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Fatty Acid Biosynthesis Inhibition
Increases Reduction Potential in
Neuronal Cells under Hypoxia
Stephen A. Brose, Svetlana A. Golovko and Mikhail Y. Golovko*

Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA

Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia

through increased fatty acid (FA) biosynthesis followed by esterification into lipids.

However, the biological role of this pathway under hypoxia remains to be elucidated.

In the presented study, we have tested our hypothesis that activation of FA synthesis

maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia.

To address this hypothesis, we measured the effect of FA synthesis inhibition on

NADH+/NAD+ and NADPH+/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y2 2

cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits

Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased NADH+/NAD+

2

and NADPH+/NADP+ ratios under hypoxia. Further, FA synthesis inhibition increased2

lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under

hypoxia but not normoxia. These results indicate that FA may serve as hydrogen

acceptors under hypoxia, thus supporting oxidation reactions including anaerobic

glycolysis. These findings may help to identify a radically different approach to attenuate

hypoxia related pathophysiology in the nervous system including stroke.

Keywords: hypoxia, reduction and oxidation potential, lactic acid, NAD, NADP, fatty acids, lipid biosynthesis

INTRODUCTION

Despite the significant role for brain hypoxia in the development of many of pathophysiological
conditions including stroke, traumatic brain injury, tumorigenesis, aging, and neurodegenerative
diseases (Gallagher and Hackett, 2004; Wilson et al., 2009; Raymond et al., 2011; Clambey et al.,
2012; Kirby et al., 2012; Lin et al., 2013), biochemical mechanisms for adaptation to hypoxia are
still poorly understood. Recently, we have discovered a previously unknown and neuron-specific
mechanism for utilizing anaerobic metabolism during hypoxia. We have found that hypoxic-
stressed neurons have a unique response of dramatically increased fatty acid (FA) synthesis from
glutamine and glutamate (Gln/Glu) (Brose et al., 2014). However, the biochemical significance of
this pathway in neuronal adaptation to hypoxia is unknown. Previously, we have hypothesized
a few mechanisms to address the importance for activated FA synthesis from Gln/Glu under
hypoxia (Brose et al., 2014) including balancing Glu levels, protection against oxidative stress,
and maintaining reduction potential with support of anaerobic glycolysis. In the present study,

Abbreviations: FA, fatty acids; Gln, glutamine; Glu, glutamate; LDH, lactate dehydrogenase; MS, mass spectrometry; UPLC,
ultra-pressure liquid chromatography.
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we have tested one of these hypotheses that FA SYNTHESIS
supports anaerobicmetabolism under hypoxia through accepting
hydrogen from reduced cofactors (NADH+

2 , NADPH
+

2 , FADH2),
thus maintaining reduction potential.

Under hypoxia, hydrogen accumulates on reduced cofactors
(NADH+

2 , NADPH+

2 , FADH2; Garofalo et al., 1988; Obi-
Tabot et al., 1993; Foster et al., 2005), due to the decrease
in O2 as its final acceptor. This results in a decreased
ATP production through oxidative phosphorylation, and an
increased ratio of reduced/oxidized cofactors in the cell and
therefore, an increased reduction potential. The altered reduction
potential has several devastating effects on cells including lactate
accumulation as an alternative H2 acceptor and subsequent
pH drop (Payen et al., 1996; Malisza et al., 1999; Zhang
et al., 2006), increased formation of reactive oxygen species
which damage lipids, proteins, and DNA (Magalhães et al.,
2005), DNA modification through modulation of sirtuin Sirt1
activity (Lin et al., 2004), decreased rates of oxidation reactions
such as glycolysis or Glu/Gln oxidation (McKenna, 2007), and
a further decrease in ATP production (Pettit et al., 1975).
Because FA synthesis consumes two hydrogens from reduced
cofactors for each 2 carbons incorporated, we hypothesize that FA
synthesis may have a role as a hydrogen acceptor from reduced
cofactors under hypoxia, thus maintaining cellular reduction
potential.

To address this hypothesis, we applied a previously validated
in-vitro model for neuronal hypoxia using SH-SY5Y cells
exposed to 19% (normoxia) or 1% (hypoxia) oxygen levels
(Brose et al., 2014). FA synthesis was inhibited at two different
steps in the biosynthetic pathway using tetradecyloxy-2-furoic
acid (TOFA, inhibits Acetyl-CoA carboxylase Loftus et al.,
2000) and cerulenin (inhibits FA synthase, Heiligtag et al.,
2002; Lupu and Menendez, 2006). FA synthesis inhibition
significantly increased NADH+

2 /NAD
+ and NADPH+

2 /NADP
+

ratios under hypoxia and resulted in increased lactic acid
under both normoxic and hypoxic conditions. Importantly,
FA synthesis inhibition caused cytotoxicity under hypoxia but
not normoxia. These results indicate that FA may serve as
hydrogen acceptors under hypoxia, thus supporting oxidation
reaction including anaerobic glycolysis. These findings may
help to identify a radically different approach to attenuate
hypoxia related pathophysiology in the nervous system including
stroke.

MATERIALS AND METHODS

Materials
SH-SY5Y cells were a gift from Dr. Colin Combs. All culture
media and horse serum were purchased from Life Technologies
(Grand Island, NY, USA). Fetal bovine serum (FBS) was
purchased from Serum Source International (Charlotte, NC,
USA). L-[U 14C] glutamaic acid (260 mCi/mmol) was purchased
from PerkinElmer (Waltham, MA, USA). TOFA and cerulenin
were purchased from Cayman Chemical (Ann Arbor, MI,
USA). All other chemicals and solvents used were purchased
from Fisher Scientific (Waltham, MA USA) and were LC-MS
grade.

Cell Culture and Hypoxic Treatment
Cells were plated 3 days before the experiment on a six-well plate
(Cellstar, Griner Bio-One, Monroe, NC, USA) at a density of
1.5 million cells per well. The cells were grown in Dulbecco’s
modified Eagle medium with nutrient mixture F-12 (DMEM/F-
12) with 10% FBS and 5% horse serum at 37◦C and 5% CO2.

The hypoxic treatment was as described earlier (Brose et al.,
2014). Briefly, the cells were preconditioned by replacing the
growth medium with serum-free minimum essential media
(MEM) and incubating in 19% O2 (Normoxia) or 1% O2

(Hypoxia) in 5% CO2 at 37◦C using nitrogen gas to purge the
oxygen. After 24 h, the media was replaced with 2 mL of fresh
serum-free MEM containing radiolabeled tracer (2 µCi [U-14C
Glu]) and/or fatty acid synthesis inhibitor (TOFA, 2 µg/mL;
cerulenin, 1 µg/mL) and returned to their respective incubation
conditions for another 18 h. A short re-oxygenation during
media change did not significantly affect the FA synthesis rate as
was estimated using de-oxygenated media (data not shown).

Lipid Extraction and Saponification
To measure incorporation of radiotracer into fatty acids, cellular
lipids were extracted and saponified as described earlier (Brose
et al., 2014). Briefly, the media was removed and the cells were
washed twice with ice-cold phosphate buffered saline. After
removing the final wash, 0.5 mL of methanol was added to the
cells; they were scraped and transferred into a silanized with
Sigmacote (Sigma Chemical Co., St. Louis, MO) screw top glass
tube. Another, 0.5 mL of methanol was added, the plates were
scraped again, and the solution was combined with the methanol
solution. A Folch extract (Folch et al., 1957) was performed by
adding an additional 1 mL of methanol and 4 mL chloroform.
The mixture was soniciated using a probe sonicator (Model
150 Sonic Dismembrator, Fisher Scientific) and centrifuged at
2000 × g for 10 min. The supernatant was transferred into a
new silanized screw top glass tube and was washed with 1.2
mL saline (0.9% sodium chloride). The extract was washed an
additional two times with 1.2 mL chloroform:methanol:water
(3:48:47). The extract was dried under nitrogen, re-dissolved in
the saponification solution (180 µL methanol and 20 µl 5M
potassium hydroxide in water) and heated to 60◦C for 60 min
to saponify. The samples were then neutralized with 20 µL 5 M
hydrochloric acid in water. After neutralization, 780 µL of saline
was added and the fatty acids were extracted with 2 mL hexane
three times. The combined hexane extracts were evaporated and
the fatty acids were re-dissolved in 1 mL of hexane. Radioactivity
of an aliquot of the samples was measured in 10 mL Cytoscint
(MP Biomedicals; Solon, OH, USA) using a scintillation counter
(LS-6500, Beckman Coulter, Pasadena, CA, USA).

Cytotoxicity
Cytotoxicity was measured as a percent of lactate dehydrogenase
(LDH) released from the cells into the media using an enzymatic
kit (BioVision, Milpitas, CA, USA). Media was collected, and the
cells were lysed in 1 mL of the included lysis buffer. For both
media and cell lysate, 10 µL was used for LDH measurement.
Absorbance was measured at 450 nm using a Flexstation III plate
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reader (Molecular Devices; Sunnyvale, CA, USA). LDH released
was calculated as (LDHmedium/LDHmedium+cells)×100%.

Lactic Acid
Lactic acid was measured using 20 µL of media with a
fluorescence-based enzymatic kit from Cayman Chemical.
Fluorescence was measured with a Flexstation III plate reader
using an excitation wavelength of 535 nm and an emission
wavelength of 590 nm with a cutoff filter of 570 nm.

NAD+/NADH2 and NADP+/NADPH2

Measurement
Nucleotides were extracted from cells under ice-cold conditions
by adding ice-cold 0.5 mL methanol:water (80:20) containing
0.1 mg/mL ethylenediaminetetraacetic acid and scraping the
cells. The solution containing cells was transferred to a 1.5 mL
microcentrifuge tube. Another 0.5 mL of the methanol:water
solution was added to each well, the wells were scraped again,
and the wash was combined with the previous wash. The
combined solutions were sonicated, centrifuged at 10000 × g
for 10 min at 4◦C. The supernatant was transferred into a 2
mL microcentrifuge tube and was washed from lipids with 1
mL hexane 2 times. The remaining solution was evaporated in
a vacuum concentrator. The residue was redissolved in 20 µL
water and transferred into a silanizedmicrovial insert (Microsolv,
Eatontown, NJ USA part number 9502S-02ND) and 10 µL was
injected into the LC-MS.

Nucleotides were separated on the same day using a
HYPERCARB column (3 µm, 250 Å, 150 × 2.1 mm; Thermo
Fisher Scientific; Waltham, MA, USA) maintained at room
temperature. The LC system was aWaters AQUITYUPLC pump
and a well plate autosampler (Waters; Milford, MA, USA). The
autosampler temperature was 8◦C. Solvent A consisted of water
containing 2 mM ammonium acetate at pH 10 and solvent B
consisted of acetonitrile containing 2 mM ammonium acetate at
pH 10. The flow rate was 0.3 mL/min and the initial conditions
were 97% A and 3% B. The initial conditions were held for
0.5min. B was increased to 10% over 8 min and held for 2 min. B
was then further increased to 25% over 2 min and held for 4min.
Finally, B was increased to 98% over 4min and held for 7.5 min. B
was then returned to the initial conditions over 0.5 min and held
for 2 min.

Quantification of nucleotides was performed on a Waters
Synapt G2-S quadrupole time-of-flight mass spectrometer
(Q-TOF). The electrospray ionization was in negative ion mode
as previously described (Brose et al., 2013). The cone voltage
was 20 V with a capillary voltage of 1.51 kV. The source
temperature was 110◦C. The desolvation temperature was 350◦C.
The cone gas flow was 10 L/h, the desolvation gas flow was
1000 L/h and the nebulizer gas was 6bar. The analyzer was
operated in the centroid sensitivity mode with an extended
dynamic range with a resolution of 10,000. Mass correction was
performed using leucine enkephalin (400 pg/µL, ACN: water,
50: 50) which was infused at 10 µL/min. The acquisition rate
was 10 hertz. NAD+, NADH+

2 , NADP
+, and NADPH+

2 were
quantified using m/z 662.1013, 664.1161, 742.0670, and 744.0833

Da, respectively. Instrument control, acquisition, and sample
analysis was performed using MassLynx V4.1 software (Waters).

Statistics
Statistical comparisons were determined using an ANOVA with
Tukey’s post-hoc test. Statistical significance was defined as
<0.05. Values are expressed as mean ± SD. GraphPad Prism
6 (GraphPad; San Diego, CA) software was used for statistical
analysis.

RESULTS

To address the role for increased FA synthesis under hypoxia,
we use our previously validated model for neuronal cell hypoxia
(Brose et al., 2014). Consistent with our previous results, FA
synthesis from Glu was dramatically 6.4-fold increased in SH-
SY5Y cells under 1% O2 (Figure 1). Next, we inhibited FA
synthesis at the Acetyl-CoA carboxylase (TOFA, Loftus et al.,
2000) or FA synthase (cerulenin, Heiligtag et al., 2002; Lupu and
Menendez, 2006) reactions. The inhibitors TOFA and cerulenin
were used at concentrations 5- and 3-fold above their IC50 values,
respectively (Zhu et al., 2004; Wu et al., 2011), and significantly
inhibited FA synthesis from Glu under both normoxic and
hypoxic conditions (Figures 1A,B) while they were not toxic
under normoxia (Figure 1C). Importantly, at the concentrations
used, TOFA demonstrated a higher potency to inhibit FA
synthesis under both normoxia (5.1-fold FA synthesis inhibition
by TOFA compared to 1.7-fold inhibition by cerulenin) and
hypoxia (8.1-fold FA synthesis inhibition by TOFA compared to
2.2-fold inhibition by cerulenin) (Figures 1A,B).

To assay the effect of FA synthesis inhibition on cellular
reduction potential, we applied a high resolution accurate
mass LC-MS approach to measure NADH+

2 /NAD
+ and

NADPH+

2 /NADP
+ ratios under normoxia and hypoxia

(Figure 2). In the control (vehicle treated) cells, hypoxia
resulted in an increased NADH+

2 /NAD
+ ratio in both TOFA

and cerulenin experiments. This is consistent with hypoxic
conditions when O2 levels are insufficient to accept H2 from
reduced cofactors through the electron transport chain. Slight
differences in the NADH+

2 /NAD
+ and NADPH+

2 /NADP
+

ratios between experiments may be attributed to the differences
between culture age and density because TOFA and cerulenin
experiments were performed at different times, and the
NADH+

2 /NAD
+ ratio is closely linked to physiological and

pathological states (Schwartz et al., 1974; Atzori et al., 1990;
Zhang et al., 2006; Sun et al., 2012). Surprisingly, hypoxia
decreased NADPH+

2 /NADP
+ ratio. This is consistent with

previous reports (Tribble and Jones, 1990; Gupte and Wolin,
2006; Kathagen-Buhmann et al., 2016) and may be associated
with the depression of pentose-phosphate pathway (Gupte and
Wolin, 2006; Kathagen-Buhmann et al., 2016). Alternatively,
decreased NADPH+

2 under hypoxia may be explained through
significant increased FA synthesis that utilizes NADPH+

2 as a
cofactor.

Consistent with our hypothesis, both inhibitors significantly
increased both NADH+

2 /NAD
+ and NADPH+

2 /NADP
+ ratios

under hypoxia as compared to vehicle treated hypoxic cells
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FIGURE 1 | Fatty acid synthesis from glutamate in SH-SY5Y cells was inhibited by TOFA and cerulenin under normoxia (19% O2) and hypoxia (1% O2)

and did not cause toxicity under normoxia. (A,B): SH-SY5Y cells were preconditioned in serum-free MEM for 24 h under normoxia or hypoxia. The media was

replaced with a fresh media and the cells were pretreated with vehicle (control, 1 µL/mL DMSO), (A) TOFA (2 µg/mL), or (B) cerulenin (1 µg/mL) for 30 min. [U-14C]

glutamate (2 µCi) was then added to the wells. The cells were incubated for another 18 h under normoxia or hypoxia. Fatty acid (FA) radioactivity was determined as

described in the Materials and Methods. (C): Percent of LDH released into the media was measured under normoxic (19% O2) conditions to confirm the inhibitors

TOFA (2 µg/mL) and cerulenin (1 µg/mL) were not toxic at the concentrations used. *-significantly different, p < 0.05. Values are mean ± SD, n = 3.

(Figure 2). Similar to the effect on FA synthesis, TOFA
had a stronger effect on NADH+

2 /NAD
+ ratios (1.8-fold

increase as compared to vehicle treated hypoxic cells) as
compared to cerulenin (1.3-fold increase), while the effect on
NADPH+

2 /NADP
+ ratios was similar for both inhibitors (∼3-

fold increase as compared to vehicle treated hypoxic cells).
Because the NADH+

2 /NAD
+ ratio is closely related to

anaerobic glycolysis and lactic acidosis which are both activated
under 1% hypoxia (Zhang et al., 2006), we assayed the effect of FA
synthesis inhibition with TOFA onmedia lactic acid (Figure 3A).
Consistent with anaerobic glycolysis activation under hypoxia,
1% O2 increased media lactic acid 1.9-fold. TOFA did not
have an effect on lactic acid under normoxia, but significantly
increased lactate under hypoxia 2.6-fold as compared to vehicle
treated hypoxic cells (Figure 3A). Consistent with increased
NADH+

2 /NAD
+ and NADPH+

2 /NADP
+ ratios, and increased

lactoacidosis under hypoxia, TOFA dramatically increased
cytotoxicity under hypoxia but not normoxia as measured by
cellular LDH release (Figure 3B).

DISCUSSION

Despite the significant contribution of brain hypoxia in
the development of many of pathophysiological conditions,
biochemical mechanisms for neuronal adaptation to hypoxia are
still not completely understood. Previously, using both primary
neurons and neuronal cell lines, we have reported a novel
response of neuronal cells to hypoxia through a dramatic increase
in FA synthesis from Gln/Glu (Brose et al., 2014). However, the
biological importance for this pathway has not been addressed.

To explain the role for increased FA synthesis under neuronal
hypoxia, we have previously hypothesized few mechanisms that
may have a complimentary protective role, including balancing

Glu levels, protection against oxidative stress, and maintaining
reduction potential with support of anaerobic glycolysis (Brose
et al., 2014). In the current study, we have addressed the role
for FA synthesis in supporting reduction potential as a potent
acceptor of hydrogen under hypoxia.

The mechanism for alterations in reduction potential under
hypoxia is well understood. Under hypoxia, hydrogen transfer
from substrates to oxygen in the electron transport chain
in mitochondria is decreased. This leads to accumulation
of hydrogen on intermediate cofactors (NADH+

2 , NADPH
+

2 ,
FADH2; Garofalo et al., 1988; Obi-Tabot et al., 1993; Foster
et al., 2005). Because the total pool of reduced and oxidized
co-factors is unchanged, the level of oxidized cofactors is
decreased, thus the ratio between reduced and oxidized
cofactors is increased. As a result, ATP levels are decreased,
while the reduced cofactors (NADH+

2 , NADPH+

2 , FADH2)
are significantly increased, limiting energy production and
increasing reduced/oxidized cofactor ratio in cells. In addition,
cells are unable to completely oxidize pyruvate and acetyl-CoA
produced in glycolysis and glutaminolysis (McKenna, 2007).
In line with this mechanism, and consistent with previous
studies when 1% O2 was used to model hypoxia (Zhang et al.,
2006), we observed a significant increase in the NADH+

2 /NAD
+

ratio and lactic acid accumulation in control hypoxic cells
(Figures 2, 3). However, similar to previous reports (Tribble and
Jones, 1990; Gupte and Wolin, 2006; Kathagen-Buhmann et al.,
2016), hypoxia decreased the NADPH+

2 /NADP
+ ratio (Figure 2)

which may be explained through the depression of the pentose-
phosphate pathway(Gupte andWolin, 2006; Kathagen-Buhmann
et al., 2016). Alternatively, decreased NADPH+

2 under hypoxia
may be explained through significantly increased FA synthesis
under hypoxia since FA synthesis utilizes NADPH+

2 as a cofactor.
Astrocytes and, to a lesser extent, neurons adapt to hypoxic
conditions through switching to anaerobic glycolysis. However,
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FIGURE 2 | NADH+

2 /NAD+ and NADPH+

2 /NADP+ levels under hypoxia

are increased with fatty acid synthesis inhibition. Inhibition of fatty acid

synthesis in hypoxic SH-SY5Y cells increases the amounts of NADH+

2 (A,C)

and NADPH+

2 (B,D) relative to their oxidized forms. SH-SY5Y cells were

preconditioned in serum-free MEM for 24 h under normoxia or hypoxia. The

media was switched to a fresh media and the cells were treated with vehicle

(control, 1 µL/mL DMSO), cerulenin (1 µg/mL) (A,B), or TOFA (2 µg/mL) (C,D)

and were incubated for another 18 h under normoxia or hypoxia. Nucleotides

were extracted with 80:20 methanol: water containing EDTA and were

analyzed with LC-MS as described in the Materials and Methods.

*-significantly different, p < 0.05. Values are mean ± SD, n = 3.

under hypoxia anaerobic glycolysis leads to further accumulation
of both reduced cofactors and lactic acid (Figure 3). This is
consistent with attenuation of NADH+

2 accumulation under
hypoxia when glucose levels are decreased (Garofalo et al., 1988).

The altered reduction potential has several devastating effects
on cells. It results in: 1. Further lactate accumulation (as an
alternative acceptor of hydrogen), and pH drop (Payen et al.,
1996; Malisza et al., 1999; Zhang et al., 2006). Importantly,
even under normoxia, astrocytic lactate production is very
high to provide this key metabolite to neurons for energy
metabolism (Hu and Wilson, 1997; Galeffi et al., 2007). Under
hypoxia, neuronal oxidative potential is limited, decreasing
lactate utilization; 2. Reactive oxygen species formation with
consequential damage to lipids, proteins, and DNA (Magalhães
et al., 2005). This paradoxical phenomenon of hypoxia-induced
oxidative stress is explained through increased mitochondrial
reductive stress (Turrens et al., 1985; Duranteau et al., 1998).

FIGURE 3 | Inhibition of fatty acid synthesis with TOFA in SH-SY5Y

cells increases lactic acid levels and toxicity under hypoxia. SH-SY5Y

cells were preconditioned in serum-free MEM for 24 h under normoxia or

hypoxia. The media was switched to a fresh media and the cells were treated

with vehicle (control, 1 µL/mL DMSO) or TOFA (2 µg/mL). The cells were

incubated for another 18 h under normoxia or hypoxia. (A): Lactic acid was

measured using an enzymatic fluorescent kit. (B): Toxicity was determined

through percent of LDH release which was measured using a colorimetric

enzymatic kit. *significantly different, p < 0.05. Values are mean ± SD, n = 3.

One of the additional mechanisms for increased oxidative
damage under accumulation of NADH+

2 is the formation of
H2O2 that promotes reactive oxygen species formation (Circu
and Aw, 2010). Intriguingly, the NADPH+

2 to NADP+ ratio
is decreased under hypoxia as we discussed above (Figure 2).
This may cause additional oxidative damage due to involvement
of NADPH+

2 in enzymatic detoxification of reactive oxygen
species. However, because an active mitochondrial FA synthase
may use NADH+

2 as a cofactor (Podack and Seubert, 1972;
Seubert and Podack, 1973; Hinsch and Seubert, 1975; Whereat
and Rabinowitz, 1975; Hinsch et al., 1976; Hiltunen et al.,
2010; Smith et al., 2012) and H2 is readily transferred from
NADH+

2 to NADP+ by transhydrogenases (Bizouarn et al., 2000;
Jackson et al., 2002), increased FA synthesis may not cause
but rather protect against oxidative damage; 3. Altered gene
expression and protein modifications through increased protein
acetylation. The NADH+

2 /NAD
+ ratio modulates the activity of

the NAD-dependent deacetylase sirtuin Sirt1 (Lin et al., 2004)
that plays a central role in the regulation of thousands of
metabolic enzymes and transcription factors in the cytosol and
mitochondria (Hallows et al., 2006; Herranz and Serrano, 2010;
Wang et al., 2010; Zhao et al., 2010; Hirschey et al., 2011); 4.
Decreased rates of oxidation metabolic reactions including the
glycolytic pathway. Because over 700 oxidoreduction enzymes
use NAD+ or NADP+ as cofactors (Sun et al., 2012), the
reduced availability of oxidized NAD+ and NADP+ globally
effects cellular biochemical processes; 5. In addition, the altered
reduction potential further reduces ATP production (Pettit
et al., 1975), causing neuronal damage. Few mechanisms are
involved in the reduction of ATP production including allosteric
regulation and oxidized cofactor availability.

Because FA synthesis consumes H2 from two NADPH+

2
per each acetyl-CoA incorporated into FA chain, H2 is readily

Frontiers in Neuroscience | www.frontiersin.org 5 November 2016 | Volume 10 | Article 546

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Brose et al. Lipids Maintain Oxidative Potential under Hypoxia

transferred from NADH+

2 to NADP+ by transhydrogenases
(Bizouarn et al., 2000; Jackson et al., 2002), and an active
mitochondrial FA synthase may use NADH+

2 as a cofactor
(Podack and Seubert, 1972; Seubert and Podack, 1973; Hinsch
and Seubert, 1975; Whereat and Rabinowitz, 1975; Hinsch et al.,
1976; Hiltunen et al., 2010; Smith et al., 2012), we hypothesized
that increased FA synthesis under hypoxia has a role in
maintaining cellular reduction potential. Importantly, under
hypoxia each acetyl-CoA produced from glucose also produces
two NADH+

2 . One is produced during anaerobic glycolysis,
and another one during pyruvate oxidative decarboxylation.
Thus, activation of FA synthesis will stoichiometrically use all
NADH+

2 produced in the anaerobic glycolysis and will prevent
hydrogen accumulation in the form of lactic acid. In addition,
it will support Glu oxidation also associated with NAD(P)H+

2
formation (McKenna, 2007). Using a loss of function approach
through inhibition of FA synthesis at two different metabolic
reactions at not-cytotoxic levels, we demonstrated a dramatic
increase in NADH+

2 /NAD
+ and NADPH+

2 /NADP
+ ratios under

hypoxia compared to vehicle-treated hypoxic neuronal cells
(Figure 2).

FA synthesis inhibition also resulted in the increased lactic
acid levels, and caused a significant toxicity under hypoxia
but not normoxia (Figure 3). Because TOFA may alter a
number of different pathways, it is difficult to provide a
conclusive interpretation of the toxicity mechanism of fatty acid
inhibition under hypoxia. However, because reductive potential
was increased with both inhibitors under hypoxia, and increased

reductive potential is the cause but not a direct result of apoptosis
(Circu and Aw, 2010; Redza-Dutordoir and Averill-Bates, 2016),
we speculate that decreased consumption of reduced cofactors
in fatty acid synthesis pathway through inhibition may lead to
cellular death under hypoxia.

Together, these data strongly indicate that FA synthesis is
important for maintaining reduction potential and decreasing
lactic acid, in order to support cell survival under hypoxia. These
findings may help to identify a radically different approach to
attenuate hypoxia related pathophysiology in the nervous system
including stroke.

AUTHOR CONTRIBUTIONS

SB: Conducted experiments, participated in designing the
study and method development, writing and editing the
manuscript, analyzed and interpreted the data. SG: Conducted
MS experiments, participated in LC-MS method development
and MS data analysis and interpretation. MG: Supervised and
designed the study and method development, wrote and edited
the manuscript, analyzed and interpreted the data.

FUNDING

This publication was made possible by NIH Grant
1R01AG042819-04 (MG), NIH funded COBRE Mass Spec
Core Facility Grant 1P30GM103329-04 (MG), and UND Office
of the Vice President for Research funds (MG).

REFERENCES

Atzori, L., Dypbukt, J. M., Sundqvist, K., Cotgreave, I., Edman, C. C., Moldéus, P.,
et al. (1990). Growth-associated modifications of low-molecular-weight thiols
and protein sulfhydryls in human bronchial fibroblasts. J. Cell. Physiol. 143,
165–171. doi: 10.1002/jcp.1041430123

Bizouarn, T., Fjellström, O., Meuller, J., Axelsson, M., Bergkvist, A.,
Johansson, C., et al. (2000). Proton translocating nicotinamide nucleotide
transhydrogenase from E. coli. Mechanism of action deduced from its
structural and catalytic properties. Biochim. Biophys. Acta 1457, 211–228.
doi: 10.1016/S0005-2728(00)00103-1

Brose, S. A., Marquardt, A. L., and Golovko, M. Y. (2014). Fatty acid
biosynthesis from glutamate and glutamine is specifically induced in
neuronal cells under hypoxia. J. Neurochem. 129, 400–412. doi: 10.1111/jnc.
12617

Brose, S., Baker, A., and Golovko, M. (2013). A fast one-step extraction and UPLC–
MS/MS analysis for E2/D2 series prostaglandins and isoprostanes. Lipids 48,
411–419. doi: 10.1007/s11745-013-3767-5

Circu, M. L., and Aw, T. Y. (2010). Reactive oxygen species, cellular
redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762.
doi: 10.1016/j.freeradbiomed.2009.12.022

Clambey, E. T., McNamee, E. N., Westrich, J. A., Glover, L. E., Campbell, E.
L., Jedlicka, P., et al. (2012). Hypoxia-inducible factor-1 alpha–dependent
induction of FoxP3 drives regulatory T-cell abundance and function during
inflammatory hypoxia of the mucosa. Proc. Natl. Acad. Sci. U.S.A. 109, e2784–
e2793. doi: 10.1073/pnas.1202366109

Duranteau, J., Chandel, N. S., Kulisz, A., Shao, Z., and Schumacker,
P. T. (1998). Intracellular signaling by reactive oxygen species
during hypoxia in cardiomyocytes. J. Biol. Chem. 273, 11619–11624.
doi: 10.1074/jbc.273.19.11619

Folch, J., Lees, M., and Sloan Stanley, G. H. (1957). A simple method for the
isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226,
497–509.

Foster, K. A., Beaver, C. J., and Turner, D. A. (2005). Interaction between
tissue oxygen tension and NADH imaging during synaptic stimulation
and hypoxia in rat hippocampal slices. Neuroscience 132, 645–657.
doi: 10.1016/j.neuroscience.2005.01.040

Galeffi, F., Foster, K. A., Sadgrove, M. P., Beaver, C. J., and Turner, D. A. (2007).
Lactate uptake contributes to the NAD(P)H biphasic response and tissue
oxygen response during synaptic stimulation in area CA1 of rat hippocampal
slices. J. Neurochem. 103, 2449–2461. doi: 10.1111/j.1471-4159.2007.04939.x

Gallagher, S. A., and Hackett, P. H. (2004). High-altitude illness. Emerg. Med. Clin.

North Am. 22, 329–355. doi: 10.1016/j.emc.2004.02.001
Garofalo, O., Cox, D. W., and Bachelard, H. S. (1988). Brain levels of NADH and

NAD+ under hypoxic and hypoglycaemic conditions in vitro. J. Neurochem.

51, 172–176. doi: 10.1111/j.1471-4159.1988.tb04851.x
Gupte, S. A., and Wolin, M. S. (2006). Hypoxia promotes relaxation of bovine

coronary arteries through lowering cytosolic NADPH. Am. J. Phys. Heart Circ.

Physiol. 290, H2228–H2238. doi: 10.1152/ajpheart.00615.2005
Hallows, W. C., Lee, S., and Denu, J. M. (2006). Sirtuins deacetylate and

activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U.S.A. 103,
10230–10235. doi: 10.1073/pnas.0604392103

Heiligtag, S. J., Bredehorst, R., and David, K. A. (2002). Key role of
mitochondria in cerulenin-mediated apoptosis. Cell Death Differ. 9, 1017–1025.
doi: 10.1038/sj.cdd.4401055

Herranz, D., and Serrano, M. (2010). SIRT1: recent lessons from mouse models.
Nat. Rev. Cancer 10, 819–823. doi: 10.1038/nrc2962

Hiltunen, J. K., Autio, K. J., Schonauer, M. S., Kursu, V. A., Dieckmann, C. L.,
and Kastaniotis, A. J. (2010). Mitochondrial fatty acid synthesis and respiration.
Biochim. Biophys. Acta 1797, 1195–1202. doi: 10.1016/j.bbabio.2010.03.006

Frontiers in Neuroscience | www.frontiersin.org 6 November 2016 | Volume 10 | Article 546

https://doi.org/10.1002/jcp.1041430123
https://doi.org/10.1016/S0005-2728(00)00103-1
https://doi.org/10.1111/jnc.12617
https://doi.org/10.1007/s11745-013-3767-5
https://doi.org/10.1016/j.freeradbiomed.2009.12.022
https://doi.org/10.1073/pnas.1202366109
https://doi.org/10.1074/jbc.273.19.11619
https://doi.org/10.1016/j.neuroscience.2005.01.040
https://doi.org/10.1111/j.1471-4159.2007.04939.x
https://doi.org/10.1016/j.emc.2004.02.001
https://doi.org/10.1111/j.1471-4159.1988.tb04851.x
https://doi.org/10.1152/ajpheart.00615.2005
https://doi.org/10.1073/pnas.0604392103
https://doi.org/10.1038/sj.cdd.4401055
https://doi.org/10.1038/nrc2962
https://doi.org/10.1016/j.bbabio.2010.03.006
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Brose et al. Lipids Maintain Oxidative Potential under Hypoxia

Hinsch, W., Klages, C., and Seubert, W. (1976). On the mechanism of malonyl
CoA independent fatty acid synthesis. Different properties of themitochondrial
chain elongation and enoyl CoA reductase in various tissues. Eur. J. Biochem.

64, 45–55. doi: 10.1111/j.1432-1033.1976.tb10273.x
Hinsch, W., and Seubert, W. (1975). On the mechanism of malonyl-

coa-independent fatty-acid synthesis. Eur. J. Biochem. 53, 437–447.
doi: 10.1111/j.1432-1033.1975.tb04084.x

Hirschey, M. D., Shimazu, T., Capra, J. A., Pollard, K. S., and Verdin, E.
(2011). SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and
HMGCS1,2. Aging 3, 635–642. doi: 10.18632/aging.100339

Hu, Y., and Wilson, G. S. (1997). A temporary local energy pool coupled
to neuronal activity: fluctuations of extracellular lactate levels in rat brain
monitored with rapid-response enzyme-based sensor. J. Neurochem. 69,
1484–1490. doi: 10.1046/j.1471-4159.1997.69041484.x

Jackson, J. B., White, S. A., Quirk, P. G., and Venning, J. D. (2002). The alternating
site, binding change mechanism for proton translocation by transhydrogenase.
Biochemistry 41, 4173–4185. doi: 10.1021/bi012078d

Kathagen-Buhmann, A., Schulte, A., Weller, J., Holz, M., Herold-Mende,
C., Glass, R., et al. (2016). Glycolysis and the pentose phosphate
pathway are differentially associated with the dichotomous regulation of
glioblastoma cell migration versus proliferation. Neuro. Oncol. 18, 1219–1229.
doi: 10.1093/neuonc/now024

Kirby, B. S., Crecelius, A. R., Voyles, W. F., and Dinenno, F. A. (2012). Impaired
skeletal muscle blood flow control with advancing age in humans: attenuated
atp release and local vasodilation during erythrocyte deoxygenation. Circ. Res.
111, 220–230. doi: 10.1161/CIRCRESAHA.112.269571

Lin, C., Wu, C. J., Wei, I. H., Tsai, M. H., Chang, N. W., Yang, T. T.,
et al. (2013). Chronic treadmill running protects hippocampal neurons from
hypobaric hypoxia-induced apoptosis in rats. Neuroscience 231, 216–224.
doi: 10.1016/j.neuroscience.2012.11.051

Lin, S. J., Ford, E., Haigis, M., Liszt, G., and Guarente, L. (2004). Calorie restriction
extends yeast life span by lowering the level of NADH. Genes Dev. 18, 12–16.
doi: 10.1101/gad.1164804

Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett,
G. V., Lane, M. D., et al. (2000). Reduced food intake and body weight
in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381.
doi: 10.1126/science.288.5475.2379

Lupu, R., and Menendez, J. A. (2006). Pharmacological inhibitors of fatty
acid synthase (FASN)-catalyzed endogenous fatty acid biogenesis: a
new family of anti-cancer agents? Curr. Pharm. Biotechnol. 7, 483–494.
doi: 10.2174/138920106779116928

Magalhães, J., Ascensão, A., Soares, J. M. C., Ferreira, R., Neuparth, M. J., Marques,
F., et al. (2005). Acute and severe hypobaric hypoxia increases oxidative stress
and impairs mitochondrial function in mouse skeletal muscle. J. Appl. Physiol.
99, 1247–1253. doi: 10.1152/japplphysiol.01324.2004

Malisza, K. L., Kozlowski, P., Ning, G., Bascaramurty, S., and
Tuor, U. I. (1999). Metabolite changes in neonatal rat brain
during and after cerebral hypoxia-ischemia: a magnetic
resonance spectroscopic imaging study NMR Biomed. 12, 31–38.
doi: 10.1002/(SICI)1099-1492(199902)12:1<31::AID-NBM544>3.0.CO;2-M

McKenna, M. C. (2007). The glutamate-glutamine cycle is not stoichiometric: fates
of glutamate in brain. J. Neurosci. Res. 85, 3347–3358. doi: 10.1002/jnr.21444

Obi-Tabot, E. T., Hanrahan, L. M., Cachecho, R., Beer, E. R., Hopkins, S. R., Chan,
J. C., et al. (1993). Changes in hepatocyte NADHfluorescence during prolonged
hypoxia. J. Surg. Res. 55, 575–580. doi: 10.1006/jsre.1993.1187

Payen, J.-F., LeBars, E., Wuyam, B., Tropini, B., Pépin, J. L., Lévy, P.,
et al. (1996). Lactate Accumulation during Moderate Hypoxic Hypoxia
in Neocortical Rat Brain. J. Cereb. Blood Flow Metab. 16, 1345–1352.
doi: 10.1097/00004647-199611000-00032

Pettit, F. H., Pelley, J. W., and Reed, L. J. (1975). Regulation of pyruvate
dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and
NADH/NAD ratios. Biochem. Biophys. Res. Commun. 65, 575–582.
doi: 10.1016/S0006-291X(75)80185-9

Podack, E. R., and Seubert, W. (1972). On the mechanism of malonyl-CoA
independent fatty acid synthesis. II. Isolation, properties and subcellular

location of trans-2,3-hexenoyl-CoA and trans-2,3-decenoyl-CoA reductase.
Biochim. Biophys. Acta 280, 235–247. doi: 10.1016/0005-2760(72)90090-2

Raymond, M., Li, P., Mangin, J. M., Huntsman, M., and Gallo, V. (2011).
Chronic perinatal hypoxia reduces glutamate–aspartate transporter
function in astrocytes through the janus kinase/signal transducer
and activator of transcription pathway. J. Neurosci. 31, 17864–17871.
doi: 10.1523/JNEUROSCI.3179-11.2011

Redza-Dutordoir, M., and Averill-Bates, D. A. (2016). Activation of apoptosis
signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863,
2977–2992. doi: 10.1016/j.bbamcr.2016.09.012

Schwartz, J. P., Passonneau, J. V., Johnson, G. S., and Pastan, I. (1974). The
effect of growth conditions on NAD+ and NADH concentrations and the
NAD+:NADH ratio in normal and transformed fibroblasts. J. Biol. Chem. 249,
4138–4143.

Seubert, W., and Podack, E. R. (1973). Mechanisms and physiological roles of fatty
acid chain elongation in microsomes and mitochondria. Mol. Cell Biochem. 1,
29–40. doi: 10.1007/BF01659936

Smith, S., Witkowski, A., Moghul, A., Yoshinaga, Y., Nefedov, M., de Jong, P., et al.
(2012). Compromised mitochondrial fatty acid synthesis in transgenic mice
results in defective protein lipoylation and energy disequilibrium. PLoS ONE

7:e47196. doi: 10.1371/journal.pone.0047196
Sun, F., Dai, C., Xie, J., and Hu, X. (2012). Biochemical issues in

estimation of cytosolic free NAD/NADH ratio. PLoS ONE 7:e34525.
doi: 10.1371/journal.pone.0034525

Tribble, D. L., and Jones, D. P. (1990). Oxygen dependence of oxidative stress.
Rate of nadph supply for maintaining the GSH pool during hypoxia. Biochem.

Pharmacol. 39, 729–736. doi: 10.1016/0006-2952(90)90152-b
Turrens, J. F., Alexandre, A., and Lehninger, A. L. (1985). Ubisemiquinone is the

electron donor for superoxide formation by complex III of heart mitochondria.
Arch. Biochem. Biophys. 237, 408–414. doi: 10.1016/0003-9861(85)90293-0

Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., et al. (2010). Acetylation
of metabolic enzymes coordinates carbon source utilization and metabolic flux.
Science 327, 1004–1007. doi: 10.1126/science.1179687

Whereat, A. F., and Rabinowitz, J. L. (1975). Aortic mitochondrial synthesis of
lipid and its response to cholesterol feeding. Am. J. Cardiol. 35, 567–571.
doi: 10.1016/0002-9149(75)90841-3

Wilson, M. H., Newman, S., and Imray, C. H. (2009). The cerebral
effects of ascent to high altitudes. Lancet Neurol. 8, 175–191.
doi: 10.1016/S1474-4422(09)70014-6

Wu, M., Singh, S. B., Wang, J., Chung, C. C., Salituro, G., Karanam, B. V., et al.
(2011). Antidiabetic and antisteatotic effects of the selective fatty acid synthase
(FAS) inhibitor platensimycin in mouse models of diabetes. Proc. Natl. Acad.
Sci. U.S.A. 108, 5378–5383. doi: 10.1073/pnas.1002588108

Zhang, Q., Wang, S. Y., Nottke, A. C., Rocheleau, J. V., Piston, D. W.,
and Goodman, R. H. (2006). Redox sensor CtBP mediates hypoxia-
induced tumor cell migration. Proc. Natl. Acad. Sci. U.S.A. 103, 9029–9033.
doi: 10.1073/pnas.0603269103

Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., et al. (2010). Regulation
of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004.
doi: 10.1126/science.1179689

Zhu, G., Li, Y., Cai, X., Millership, J. J., Marchewka, M. J., and Keithly, J. S. (2004).
Expression and functional characterization of a giant Type I fatty acid synthase
(CpFAS1) gene from Cryptosporidium parvum. Mol. Biochem. Parasitol. 134,
127–135. doi: 10.1016/j.molbiopara.2003.11.011

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Brose, Golovko and Golovko. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 7 November 2016 | Volume 10 | Article 546

https://doi.org/10.1111/j.1432-1033.1976.tb10273.x
https://doi.org/10.1111/j.1432-1033.1975.tb04084.x
https://doi.org/10.18632/aging.100339
https://doi.org/10.1046/j.1471-4159.1997.69041484.x
https://doi.org/10.1021/bi012078d
https://doi.org/10.1093/neuonc/now024
https://doi.org/10.1161/CIRCRESAHA.112.269571
https://doi.org/10.1016/j.neuroscience.2012.11.051
https://doi.org/10.1101/gad.1164804
https://doi.org/10.1126/science.288.5475.2379
https://doi.org/10.2174/138920106779116928
https://doi.org/10.1152/japplphysiol.01324.2004
https://doi.org/10.1002/(SICI)1099-1492(199902)12:1$<$31::AID-NBM544$>$3.0.CO
https://doi.org/10.1002/jnr.21444
https://doi.org/10.1006/jsre.1993.1187
https://doi.org/10.1097/00004647-199611000-00032
https://doi.org/10.1016/S0006-291X(75)80185-9
https://doi.org/10.1016/0005-2760(72)90090-2
https://doi.org/10.1523/JNEUROSCI.3179-11.2011
https://doi.org/10.1016/j.bbamcr.2016.09.012
https://doi.org/10.1007/BF01659936
https://doi.org/10.1371/journal.pone.0047196
https://doi.org/10.1371/journal.pone.0034525
https://doi.org/10.1016/0006-2952(90)90152-b
https://doi.org/10.1016/0003-9861(85)90293-0
https://doi.org/10.1126/science.1179687
https://doi.org/10.1016/0002-9149(75)90841-3
https://doi.org/10.1016/S1474-4422(09)70014-6
https://doi.org/10.1073/pnas.1002588108
https://doi.org/10.1073/pnas.0603269103
https://doi.org/10.1126/science.1179689
https://doi.org/10.1016/j.molbiopara.2003.11.011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia
	Introduction
	Materials and Methods
	Materials
	Cell Culture and Hypoxic Treatment
	Lipid Extraction and Saponification
	Cytotoxicity
	Lactic Acid
	NAD+/NADH2 and NADP+/NADPH2 Measurement
	Statistics

	Results
	Discussion
	Author Contributions
	Funding
	References


