being viable at day
seven (35). Here, we investigated whether BCL2A1 expression was
correlated with Mo-DC survival in LCH patients, by measuring
viable cells via DiOC+

6PI
– uptake by flow cytometry at day seven

(Figures 2D, E). The percentage of viable Mo-DCs was linear to the
percentage of BCL2A1-expressing Mo-DCs (Figure 2E, mean 33%
and range 11-48% for survival). Moreover, viable Mo-DCs were also
correlated with the percentage of IL-17A-expressing Mo-DCs in
LCH patients (Figure 2F, mean 35% and range 10-55% for
survival). Of note, we observed a heterogeneity in BCL2A1 and
IL-17A expression among LCH patients (Figures 2B–F).

Taken together, our results indicate that Mo-DCs from LCH
patients display an increased survival rate correlated with IL-17A and
BCL2A1 expression, suggesting that BCL2A1 increases DC survival
andparticipates in theaccumulationofviableLCH-DCswithin lesions.

Routinely Used Chemotherapeutic
Compounds Decrease In Vitro Survival
of Mo-DCs From LCH Patients
Independently of BCL2A1 Expression
According to the standard-of-care, VBL is the main first-line
treatment for disseminated LCH, and the combination of AraC
and 2CdA is indicated as a second-line treatment (43, 44, 49).
We investigated the ability of these agents (VBL alone or the
combination of AraC and 2CdA) to decrease BCL2A1 expression
and subsequently the survival of Mo-DCs from LCH patients by
flow cytometry (Figure 3 and Table 2). One or two days of
exposure of Mo-DCs to low or high doses of these toxic
compounds did not alter BCL2A1 expression (Figures 3A, B
and Supplementary Figure 2). However, as previously shown
for Mo-DCs from healthy controls (35), high doses of VBL
decreased intracellular Mcl-1 expression in Mo-DCs from LCH
patients (Figures 3A, C). Similar results were obtained with high
doses of AraC and 2CdA. High doses of VBL impaired survival of
Mo-DCs in 10 out of 11 LCH patients (Figure 3D). Similarly,
high doses of AraC and 2CdA limited survival of Mo-DCs from
all LCH patients (Figure 3D). Low doses of toxic drugs had no
detectable effect on cell survival (Figures 3C, D).
TABLE 2 | In vitro and in vivo characteristics of chemotoxic drugs used in this study.

Class Abbreviation: name Clinical dose(µM)a In vitro dose used (µM); [range], low, high b Targets

Alkaloid VBL: Vinblastine 1.5 [0.06 – 60], 0.06, 0.6 Microtubule function
Pyrimidin analogue AraC: Cytarabine 14 - 140 [0.8 – 800], 4, 40 DNA synthesis, Mcl-1
Purine analogue 2CdA: Cladribine 0.02 [0.00035 – 3.5], 0.3, 3 DNA synthesis
January 2022 | Volum
aCalculation of physiological doses: the magnitude of the microenvironment concentration around cells, in vivo, following clinical dose administration, was calculated by approximating that
the drug could be distributed in half of the body aqueous volume (30L) with the formula: [(injected concentration) x injected volume]/30. The results are in the range of those indicated by
pharmacokinetics studies.
bHigh dose corresponds to optimal dose for killing in vitro IL-17A-stimulated Mo-DCs (35).
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Our preclinical results indicate that chemotherapeutic agents
directed against LCH, when used at high doses, decreased Mcl-1
expression and killed Mo-DCs from patients, without affecting
BCL2A1 expression.

Neutralizing IL-17A Antibodies Inhibit
BCL2A1 Expression and Impair Survival
of Mo-DCs From LCH Patients
BCL2A1 is known toconfer chemoresistance, and is of poorprognosis
in inflammatory disorders and haematological malignancies (36, 37,
39, 40). We previously showed that rhIL-17A induced BCL2A1
expression in healthy donor Mo-DCs (35). In order to study
whether IL-17A confers a survival advantage to theMo-DCs of LCH
patients thanks to the BCL2A1 induction,we then cultured theseMo-
Frontiers in Oncology | www.frontiersin.org 6
DCs either inmediumalone or inmediumcontaining isotype control
or neutralizing anti-IL-17A antibodies. BCL2A1 expression and
survival of Mo-DCs from patients were then quantified by flow
cytometry (Figure 4). Neutralizing anti-IL-17A antibodies, but not
the isotype control, strongly inhibited the intracellular expression of
BCL2A1 in Mo-DCs from LCH patients (Figures 4A, B).
Interestingly, survival of Mo-DCs from LCH patients was drastically
impaired by neutralizing IL-17A (Figure 4C). Consistently, survival
was maintained in Mo-DCs from LCH patients with the highest IL-
17A and BCL2A1 expression (data not shown).

Therefore, neutralizing anti-IL-17 antibodies impact BCL2A1
expression and Mo-DC survival in the context of LCH,
indicating that the pro-inflammatory cytokine IL-17A is a
major pro-survival signal for Mo-DCs from LCH patients.
A

B C

FIGURE 1 | CD1a and BCL2A1 expression in LCH lesions after immunohistofluorescence staining. Representative confocal microscopy images of
immunofluorescence staining on bone lesions from two patients with LCH (A, p12 and B, C, p11). Staining of CD1a (green, DC marker), BCL2A1 (red), and their co-
localization (yellow) are shown. (A) Pathogenic LCH-DCs co-express CD1a and BCL2A1. Different magnifications of the same lesion focusing on mononucleated
cells. (B) Improved delineation of LCH granulomas using BCL2A1 compared to CD1a. (C) Multinucleated giant cells (MGCs) expressing BCL2A1 in bone granuloma.
*indicates MGCs. Scale bars: 50 µm (5 x 10 µm).
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Neutralizing Anti-IL-17A Antibodies
Increase In Vitro Chemosensitivity
of Mo-DCs From LCH Patients
Low doses of VBL or AraC and 2CdA toxic compounds had no
detectable effect on LCH-DC survival (Figure 3). In the present
preclinical in vitro study conducted with human primary Mo-DCs
Frontiers in Oncology | www.frontiersin.org 7
from LCH patients, we finally investigated the potential benefit of
adding neutralizing anti-IL-17A antibodies to low doses of LCH-
directed chemotherapeutic agents, in the attempt to mimic future
therapies. Mo-DCs from LCH patients were cultured with low
doses of toxic compounds in the presence of either isotype control
or neutralizing anti-IL-17A antibodies, and then compared to DCs
A

B

C D

E F

FIGURE 2 | Statistical relationships between intracellular IL-17A and BCL2A1 expression, and/or Mo-DC survival from LCH patients. Flow cytometry analyses after
intracellular staining of IL-17A and BCL2A1 in Mo-DCs from LCH patients (n=23 samples from 20 patients). (A) Representative dot plots of Mo-DC morphology (left)
and their expression of BCL2A1 versus IL-17A (right). The numbers indicated in the dot plot correspond to the percentage of the positive cells. (B) Percentages of
Mo-DCs expressing IL-17A and BCL2A1. Patients were plotted after ranking individuals according to their disease activity classes (as reported in Table 1): 0,
Resolution; 1, Mild; 2, Moderate; 3, Marked disease. SD were below 2%. (C) Correlation between IL-17A and BCL2A1 expression in Mo-DCs from LCH patients.
(D) Representative dot plot of DiOC6PI survival analyses. Percentage of viable Mo-DCs from LCH patients were quantified after 7 days in culture (initial density of one
million Mo-DCs). DiOC+

6PI
– are viable Mo-DCs from LCH patients. (E) Correlation between BCL2A1 expression and survival of Mo-DCs from LCH patients.

(F) Correlation between IL-17A expression and survival of Mo-DCs from LCH patients. (C, E, F) Linear regression statistical analyses were performed. y=f(x) indicates
the equation of the statistical line of tendency and R2 the correlation factor.
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treated with anti-IL-17A antibodies. All conditions were analysed
by flow cytometry for the intracellular expression of BCL2A1 and
cell survival (Figure 5). The combination of anti-IL-17A
neutralizing antibodies with low dose of VBL completely
inhibited the expression of BCL2A1 (Figure 5A) and abrogated
DC survival (<7%) of Mo-DCs from LCH patients (Figure 5B).
This result was conclusive in all patients tested, including the
patient (p7) whose Mo-DCs were resistant to high doses of VBL
(Figure 3C). Therefore, neutralization of IL-17A overcame the
resistance of this patient’s cells to VBL. The combination of anti-
IL-17A with VBL was more efficient than anti-IL-17A alone
(Figure 5B). In comparison, similar results were obtained after
IL-17A blockade and the addition of low doses of the toxic
compounds AraC and 2CdA (Figures 5C, D). The combination
both decreased BCL2A1 expression and DC survival (Figure 5D).
Lastly, we calculated the specific anti-IL-17A-dependent
cytotoxicity for each patient (Figure 5E). To prevent DC
survival from LCH patients, neutralisation of IL-17A was more
efficient when combined to VBL than to AraC and 2CdA.
Frontiers in Oncology | www.frontiersin.org 8
In conclusion, in this preclinical in vitro study performed on
human Mo-DCs from LCH patients, blockade of IL-17A shows a
beneficial effect when combined to a low, sub-clinical dose of VBL.
DISCUSSION

Pathogenic mechanisms and clinical manifestations of cancer, in
particular of haemoproliferative disorders, may result from both
the rate of proliferation and the ability of cancer cells to survive,
even in the presence of chemotherapeutic agents. Different
mechanisms may account for survival of pathogenic DCs and
chemoresistance in LCH. Among them, pro-inflammatory IL-
17A could play a central role. In this study, we show that DCs
and MGCs in LCH lesions, as well as Mo-DCs from LCH
patients, abnormally express BCL2A1/BFL1, a pro-survival
member of the BCL2 family. We demonstrate that endogenous
IL-17A stimulates BCL2A1 expression and long-term survival of
Mo-DCs from LCH patients, in vitro. BCL2A1 expression was
A

B C D

FIGURE 3 | BCL2A1 expression and survival in Mo-DCs from LCH patients after treatment with chemotoxic compounds. High doses of drugs correspond to 0.6,
40 and 3 mM for VBL, AraC and 2CdA, respectively. Low doses are 10 times lower. BCL2-member expression and survival were measured by flow cytometry in Mo-
DCs with LCH. (A) Representative flow cytometry analyses of BCL2A1 and Mcl-1 intracellular staining after incubation with either medium alone (none, dotted black
line) or high doses of VBL (full orange line) or AraC and 2CdA (full blue line). Percentage of positive Mo-DCs from LCH patient is indicated inside each histogram.
Control (grey) corresponds to isotopic control at staining. Percentages of intracellular (B) BCL2A1 and (C) Mcl-1 expression in the Mo-DCs from LCH patients after
culture with either medium alone (none) or with low or high doses of VBL (Orange) or AraC and 2CdA (Blue). For Mcl-1 quantification, the mean fluorescence intensity
(MFI) was more informative than the percentage because >95% of Mo-DCs expressed Mcl-1 in the absence of toxic compounds. (D) Percentage of DiOC+

6PI
– viable

Mo-DCs from LCH patients treated or not with toxic drugs were quantified after 7 days of culture (initial density of one million Mo-DCs). (B–D) The mean of triplicate
values was plotted for each patient. SD were below 2%. One symbol corresponds to one patient. Mo-DCs from 11 LCH patients (p1b, p2b, p7c, p6b, p9, p12, p13,
p14, p16, p19, p20) were analysed. Statistical analyses: the Kruskal-Wallis test with Steel-Dwass-Critchlow-Fligner post-test were used to compare the groups and
calculate the p values.
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correlated with both IL-17A expression and LCH-DC survival.
Novel therapeutic approaches are warranted in LCH, with the
aims of improving survival as well as reducing the number of
reactivations and sequelae associated with this disease, especially
neurodegeneration (33). Here, we show for the first time that in
vitro IL-17A blockade decreases both BCL2A1 expression and
LCH-DC survival. Moreover, the combination of anti-IL-17A
antibodies with low doses of chemotoxic drugs completely
restores in vitro apoptosis of LCH-DCs. These preclinical
findings may provide the rationale for novel therapeutic
approaches, targeting IL-17A and related survival pathways, to
be considered for future clinical trials.

Our results demonstrate that BCL2A1 staining improved
delineation of LCH granulomas compared to CD1a staining.
Indeed, staining for BCL2A1 expression provided a molecular
marker to delineate the structure of LCH lesions, paving the way
for future molecular single-cell studies. With the development of
Frontiers in Oncology | www.frontiersin.org 9
the new field called immunometabolism and knowing that redox
status regulates the structure and the function of BCL2A1 (50), it
would be interesting to study whether redox metabolism is a
player between IL-17A and BCL2A1, empowering further the
tissue lesions observed in LCH. Of note, BCL2A1 is not only
expressed in pathogenic DCs of LCH lesions, but also in Mo-DCs
from LCH patients.

We previously developed an in vitro model in which primary
Mo-DCs from the peripheral blood of LCH patients are well
characterized (8). By using this model, we proposed that (i) LCH
is a Mo-DC-related disease rather than an LC-related disease, (ii)
IL-17A is a source of inflammation in LCH lesions and (iii)
LCH-DCs acquire the ability to survive and thus to accumulate.
To our knowledge, we provide the first evidence that the
extended survival of LCH-DCs is sustained by IL-17A-driven
BCL2A1 expression. In addition to its pro-survival function and
role in leukocyte development, BCL2A1 plays a pivotal role
during immune response and inflammation (40). At steady-
state, BCL2A1 is not expressed in myeloid cells, but it can be
induced during myeloid differentiation and activation. Among
the mechanisms of BCL2A1 induction, inflammatory stimuli,
including pro-inflammatory cytokines also found in LCH, such
as GM-CSF, IL-1b, TNF-a, IFN-g and IL-17A, activate BCL2A1
gene expression and extend survival of macrophages and/or DCs
(23, 35, 36). BCL2A1 is the main protein of the BCL2 family
which is regulated by NF-kB (40). In Mo-DCs from healthy
donors, downstream of the IL-17A receptor, NF-kB induces
BCL2A1 expression (35). This mechanism induced in DCs
from healthy donors by paracrine IL-17A may be activated by
both paracrine and autocrine IL-17A in Mo-DCs cultured from
LCH patients. Recent data indicate that downstream of the IL-
17A receptor, the adaptor molecule ACT1 targets specific mRNA
secondary structures of inflammatory genes induced by either
IL-17A or other pro-inflammatory cytokines, such as IL-1b and
TNF-a (51, 52). This original mechanism also targets IL-17A
mRNA itself and is thought to be the major mechanism
explaining the particularity of IL-17A i.e. its ability to sustain
long-term chronic inflammation by stabilizing these mRNAs
(52). It would be interesting to study whether some members of
the BCL2 family, and especially BCL2A1, may offer the
secondary structure targeted by ACT1 in their mRNA.

In addition to BCL2A1, Mcl-1 and BCL2 were more frequently
overexpressed in haematological malignancies than Bcl-xL
(BCL2L1) and Bcl-w (BCL2L2), other anti-apoptotic members
of the BCL2 family (37). Mcl-1 is constitutively expressed in Mo-
DCs from both healthy donors (35, 36) and LCH patients, as
demonstrated in this study. Immunohistological studies revealed
that BCL2 is not expressed in normal skin. In LCH, BCL2 was first
detected by immunohistochemistry and RNA in situ hybridization
(53–56), but this data was not confirmed by transcriptomic
analyses of CD207+ cells from LCH lesions (4). High expression
of Bcl-xL was detected in BRAFV600E-CD207+ cells from LCH
lesions and decreased by BRAF or MEK inhibitors, which induce
cell death (4, 11, 16). In Mo-DCs from LCH patients, we have
documented the expression of BCL2A1, but neither BCL-2 nor
BCL-xL mRNAs, which are undetectable (data not shown).
A

B C

FIGURE 4 | BCL2A1 expression and survival of Mo-DCs from LCH patients
after neutralization of endogenous IL-17A. Mo-DCs from LCH patients were
cultured 7 days in the presence of either medium alone (none, Black) or IgG1
isotype control (iso, Grey) or neutralizing anti-IL-17A Abs (anti-IL-17A, Green).
(A) Representative flow cytometry analyses of BCL2A1 and Mcl-1 intracellular
staining. Percentages of positive Mo-DCs from LCH patient are indicated.
Control (filled grey histogram) corresponds to flow cytometry isotopic control.
(B) Percentage of intracellular BCL2A1 expression in the Mo-DCs from all
LCH patients tested. (C) Percentage of DiOC+

6PI
– viable Mo-DCs from the

LCH patients per million cultured Mo-DCs. (B, C) The mean of triplicate
values was plotted for each patient. SD were below 2%. One symbol
corresponds to one patient. Mo-DCs from 11 LCH patients (p1b, p2b, p7c,
p6b, p9, p12, p13, p14, p16, p19, p20) were analysed. Statistical analyses:
the Kruskal-Wallis test with Steel-Dwass-Critchlow-Fligner post-test were used
to compare the groups and calculate the p values.
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Expression of pro-survival BCL-2 members depends on cell type,
location, differentiation stage and microenvironment, especially
for BCL2A1 (39, 40). In addition to IL-17A, MAPK activating
mutations could also support BCL2A1 expression in LCH lesions.
Thus, a comprehensive molecular and immunohistological study
in human LCH biopsies of such mutations, markers of LCH
myeloid cells (CD207, CD1a, CD14, CD68) and members of the
BCL-2 family, whether regulated by MAPK activating mutations
or IL-17A, would provide important information to understand
the heterogeneity of patient phenotype and ultimately how to
conduct personalized treatment for a better care.

Although LCH often has a favourable outcome, some patients
with disseminated disease still have an unacceptably high risk of
death from LCH-driven multi-organ failure. VBL is successfully
used as the standard first-line therapy for severe LCH (43, 44, 49).
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The combination of AraC and 2CdA is indicated as a second-line
therapy for non-responsive patients or patients who escape VBL-
mediated killing after completion of 6 or even 12 months of
standard front line therapy (14, 16), and more recently MAPK
inhibitors were also used as salvage therapy (46). BCL2A1 and
Mcl-1 play a pivotal role in chemoresistance in a large number of
haematological malignancies [see reviews (37, 39, 57)]. Our
preclinical in vitro data demonstrated that VBL or AraC and
2CdA target Mcl-1 but not BCL2A1. As in other haematological
malignancies, targeting one BCL2 member may lead to
chemoresistance by fostering the upregulation of another pro-
survival member (37). Although 14/20 samples arose from
treated patients in the present study, we also investigated pre/
un-treated LCH patients, and found high BCL2A1 levels in some
of them. Therefore, LCH-DCs may escape the immune system
A B

C D E

FIGURE 5 | BCL2A1 expression and survival of Mo-DCs from LCH patients after combined in vitro treatment with toxic compounds and neutralizing anti-IL-17A
antibodies. Mo-DCs from LCH patients were cultured with low doses of toxic compounds in the presence of isotype control (iso) or anti-IL-17A Abs (anti-IL-17A),
and compared to Mo-DCs from LCH patients cultured with neutralizing IL-17A Abs alone. (A, C) Intracellular BCL2A1 staining was performed 12 hours before
(B, D) DiOC6/PI staining, operated at day 7 and calculated per million cultured Mo-DCs. (A–D) Mo-DCs from LCH patients were incubated with low doses of (A, B)
VBL or (C, D) AraC and 2CdA. (E) Specific anti-IL-17A-dependent cytotoxicity was calculated using [survival without anti-IL-17A – survival with anti-IL-17A]/survival
without anti-IL17A x 100 for each 11 patients from the survival data shown in B and D. Bars represent the mean for all 11 patients. (A–E) The mean of triplicate
values was plotted for each patient. SD were below 2%. One symbol corresponds to one patient. Mo-DCs from 11 LCH patients (p1b, p2b, p7c, p6b, p9, p12, p13,
p14, p16, p19, p20) were analysed. Statistical analyses: the Kruskal-Wallis test with Steel-Dwass-Critchlow-Fligner post-test were used to compare the groups and
calculate the p values.
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and/or treatment to survive by regulating the expression of BCL2
members, especially BCL2A1. To substantiate this hypothesis,
further investigations will be required on a larger cohort of
treated versus untreated patients, and we propose to monitor
BCL2 evolution according to disease progression.

We show here that neutralizing anti-IL-17A antibodies
inhibits BCL2A1 expression and reduces DC survival although
less efficiently than high doses of VBL or AraC and 2CdA. A
combination of anti-IL-17A and chemotherapeutic agents
decreased both BCL2A1 and Mcl-1 expressions and was highly
effective at killing LCH-DCs, notably with suboptimal doses of
VBL, thus demonstrating that targeting IL-17A offers a
therapeutic advantage. Lowering the dose of VBL by adding
anti-IL-17A biotherapy might represent an appealing therapeutic
opportunity to limit the first-line treatment-related toxicity in
LCH. It may be particularly interesting also in adult patients with
LCH, in whom the use of VBL has been considered controversial,
due to more frequent association with neuro-toxicity in some
studies (58), but not in others (59).

Another alternative could be to target both Mcl-1 and
BCL2A1 activities using peptide inhibitors or small molecules
such as selective BH3-mimetics. While many Mcl-1 inhibitors
have been generated, few are under clinical development, and
none have yet been approved for clinical use (60, 61).
Concerning BCL2A1, very few peptide inhibitors or small
molecules are in development, though some have been tested
in vitro and in vivo in animal models; no clinical development
was reported (62). To date, no BH3-mimetic selectively targets
BCL2A1 [see reviews (57, 62–64)]. Among the most studied
BH3-mimetics, ABT-737 or its derivative ABT-263 mainly target
BCL2, Bcl-xL and Bcl-w, but neither BCL2A1 nor Mcl-1 (65). A
recent study shows that ABT-263 is able to eliminate senescent
cells strongly expressing BCL-2 and BCL-xL proteins in a mouse
multipotent hematopoietic progenitor cell model where LCH
lesions contain the BRAFV600E mutation (66). Though initially
effective in haematological malignancies, ABT-737 treatment has
led to resistance owing to the alternative upregulation of BCL2A1
and Mcl-1 (67). In addition, pan-BCL2 and multiple-BCL2
inhibitors often have a very low clinical activity and/or high
toxicity, thus necessitating the use of high selective inhibitors for
each of the BCL2 members. However, dual or multiple
combinations of individual inhibitors do not seem to be under
clinical evaluation for haematological cancers (61).

Upregulation of LCH-DC survival pathways promotes an
increase in pro-survival mutations, especially in the BRAF,
MAP2K1, ARAF and ERBB3 genes (15, 21, 25, 68). Although
MAPK-inhibitors offer a promising option for treating LCH,
these inhibitors seem to be ineffective at reducing BRAFV600E+
LCH cell counts, unlike most chemotherapy drugs, and may
require the combination with other therapies (45, 69, 70). To
improve therapeutic strategies, neutralizing IL-17A could be
useful in LCH patients with or without MAPK-inhibitors
according to the presence or absence of MAPK activating
mutations. Our preclinical data strongly suggest that BCL2A1
expression is under the control of IL-17A, thus highlighting IL-
17A as an innovative target to be neutralized. Current anti-IL-
17A biotherapies (e.g. Secukinumab or Ixekizumab) have shown
Frontiers in Oncology | www.frontiersin.org 11
their effectiveness to control some chronic inflammatory
disorders, such as rheumatoid arthritis [reviewed in (71–73)].

In conclusion, we provide the proof-of-concept that
neutralizing IL-17A may limit accumulation of aggressive
inflammatory LCH-DCs by targeting pro-survival BCL2A1
expression in addition to VBL, which targets Mcl-1. These
preclinical in vitro data support the design of a specific clinical
trial based on anti-IL-17A and VBL combination, with the
potential to improve disease control in life-threatening LCH.
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Supplementary Figure 1 | BCL2A1 mRNA relative expression in Mo-DCs (ctrl1,
2, 3, 5, 8) and in IL-17A-treated Mo-DCs [ctrl4, 6, as in (35)] from healthy donors,
compared to BCL2A1mRNA relative expression in IL-17A-producing Mo-DCs from
patients with LCH (p1a, p2a, p3, p5, p7a, p10). The dotted line indicates the
significant expression threshold. Microarray analysis was performed using a high-
density oligonucleotide array (Genechip human genome U133 Plus 2.0, Affymetrix).
Labeled target for microarray hybridization was prepared using the Genechip
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expression 3’ Amplification One-cycle target labeling (Affymetrix). Briefly, total RNA
(2 µg) was converted into double stranded cDNA with a modified oligo(dT)24-T7
promoter primer. After purification, cDNAwas converted into cRNA and biotinylated
using the IVT labeling kit (Affymetrix). Reaction was carried out for 16 hours at 37°C
then at the end of incubation biotin-labeled cRNA was purified by the Genechip
sample clean up module (Affymetrix). cRNA quantification was performed with a
nanodrop and quality checked with the bioanalyzer 2100 (Agilent technologies).
Hybridization was then performed following Affymetrix protocol (http://www.
affymetrix.com). Briefly, 20 µg of labeled cRNA was fragmented, mixed in
hybridization buffer (50 pM control oligo B2, 1X eukaryotic hybridization controls,
0,1mg/mL Herring sperm DNA, 0.5 mg/mL BSA and 1x hybridization buffer, 10%
DMSO for a total volume of 300 µL), denaturated during 5 min at 95°C and
hybridized on chip during 16 hours at 45°C with constant mixing by rotation at 60
rpm in an Genechip hybridization oven 640 (Affymetrix). After hybridization, arrays
were washed and stained with streptavidin-phycoerythrin (Invitrogen Corporation)
in a fluidic 450 (Affymetrix) according to the manufacturer’s instruction. The arrays
were read with a confocal laser (Genechip scanner 3000, Affymetrix) and analyzed
with GCOS software. Absolute expression transcript levels were normalized for
each chip by globally scaling all probe sets to a target signal intensity of 500. The
detection metric (presence, absence or marginal) for a particular gene was
determined by means of default parameters in the GCOS v1.4 software (Affymetrix).
Quality of RNA amplification and labeling were checked by using B. subtilis
polyadenylated RNA spikes-in controls (Lys, phe, thr, dap) mixed to RNA sample
before performing reverse transcription. Hybridization quality was checked by using
E. coli biotinylated target (Bio B, BioC, BioD and CRE). Filtering of results was
performed using Genespring v7.0 software (Agilent technologies Inc). Heat map
was creating using Java TreeView v1.1.6r2.

Supplementary Figure 2 | Representative flow cytometry analyses of BCL2A1
intracellular staining in Mo-DCs from LCH patients after incubation with either
medium alone (none) or high doses of VBL (High VBL) or AraC and 2CdA (High AraC
+ 2CdA). Dot plots present SSC/FSC morphology to show the cells gated in G1
(left). Then, gated in G1 (right), dot plots present the intracellular staining with isotype
antibody control (control), shown for medium alone (none) and also representative
of the two other culture conditions (not shown). Finally, three dot plots present the
intracellular staining with anti-BCL2A1 antibodies for the three culture conditions, as
indicated above.
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14. Héritier S, Emile J-F, Hélias-Rodzewicz Z, Donadieu J. Progress Towards
Molecular-Based Management of Childhood Langerhans Cell Histiocytosis.
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