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Summary 
Dendritic cells (DC) represent potent antigen-presenting cells for the induction of T cell-depen- 
dent immune responses. Previous work on antigen uptake and presentation by human DC is 
based largely on studies of blood DC that have been cultured for various periods of time before 
analysis. These cultured cells may therefore have undergone a maturation process from precursors 
that have different capacities for antigen capture and presentation. We have now used immuno- 
electron microscopy and antigen presentation assays to compare freshly isolated DC (f-DC) and 
cultured DC (c-DC). f-DC display a round appearance, whereas c-DC display characteristic long 
processes, c-DC express much more cell surface major histocompatibility complex (MHC) class 
II than f-DC. The uptake of colloidal gold-labeled bovine serum albumin (BSA), however, is 
greater in f-DC, as is the presentation of 65-kD heat shock protein to T cell clones. The most 
striking discovery is that the majority of MHC class II molecules in both f-DC and c-DC occur 
in intracellular vacuoles with a complex shape (multivesicular and muhilaminar). These MHC 
class II enriched compartments (MIIC) represent the site to which BSA is transported within 
30 min. Although MIIC appear as more dense structures with less MHC class II molecules in 
f-DC than c-DC, the marker characteristics are very similar. The MIIC in both types of DC 
are acidic, contain invariant chain, and express the recently described HLA-DM molecule that 
can contribute to antigen presentation. CD19 + peripheral blood B cells have fewer MIIC and 
surface MHC class II expression than DCs, while monocytes had low levels of MIIC and surface 
MHC class II. These results demonstrate in dendritic cells the elaborate development of MIIC 
expressing several of the components that are required for efficient antigen presentation. 

T he classical cells expressing MHC class II molecules 
are B cells, macrophages, and dendritic cells (DC) 1. DC 

are much more potent initiators ofT cell responses than other 
APC types (1-9), and they have the capacity to overcome 

H. W. Nijman and M. J. Kleijmeer contributed equally to this work. 

1 Abbreviations used in thispaper: BSA-gold, BSA conjugated to 5 nm col- 
loidal gold; c-DC, cultured dendritic cell; DAMP, 3-(2,4-dinitroanilino)- 
3-amino-N methyldipropylamine; f-DC, freshly isolated dendritic cell; 
I-chain, invariant chain; Er-, erythrocyte rosetting negative; LAMP, 
lysosome-associated membrane protein; LC, Langerhans cell; MIIC, MHC 
class II compartment; PER, rough endoplasmic reticulum; TGR, trans- 
Golgi reticulum. 

MHC-linked T cell immune response defects (10, 11). In ad- 
dition, DC retain and present antigen for a relatively long 
period of time (12-14). Two stages of maturation of DC have 
been described. They exist as immature cells in nonlymphoid 
organs, exemplified by Langerhans cells (LC) in the skin 
(15-17), and by DC in the lung (18), where they ingest and 
process exogenous antigens. Subsequently, after migration 
to the T cell areas of lymphoid organs, they present anti- 
genic peptides in the context of MHC dass II molecules as 
activated mature cells (2, 15-17, 19). DC originate from the 
bone marrow and are distributed to various organs via the 
blood. Immature DC are therefore likely to be present in the 
blood. In this study, we have addressed the kinetics of antigen 
ingestion into freshly isolated DC (f-DC) and cultured DC 
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(c-DC) by immunodec t ron  microscopy with special focus 
on colocalization of antigen and M H C  class II in subcellular 
late endosomal/prelysosomal compartments (MIIC) and by 
a functional antigen processing and presentation assay. Com- 
partments highly enriched for M H C  class II molecules were 
first described in human B cells (20). MIIC have been iso- 
lated from macrophages (21), and recently endosomal com- 
partments enriched in M H C  class II were isolated from B 
lymphocytes and melanoma cells (22-25). Together, these 
studies strongly indicate that M H C  class II-enriched com- 
partments play an important role in loading M H C  class II 
molecules wi th  antigenic peptide. 

We found that f-DC display immature DC-like character- 
istics such as minimal cytoplasmic processes and lower cell 
surface M H C  class II expression; on the other hand, c-DC 
resemble mature D C  displaying many long characteristic 
processes and high M H C  class II cell surface expression. In 
agreement with a greater endocytic capacity, measured by 
the uptake of BSA conjugated to 5 nm colloidal gold (BSA- 
gold) particles, f-DC demonstrated superior antigen processing 
and presentation ability of intact protein when compared to 
c-DC. foDC and c-DC contained MIIC, and the MIIC were 
found to be the site to which antigen is transported within 
30 min after antigen exposure. Importantly, MIIC in f-DC 
and c-DC had similar characteristics, except for differences 
in morphology and I chain labeling. 

Mater ia l s  and  M e t h o d s  

Isolation of DC 
f-DC. PBMC of healthy donors were isolated by harvesting 

the interphase of a buffy coat layered onto Ficoll-Paque (Pharmacia, 
Uppsala, Sweden). Every purification step was done on ice to pre- 
vent activation of the f-DC. T cells were separated by rosetting 
at 4~ with AET-treated SRBC. If SILBC persisted in the eryth- 
rocyte rosetting negative (Er-) fraction NH4CL was used to lyse 
the SRBC. The Er- ceils were left overnight on ice. CD14-, 
CD15-, CD16-, CD19-, and CD56-coated goat anti-mouse beads 
(Dynal, Inc., Great Neck, NY) were used to deplete the Er- cells 
for monocytes, B cells, NK cells, and granulocytes. The remaining 
cells were antibody labeled to be purified on a FACStar | cell sorter 
(Becton Dickinson and Co., Mountain View, CA). The cells were 
incubated with anti-HLA-DP (1:6,000) for 20 rain at 40C for the 
first step and GAM-F(ab)' FITC (Tago Inc., Burlingame, CA) as 
a second step. In the third step, the cells were incubated with 
anti-CD16-PE for 20 min. To prevent aspecific binding of anti- 
bodies, we blocked the Fc receptor by incubation of the cells with 
rabbit serum (20x diluted in RPMI, 20 min at 4~ Then the 
cells were stained with CD3-PE, CD14-PE, CD19-PE, and CD56- 
PE. PE-negative and FITC § cells were sorted on a FACScan | cell 
sorter (Becton Dickinson and Co.). If necessary, 5 #g/ml DNAse 
(Boehringer Mannheim Biochemicals, Indianapolis, IN) was used 
to disrupt aggregates. 

c-DC. A slightly modified version of the isolation method of 
Freudenthal et al. (26) was used. The Er- fraction was obtained 
as described above. The Er- cells were cultured for 36 h in 10-cm 
tissue culture dishes (Costar, Badhoevedorp, The Netherlands) at 
370C in humidified air at a concentration of 2 x 1@ cells per ml 
in RPMI (Gibco Laboratories, Paisley, Scotland) supplemented with 

2 mM glutamine, 100 IU/ml penicillin, 100/~g/ml kanamycin and 
10% FCS (Hyclone Laboratories, Logan, UT). After a 36-h cul- 
ture period, cells were incubated twice on new tissue culture dishes 
for 40 min to deplete the adherent cells (the majority of these were 
monocytes). The T cell- and monocyte-depleted ceils were layered 
onto a 14.5% metrizamide (dissolved in ILPMI with 10% FCS) 
column to remove residual B and NK cells. The DC-enriched in- 
terface was harvested and washed before incubation on a tissue cul- 
ture dish. The remaining nonadherent cells were antibody-labeled 
as described above for purification on a FACStar | ceU sorter. 

Both f-DC and c-DC were stained with CD14-PE, CD16-PE, 
CD19-PE, and HLA-DR-PE to check the purity of the sorted cell 
suspensions. The cells were analyzed on a FACScan | flow cytometer 
(Becton Dickinson and Co.). 

For the antigen presentation assay, we used HLA-DR15-type 
healthy blood donors. PBMC (5 x 106) were stored at 4~ over- 
night (f-DC procedure) or in liquid nitrogen (c-DC procedure) 
to be used in the antigen processing and presentation assays. 

mAbs for DC Isolation 
Anti-CD14, -CD15, -CD16, -CD19, -CD56, -CD3-PE, -CD14- 

PE, -CD16-PE, -CD56-PE, -CD19-PE, and -HLA-DR-PE anti- 
bodies were commercially obtained from Becton Dickinson and 
Co. The anti-HLA-DP antibody was provided by Dr. A. Mulder 
(AZL, Leiden, The Netherlands). 

Immunoelectron Microscopy 
After isolation, ceils were prepared for ultrathin cryosectioning 

and immunogold labeling according to Tokuyasu as adapted by Slot 
et al. (27). Briefly, cells were fixed in 2% paraformaldehyde and 
1% acrolein for 3-4 d, washed twice in PBS, twice in PBS 0.15 
M glycine, and finally embedded in 10% gelatin, which was 
solidified on ice. Small gelatin blocks were infiltrated with 2.3 M 
sucrose for 3 h at 4~ and then frozen in liquid nitrogen. Ultra- 
thin cryosections were embedded in a mixture of sucrose and methyl 
cellulose according to a novel procedure that allows better visual- 
ization of membranes (28). Immunogold labeling was performed 
as described (29). Ultrathin cryosections were single labeled with 
10-nm gold particles or double immunolabeled with 5- and 10- 
or 10- and 15-nm gold particles. The following antibodies were 
used: anti-MHC class II (polyclonal antibody recognizing the c~ 
chain; 30), DNP (3-[2,4-dinitroanilino]-3-amino-N-methyldipropyl- 
amine [DAMP] antibody; 31), CD20 (B cell marker), FS2 (DMa 
chain antibody; 32), ICN (I chain cytoplasmic tail, aa 1-20) kindly 
provided by Dr. Ph. Morton (Monsanto Co., St. Louis, MO), ICC 
(I chain luminal epitope, aa 191-210; 33) kindly provided by Dr. 
J. Pieters (Dept. of Cellular Biochemistry, The Netherlands Cancer 
Institute, Amsterdam, The Netherlands), mouse mAb directed 
against the lysosomal protein CD63 (34), and rabbit anti-human 
lysosome-associated membrane protein (LAMP)-1 (35). 

Internalization of Endocytic Tracer 
A pulse-chase experiment with BSA-gold (36) was used to 

visualize the endocytic route. Cells were pulsed for 10 min at 37~ 
in serum-free medium containing BSA-gold, washed, and chased 
for 0, 20, or 50 min at 37~ Endocytosis was stopped in ice-cold 
medium and the cells were washed in cold medium to remove the 
surface-adhered gold. Ceils were then fixed and processed as de- 
scribed above. To quantitate the number of MIIC containing BSA- 
gold in cryosections immunolabeled with MHC class II antibodies, 
20 cell profiles were selected for each time of incubation. Quantita- 
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tion was performed directly in the electron microscope at an in- 
strumental magnification of 15,000. 

Detection of Acidic Compartments 
The weak base DAMP was used to visualize compartments with 

acidic contents, f-DC and c-DC were incubated for 30 rain at 37~ 
in 50/~M DAMP in RPMI medium, washed with an excess of 
ice-cold medium, and then fixed in 2% paraformaldehyde + 0.2% 
glutaraldehyde. DAMP is able to diffuse through cell membranes 
and penetrate into cell organelles, where it accumulates in acidic 
compartments. Nonbound DAMP can be removed by washing. 
Ultrathin cryosections were double immunolabeled with antiDNP 
antibody, which recognizes DAMP and MHC class II antibody, 
visualized by 5- and 10-nm gold particles, respectively. 

Cell Lines 
The EBV-transformed human B cell lines, GN (HLA-DR15 +), 

and JY (HLA-DR15-) were cultured in RPMI medium con- 
taining 10% FCS. 

The CD4 § T cell clone R2F10 (gift from Dr. T. Ottenhoff, 
AZL) recognizes a peptide (aa 418-427) of the 65-kD heat shock 
protein (hsp65) of Mycobacterium leprae in the context of HLA-DR15 
(37-39). The T cell clone was cultured in IMDM (Gibco Labora- 
tories) supplemented with 100 IU/ml penicillin, 100 #g/ml 
kanamycin, 10% pooled human serum (HPS), 20 U/ml rlL-2 (Eu- 
rocetus, Amsterdam, The Netherlands), and 4 x 10-s M hsp65 
protein (40). The hsp65 protein was a gift from Dr. J. D. A. van 
Embden (RIVM, Bilthoven, The Netherlands) and Dr. M. Singh 
(GBF, Braunschweig, Germany). Both institutes received financial 
support from the UNDP/World Bank/World Health Organiza- 
tion Special Programme for Research and Training in Tropical Dis- 
eases to purify and distribute recombinant proteins. 

Antigen Processing and Presentation Assay 
The processing and presentation efficiency of hsp65 protein as 

a model antigen was measured by culturing APC with the T cell 
clone R2F10 in the presence or absence of soluble whole protein. 
As APC we used f-PBMC (PBMC of the f-DC donor), c-PBMC 
(PBMC of the c-DC donor), f-DC, c-DC, HLA-DR15 + (GN), 
and HLA-DR15- (JY) EBV-transformed B cells. PBMC and DC 
were irradiated with 3,000 rad and the EBV-transformed B cells 
with 6,000 tad. The cells were cultured in 150/A 10% HPS con- 
taining IMDM in 96-well flat-bottom microtiter plates (Costar) 
for 72 h at 370C, 5% CO2 in humidified air, the last 8 h in the 
presence of 1 #Ci of [3H]thymidine. [3H]Thymidine incorporation 
into DNA was determined by liquid scintillation counting. Each 
measurement was performed in triplicate. In the first set of experi- 
ments, the number of APC was titrated using a fixed amount of 
purified hsp65 protein (8 x 10 -s M). In the second set of experi- 
ments, fared amounts of APC were used (2,500 DC and 10,000 
PBMC), and the amount of hsp65 protein was titrated. The ex- 
periments shown were representative of results obtained in three 
independent experiments. The SEM was always <2%. 

Results 

Identification of Freshly Isolated and Cultured DC. DC travel 
from bone marrow via the blood to the periphery to ingest 
antigen and, subsequently, from the site of antigen to a site 
of presentation to T cells. We compared f-DC and c-DC (36 h 

of culture) derived from blood to examine whether they 
represent immature and mature DC phenotypes, respectively. 
In both types, we monitored the subcellular localization of 
M HC class II, the endocytic capacity, as well as antigen pro- 
cessing and presentation capacity, f-DC and c-DC were ob- 
tained from human peripheral blood of healthy donors (HLA- 
DR15 + if DC were used in antigen presentation assays). DC 
suspensions of 85-90% purity ~f-DC) and 90-95% purity 
(c-DC) were generated by FACS * sorting (Becton Dickinson 
and Co.; data not shown). Contamination with B cells and 
monocytes was <2.5%. First, we identified and character- 
ized DC in the sorted fractions using immunoelectron mi- 
croscopy, f-DC showed only a few short cytoplasmic processes 
(Fig. 1 A) as compared to c-DC, which displayed many long 
processes (Fig. 1 C). Both f-DC and c-DC had a lobulated 
nucleus with a distinctive pattern of euchromatin and hetero- 
chromatin (Fig. 1, A and C). The B cell marker CD20 was 
used to identify B cells (Fig. 1 D), whereas monocytes were 
identified by the presence of characteristic azurophilic granules 
in their cytoplasm and low MHC class II expression (Fig. 
1 B). The amount of M HC class II cell surface expression 
on f-DC and especially c-DC compared to B cells and mono- 
cytes was strikingly high (Fig. 1). As expected, B cells con- 
tained the dassical multilaminar MIIC (Fig. 1 D), as described 
for B-lymphoid cell lines (20). Monocytes hardly showed dis- 
tinguishable MIIC (Fig. 1 B). In most of the dectromicroscopy 
studies, we used the starting material for cell sorting (see 
Materials and Methods) to obtain a high number of cells for 
sectioning. 

Subcelhlar Localization of MHC Class H Molecules. f-DC 
and c-DC were distinguished not only morphologically but 
also by the amount of detectable M HC class II (Figs. 1 and 
2). c-DE displayed higher MHC class II expression than f-DE, 
both at the plasma membrane and intracellularly (Fig. 2, A 
and B). After quantitation of MHC class II labeling, we found 
an average of 89 gold particles on the plasma membrane and 
160 intraceUularly per f-DC cell profile. For c-DC, the numbers 
for plasma membrane and intracellular MHC class II labeling 
were 590 and 262, respectively. The total plasma membrane 
length of c-DC compared to f-DC was approximately twice 
that of f-DC. Thus, the density of MHC class II molecules 
on the plasma membrane of c-DC was about three times higher 
than on f-DC. Intracellularly, in both f-DC and c-DC, the 
MHC class II labeling was concentrated in typical MIIC 
present in the Golgi region (see below), with either internal 
vesicles and/or membrane sheets (Fig. 2). The number of MIIC 
in f-DC (9 per cell profile) and c-DC (11 per cell profile) was 
about twice as much compared to B ceils (5 per cell profile), 
and monocytes almost did not express the MIIC at all. In 
comparison to c-DC, the MIIC in f-DC were more electron 
dense and had less MHC class II labeling per compartment 
(Fig. 2 A). Neither type of DC showed significant MHC 
class II labeling in the rough endoplasmic reticulum (RER) 
or Golgi complex (Fig. 2). 

Characterization of MIIC. In B cells (20) and maerophages 
(41), MIIC represent late endocytic prelysosomal compart- 
ments. To investigate the functional presence of MIIC in f-DC 
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Figure 2. Intracellular distribution of MHC class II. (A) f-DC showing some MHC class II labeling at the plasma membrane (PM) and in MIIC, 
and little labeling is present in the Golgi complex (G). N, nucleus. (B) c-DC showing higher expression of MHC class II at the plasma membrane 
(PAll) as compared to A, whereas labeling for MHC class II in the Golgi region (G) is similar to f-DC. Many MIIC are present in the cytoplasm, 
some with a multilaminar appearance, or with an electron-lucent content with internal vesicles. Bars, 200 nm. 

Figure 1. Identification of DC in ultrathin cryosections. (..4) f-DC, showing a lobulated nucleus, short cytoplasmic processes, and low surface labeling 
of MHC class II compared to c-DC. N, nucleus. Bar, 1/~m. (B) A monocyte (M) is identified by the presence of dense azurophilic granules (arrowheads) 
in the cytoplasm and no detectable MHC class II labeling at the cell surface in contrast to the f-DC. Bar, 200 nm. (C) c-DC showing long cytoplasmic 
processes and a lobulated nucleus. Note the abundant labeling of MHC class II on the plasma membrane. Bar, 1 #m. (/9) The B cell (B) is labeled 
for the B cell marker CD20 and for MHC class II. Note the presence of two MIIC (asterisks) in the cytoplasm of the B cell. There is a striking difference 
in the density of MHC class II gold labeling between the c-DC and the B cell. Bar, 200 nm. 
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and c-DC, we allowed the cells to take up 5-nm BSA-gold 
particles and we determined the time for the tracer to reach 
the MIIC. After a pulse of 10 min uptake and a chase for 
0, 20, and 50 min, cells were fixed and ultrathin cryosections 
were immunogold labeled with an MHC class II antibody 
and 10-nm gold particles. We quantitated the number of MIIC 
that contained BSA-gold at each time point in 20 cell profiles 
of f-DC and c-DC. Fig. 3 shows that after 10 min of uptake, 
only occasional BSA-gold was detectable in MIIC of both 
DC types. After 20 min of chase 2.2 MIIC per cell profile 
in c-DC and 3.5 MIIC in f-DC contained BSA-gold. A fur- 
ther increase in the number of MIIC positive for BSA-gold 
was found after 50 min of chase for both types of DC, 4.2 
MIIC per c-DC and 7.7 MIIC per f-DC contained BSA-gold. 
This corresponded to 45% of the MIIC in c-DC and 85% 
of the MIIC in f-DC. Note that in the f-DC, about twice 
as many MIIC had acquired BSA-gold, compared to the c-DC 
(Fig. 3). These data thus demonstrate that significant numbers 
of MIIC acquire internalized tracer particles only after 30 
rain and therefore the MIIC in both DC types are typical 
of late endocytic compartments. The higher endocytic ca- 
pacity of f-DC compared to c-DC is in agreement with data 
on total BSA-gold uptake after 10 min pulse. 

We next determined whether MIIC are acidic organdies, 
as is expected for prelysosomal compartments. For this pur- 
pose, DC were incubated in the presence of the weak base 
DAMP, which accumulates in acidic structures, e.g., endo- 
sornes, lysosomes (31). Ultrathin cryosections were double 
immunolabeled with DNP antibody, which recognizes 
DAMP, and with MHC class II antibody. Since the MIIC 
in f-DC and c-DC displayed similar characteristics, ordy micro- 
graphs of MIIC in c-DC are shown. MIIC in DC showed 
abundant DNP labeling (Fig. 4 A). To determine whether 
MIIC in DC showed late endosomal/lysosomal marker pro- 
teins, we performed double immunolabeling experiments for 
MHC class II molecules and the lysosomal membrane pro- 
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Figure 3. Quantitive analysis of the appearance of BSA-gold in MIIC 
after incubation of f-DC and c-DC in the presence of 5-nm BSA-gold for 
10 rain and further incubation in the absence of the tracer for 20 and 50 
min. Shown are the number of MIIC containing BSA-guld. The figure 
shown is representative for experiments done in duplicate. 

teins CD63 or LAMP-1. MIIC in DC showed labeling for 
both CD63 (Fig. 4 B) and LAMP-1 (not shown). 

I Chain andHLA-DMLocalization andDistribution. To fur- 
ther explore the differences between f-DC and c-DC, we com- 
pared their I chain localizations and distributions. Since the 
1-chain is associated with MHC class II molecules during the 
early part of the biosynthetic route, and is degraded, prob- 
ably starting from the luminal part, shortly after passage of 
the Golgi complex (42), the presence of the I chain allowed 
us to distinguish between different stages of MIIC. For the 
immunolocalization of the I chain, we used antibodies against 
its NH2-terminal cytoplasmic tail (ICN, aa 1-20) and its 
COOH terminus luminal part (ICC, aa 191-210). Both f-DC 
and coDC (not shown) showed ICN and ICC labeling in 
the RER, Golgi region, and MIIC (Table 1). The luminal 
part of the I chain was found in MIIC with a distinct mor- 
phology with electron lucent content and few internal vesicles 
(Fig. 5 A). These MIIC probably represent early stages in 
their formation and were located in the Golgi region (Glick- 
man, J. N., P. A. Morton, J. W. Slot, S. Kornfeld, and H. J. 
Geuze, manuscript in preparation). The cytoplasmic tail of 
the I chain could also be detected in dense MIIC (Fig. 5 A). 

To obtain a semiquantitative impression of the distribu- 
tion of ICN and ICC, gold particles on 15 cell profiles were 
counted of both f-DC and c-DC (Table 1). The ICN and 
ICC antibodies were mainly detected in the RER, except 
for ICN in f-DC (57% in MIIC). The percentage of MIIC 
labeling decreased for ICN and for ICC in c-DC (Table 1). 
Interestingly, both ICN and ICC can be detected in small 
amounts on the cell surfaces of f-DC and c-DC (Table 1). 

The novel MHC product HLA-DM has been shown to 
be essential for proper binding of antigenic peptide to MHC 
class II (43). It has recently been shown that HLA-DM is 
enriched in MIIC orB cells, while it was undetectable at the 
cell surface. It was therefore of interest to study the localiza- 
tion of this molecule in DC. Using a DMc~ chain-specific 
rabbit antiserum (32), the MIIC of both f-DC (Fig. 5 B) 
and c-DC (not shown) were HLA-DM +, while the cell sur- 
face was negative. Most of the HLA-DM labeling was seen 
in MIIC that contained BSA-gold particles that were inter- 
nalized during 60 rain (Fig. 5 B). 

Endocytic Capacity and Antigen Presentation Assay. To in- 
vestigate whether differences in MHC class II expression be- 
tween f-DC and c-DC are related to their capacity to take 
up and present antigen, we studied the endocytic capacity 
by allowing the cells to internalize BSA-gold particles as an 
endocytic tracer. We quantitated the total number of BSA- 
gold particles taken up after 10 min at 37~ in 20 random 
cell profiles, f-DC had taken up 269 gold particles per cell 
profile and c-DC 139 gold particles per cell profile, indicating 
that f-DC were more efficient in endocytosis. To extend these 
findings, we studied the f-DC, c-DC, and PBMC of HLA- 
DR15 + healthy donors for their capacity to present the 
M. leprae hsp65 to an HLA-DR15-restricted CD4 + hsp65- 
specific T cell done. We used either a fixed amount ofM. leprae 
hsp65 (8 x 10 -s M) during a 72-h culture period and we 
titrated the number of APC (Fig. 6 A), or we alternatively 
used a fixed number of APC and titrated the amount of 
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Figure 4. Characterization of MIIC. (A) The acidic content of MIIC in a c-DC is shown by the accumulation of the weak base DAMP immunola- 
beled with anti-DNP and 5-nm gold particles. G, Golgi complex; N, nucleus. (B) c-DC double immunolabeled for the lysosomal membrane protein 
CD63 and MHC class II as indicated on the figure. Especially those MIIC containing membrane sheets show CD63 (asterisks). 5-nm BSA-gold that 
is added for 10 rain and chased for 50 rain can also be detected in MIIC. M, mitochondrion. Bars, 100 nm. 



Figure 5. Expression of I chain 
and HLA-DMc~ in MIIC. (.tl) A 
double immunolabeling of an 
f-DC for ICN and ICC shows 
that multivesicular MIIC (arrou~ 
heads) contain both the luminal 
and cytoplasmic part of the I 
chain. The dense MIIC (asterisks) 
display primarily labeling for 
ICN. (B) MIIC are positive for 
the ot chain of HLA-DM (DMA). 
These MIIC also show 5-nm BSA- 
gold after 10 min pulse and 50 min 
chase. Bars, 100 nm. 

Table 1. Semiquantitative Immunogold Distribution of I Chain 
in f-DC and c-DC Using Antibodies against the NHz Terminus 
(ICN) and COOH terminus (ICC) 

F-DC C -DC 

ICN ICC ICN I C C 

RER 27% 51% 40% 54% 
Golgi 7% 14% 15% 18% 
TGR 6% 8% 8% 5% 
MIIC 57% 24% 32% 14% 
Cell surface 2% 2% 3% 8% 

Gold particles were counted on 15 cell profiles of both f-DC and c-DC 
in ultrathin cryosections. The 11".mbers represent the percentages of ICN 
or ICC. 

M. leprae hsp65 (Fig. 6 B). No differences in proliferation 
of the T cell clone R2F10 after stimulation with purified hsp65 
pulsed HLA-DR15 + EBV cell line G N  were observed be- 
tween independent experiments (data not shown), allowing 
us to compare all data obtained. An hsp65-pulsed HLA- 
D R 1 5 -  EBV cell line used as a negative control did not 
stimulate the T cell clone (data not shown). G N  cells fixed 
with 2% paraformaldehyde + 0.2% glutaraldehyde did not 
induce proliferation of the T cell clone in the presence of 
5 # g / m l  M. leprae hsp65 (data not shown), demonstrating 
that the hsp65 protein is not contaminated with peptide frag- 
ments capable of binding exogenously to the HLA-DR15 mol- 
ecules at the cell surface. Proliferation of the T cell clone was 
observed after addition ofpeptide (aa 418-427, 5 x 10 -6 M) 
to fixed G N  cells (data not shown). 

Fig. 6 shows that f -DC are superior in processing and pre- 
sentation of  soluble protein antigen; c -DC are still potent, 
however. At a fixed antigen dose, f -DC can be diluted ap- 
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Figure 6. Comparison of f-DC, c-DC, f-PBMC, and c-PBMC for their 
capacity to present M. leprae hsp65 to an HLA-DR15-restricted CD4+ 
hsp65-specific T cell done. We used a fixed amount of M. leprae hsp65 
(5 gg/ml) during the 72-h culture period and titrated down the number 
of APC (A), or we used a fixed number of APC (2,500 DC and 10,000 
PBMC) and titrated down the M. leprae hsp amount (B). The experiments 
shown were representative of results obtained in three independent experi- 
ments. The SEM was always <2%. 

proximately 4 times more than c-DC and 10 times more than 
f-PBMC or c-PBMC to induce the same proliferation of the 
T cell clone (Fig. 6 A). Using different concentrations of 
hsp65 protein, f-DC (2,500 cells per well) induce comparable 
T cell proliferation at concentrations approximately 10 times 
lower than c-DC (2,500 cells per well) and 100 times lower 
than f-PBMC or c-PBMC (10,000 cells per well) (Fig. 6 B). 

Discussion 
The most striking result of our studies is that protein an- 

tigen ingested into human blood DC trafficks to abundant 
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MHC class II + endosomal prelysosomal compartments 
(MIIC), presumably the site of antigen degradation and pep- 
tide loading into MHC class II molecules. Thus DC and LC 
(44), the most professional of all APC, use similar subcd- 
lular compartments as B cells (20) and the extraordinary an- 
tigen processing and presenting qualities of DC and LC are 
not associated with the presence of unique subcellular or- 
ganelles. Several phenotypic differences between f-DC and 
c-DC were found. First, c-DC showed characteristic long 
cytoplasmic processes, whereas f-DC had little or no such 
processes. Second, as expected, the MHC class II immuno- 
labeling at the plasma membrane of c-DC was more dense 
when compared to that of f-DC. These data agree with those 
obtained from LC, studied either in situ, shortly after isola- 
tion, or after short-term in vitro culture (15, 44-46). Simi- 
larly, culture of mouse DC leads to an increase in MHC class 
II expression and remodeling from a rounded morphology 
to one in which long cytoplasmic processes are present (47, 
48). Of  note, MHC class II localization shifted from intra- 
cellular to the cell surface upon culturing. In addition, the 
overall M HC class II expression in c-DC was higher. LC 
studied in situ also contain most MHC class II labeling in- 
tracellularly (44). However, LC show a dense labding of MHC 
class II in the RER, whereas the RE R in f-DC contains little 
MHC class II labeling. Most of MHC class II in DC is found 
in the MIIC. 

Both f-DC and c-DC contained typical MIIC, similar in 
morphology and marker profile to those described in other 
APC (20-25, 41, 44). Characteristics of the compartments 
isolated from B lymphocytes and melanoma cells (21-25) 
resemble the MIIC in EBV-transformed B cells and macro- 
phages (20, 41), and they stress the importance of MIIC in 
antigen processing. The characteristics of the MIIC in DC 
are significant, especially since they represent the first physi- 
ological evaluation of MIIC in the most professional APC. 
f-DC contained fewer MIIC of a relatively denser structure 
than c-DC (Fig. 2). Different developmental stages of MIIC 
can be distinguished by the presence of I chain (in the MIIC 
with internal vesicles) or the absence of I chain (in MIIC with 
membrane sheets) (44; Glickman, J. N., P. A. Morton, J. W. 
Slot, S. Kornfeld, and H. J. Geuze, manuscript submitted 
for publication). The I chain has two main functions. Part 
of the COOH-terminal domain of I chain binds to MHC 
class II, preventing the premature binding of antigenic pep- 
tides present in the R E R  (49-52). The I chain also directs 
ol/B dimers into a compartment, the MIIC, located at the 
intersection of the biosynthetic and the endocytic routes 
(53-56). After proteolytic cleavage of I chain, c~/B dimers 
form a complex with the antigenic peptide, an event that 
most likely occurs in MIIC (21, 49, 56). The present obser- 
vations are the first description of the intraceUular distribu- 
tion in DC derived from peripheral blood. In both f-DC and 
c-DC, pronounced ICN and ICC labeling was found in the 
P E R  and in MIIC. In agreement with the activation state 
of the c-DC, the amount of ICC and ICN is increased in 
the RER. LC studied in situ showed ICN to be localized 
mainly in the RE R (69%; 44), whereas in f-DC, we detected 
a large portion o f lCN in the P E R  (27%), but the majority 



is present in MIIC. The f-DC contain most of their M HC 
class II intracellularly. It is therefore not surprising that ICN 
is so abundantly present in MIIC, keeping the MHC class 
II molecules in the right state to form a complex with an- 
tigen after activation. Irregularly shaped electron-lucent MIIC 
with internal vesicles were best labeled with antibody against 
the COOH-terminal part of I chain (ICC). Because the 
C O O H  terminus of I chain is degraded immediately after 
passage to the Golgi complex (41), these multivesicular MIIC 
most likely represent early MIIC. 

Recently, an additional MHC  class II product, HLA-DM, 
has been described. The predicted structure of HLA-DM is 
a heterodimer consisting ofa DMot and 3 chain (32, 57, 58). 
HLA-DM possibly assists in MHC  class II-peptide binding. 
In the Burkitt lymphoma cell line Raji, HLA-DM was mainly 
localized in MIIC and was absent from the cell surface (32). 
Interestingly, HLA-DM was also localized in MIIC of the 
DC, a professional APC. The important role of HLA-DM 
in class II-restricted antigen processing has recently been 
demonstrated (43). Denzin et al. (43) have shown that the 
antigen processing-defective cell line T2 transfected with HLA- 
DR3 (T2.DR3) is fully restored in its ability of class II- 
restricted antigen processing after stable transfection of 
T2.DR3 with the HLA-DMA and HLA-DMB cDNA. 

The superior processing and presenting ability of f-DC com- 
pared to c-DC correlates with their superior endocytic ca- 
pacity. Although the processing and presenting ability of f-DC 
was superior, c-DC were still capable of processing and pre- 
senting soluble antigen, in agreement with other studies (6, 
59-62). In this respect, c-DC differ from cultured mouse LC, 

which virtually lack antigen processing capacity (12, 16). It 
is likely that during the 72-h incubation period with soluble 
antigen, the f-DC mature to c-DC, expressing a large amount 
of MHC class II on the cell surface complexed with the 
M. leprae epitope. 

Others have shown that progenitors of human DC are 
present both in bone marrow and blood, and even subpopu- 
lations of f-DC may exist (63-67). With lymphokines such 
as GM-CSF, IL-4, and TNF, DC precursors developed into 
mature DC and could be cultured for several weeks (63-65). 
When TNF was added to such DC cultured with GM-CSF 
and IL-4, a redistribution of intracellularly localized MHC 
class II to the cell surface was observed (65). Our c-DC were 
not kept in the presence of additional growth factors, but 
it cannot be excluded that factors are produced by other cell 
types present during culture (68). 

Based on their morphology, MHC class II expression, en- 
docytic capacity, and antigen processing and presentation ca- 
pacity, we suggest that f-DC and c-DC represent immature 
and mature DC phenotypes, respectively. We show that DC 
contain MIIC with the same characteristics as in other APC, 
suggesting that this compartment plays a general role in an- 
tigen presentation. We have shown recently that multivesic- 
ular MIIC probably play a role in the transport of MHC class 
II molecules to the cell surface (Raposo, G., H. W. Nijman, 
W. Stoorvogel, R. Leyendekker, C. V. Harding, C. J. M. 
Melief, and H. J. Geuze, manuscript submitted for publica- 
tion). The large amount of multivesicular MIIC in c-DC, 
together with high M HC class II cell surface expression, is 
in agreement with this observation. 
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