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Abstract: Heparin-binding EGF-like growth factor (HB-EGF) belongs to the EGF family 

of growth factors. It is biologically active either as a molecule anchored to the membrane 

or as a soluble form released by proteolytic cleavage of the extracellular domain. HB-EGF 

is involved in relevant physiological and pathological processes spanning from 

proliferation and apoptosis to morphogenesis. We outline here the main activities of  

HB-EGF in connection with normal or neoplastic differentiative or proliferative events 

taking place primitively in the hematopoietic microenvironment. 
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1. HB-EGF 

Heparin-binding epidermal growth factor-like growth factor (HB-EGF, Figure 1) was first 

described by Higashiyama and Coll [1,2], in 1991/92, as a heavily glycosylated EGF family member 

of approximately 22 kD that was released by macrophage-like U-937 cell line, showing heparin 

affinity and eliciting mitogenic activities in BALB-3T3 fibroblasts and smooth muscle cells, but not in 

endothelial cells. As a member of the EGF family, it bound to EGF receptors on A-431 epidermoid 

carcinoma cells and smooth muscle cells, and was a more potent mitogen for smooth muscle cells than 

EGF. HB-EGF was also described as expressed in cultured human macrophages and involved in 

macrophage-mediated cellular proliferation. It turned out that membrane-anchored HB-EGF and the 
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sole receptor for diphtheria toxin were one and the same molecule [3–5]. Diphtheria toxin binds to  

HB-EGF [5] and after internalization inhibits protein synthesis, an event that usually triggers apoptotic 

death [6]. It is now recognized that HB-EGF is expressed in a wide range of cell types, including 

monocytes/macrophages [1], CD4+ lymphocytes [7,8], neutrophils [9], eosinophils [10], myeloid 

leukemia blasts [11], myeloma cells [12], vascular smooth muscle cells [13], endothelial [14] and 

normal [15], or neoplastic [16–18] epithelial cells. HB-EGF binds to EGFR/ErbB1/HER1 and 

ErbB4/HER4 [1,2,19] (Table 1) eliciting different biological responses [17,19]. Membrane-anchored 

HB-EGF functions as a cell-to-cell adhesion protein [20] that exerts mainly inhibitory juxtacrine 

activities involved in cell cycle arrest and growth inhibition [21] as well as resistance to  

apoptosis [22,23]. HB-EGF may also be cleaved and released from cell upon stimulation with a variety 

of molecules capable of activating integral membrane metalloproteases with a disintegrin domain 

(ADAMs) 9, 10, 12, and 17 that can be viewed as activators of the paracrine form of HB-EGF [24–29]. 

Soluble HB-EGF acts variously on sensitive bystander cells, including mitogenic and chemotactic 

effects on monocytes/macrophages [1], fibroblasts [7], and SMC [30,31], chemotaxis on endothelial 

cells [30], astrocytes [32], and growth activity for normal and neoplastic epithelial cells [8,15]. The 

shedding process generates a kind of autocrine mitogenic signal on the releasing cells themselves via 

nuclear translocation of either full-length proHB-EGF [33] or its truncated cytoplasmic tail [34] 

(Figure 1). HB-EGF is involved in orchestrating inflammation [18], atheromatous plaque  

progression [8], and wound healing [7,8,35,36]. It participates in stromal proliferation following 

decidualization [37], and in autocrine-paracrine loops, which are active in a number of epithelial 

neoplasias [8,18], by promoting tumor growth as a direct mitogen for neoplastic cells [8,18,38,39] or a 

microenvironment modifier by inducing angiogenesis [7,8,18,31,39–41] and recruiting a variety of 

cells [7,8,18,42–44]. Either membrane-anchored or soluble HB-EGF has a role in directing the 

proliferation and differentiation of stromal stem cells [45] and in epithelial-to-mesenchymal  

transition [46]. Due to its heparin-binding domain, a unique property of the EGF receptor family 

ligands, HB-EGF is able to bind to heparan-sulphate proteoglycans, which may further modulate its 

biological activity [17]. Such heterogeneous and proteiform activities make sense based on the 

evolutionary and functional history of this growth factor. A molecule involved in proliferation [1], 

apoptosis [21,23], cell migration [42,43], differentiation [45], morphogenesis, and  

development [47–51], HB-EGF emerged as a microenvironment organizer, a factor contributing to, 

and acting in, niches where normal stem and progenitor cells are maintained and ordinately released 

into differentiation and where oncogenic processes take place and keep developing. 
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Figure 1. Basic structure, functional domains, and processing of HB-EGF. 

 

Table 1. EGF family receptors and ligands.  

EGFR/ErbB1/HER1 ErbB2/HER2 ErbB3/HER3 ErbB4/HER4 
HB-EGF  NRG1/2 HB-EGF 

EGF   NRG1/2/3/4 
TGF-α   BTC 

AR   EPR 
BTC    
EPR    

ErbB/HER homo- and heterodimers activated by HB-EGF 
1/1 - 1/2 - 1/3 - 1/4 - 2/4 - 3/4 - 4/4 

TGF-α, transforming growth factor-α; AR, amphiregulin; BTC, betacellulin;  
EPR, epiregulin; NRG1/4, neuregulin-1/4. 

2. EGF Family Members, Cognate Receptors, and Layers of Regulation 

The members of the EGF family include four groups of growth factors binding to specific cognate 

receptors (EGFR/ErbB1/HER1, ErbB2/HER2 to ErbB4/HER4). Upon ligand binding, the receptors 

associate to form a variety of di/oligomeric complexes acting as intrinsic tyrosine kinases [35–37]. As 

shown in Table 1, EGF ligands bind to specific receptors with a degree of crossreactivity also due to 

the assortment of these complexes. Soluble and membrane-anchored HB-EGF bind to, and activate, 
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EGFR [1,4], ErbB4 [19,55], and complexes of these receptors [53,54,56]. HB-EGF also binds to 

heparan sulfate proteoglycans [55,57], and N-arginine of dibasic convertase [42]. ErbB receptors are 

expressed within numerous tissues and systems where they may mediate different activities depending 

on the ligand, its sterical organization (membrane-anchored or soluble receptor), and its receptor 

affinity. For example, soluble HB-EGF ligation of EGFR mediates strong proliferative effects [38,39], 

while the ligation of ErbB4 mediates chemotactic responses [19]. Instead, through the same receptors 

membrane-bound HB-EGF may mediate growth inhibition and functional responses [21–23]. 

Therefore there is a level of regulation, based on the molecule topology, which leads to biochemical 

differences and different resulting activities [58]. A major difference is that membrane-anchored  

HB-EGF is believed to induce extended polymerization of ErbB receptors, whereas soluble HB-EGF 

probably induces smaller receptor complexes, usually in form of homo/heterodimers or small 

oligomers. Extended complexes imply a variety of heterogeneous cell-to-cell interactions including 

coreceptors activities, and sending, usually, inhibitory signals. Smaller complexes imply selective 

receptor stimulation and send activatory signals [58]. Finally, heparan sulfate proteoglycans on the cell 

membrane may regulate the activity of HB-EGF [57] and the expression of N-arginine of dibasic 

convertase enhances the migration induced by HB-EGF via EGFR [42]. In other words, a further 

source of cellular signaling is the transmembrane/cytoplasmic fragment of HB-EGF, either as part of 

full-length internalized proHB-EGF [33,59] or as truncated transmembrane/cytoplasmic fragment 

remaining after the ADAM-dependent release of the ectodomain portion [34,59]. Under stimulus this 

transmembrane/cytoplasmic fragment translocates to the nucleus and binds to transcriptional cyclin A 

repressor promyelocytic leukemia zinc finger protein [34] or to transcriptional cyclin D2 repressor 

Bcl6 [60] promoting S-phase entry. Also, the phosphorylation of the cytoplasmic domain of HB-EGF 

due to external stimuli plays a role in HB-EGF-related tumorigenesis [61]. Therefore the cells and 

enzymes available in the microenvironment add a further layer of local regulation to HB-EGF 

biological activities. Enhanced expression, constitutively active mutant forms, autocrine activation of 

the ErbB receptors, and increased HB-EGF production are observed in human cancers and may be 

associated with poor outcomes. Therapeutic strategies targeting EGFR, ErbB2 [62] or  

HB-EGF [63–65] have been suggested or even used in medical practice. 

3. HB-EGF-Dependent EGFR Phosphorylation and Transduction Pathways 

HB-EGF induces receptor association, intrinsic tyrosine kinase-dependent autophosphorylation of 

specific tyrosine residues that serve as docking sites for intracellular signaling molecules, and activates 

a signaling cascade to nucleus followed by cell proliferation [1], differentiation [45] or  

chemotaxis [42] depending on the receptors that are involved. Upon HB-EGF, for example, EGFR 

activates intrinsic protein tyrosine kinase activities that phosphorylate specific tyrosine residues within 

the cytoplasmic domain [66]. By performing mass spectrometry analysis of trypsin digested peptides 

on HeLa cells we observed that HB-EGF induces EGFR phosphorylation at tyrosines 992, 1045, 1068, 

1086, 1148, 1173, and at serine 1142. In contrast, there is no phosphorylation of tyrosine 1045, little 

phosphorylation of serine 1142, and as a rule, HB-EGF-induced HER1 phosphorylation shows a 

pattern somewhat different from that induced by other EGFR ligands [18,67]. Tyrosines 1068 and 

1173 are two major sites of autophosphorylation that autophosphorylated, to very different degrees, 
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following HB-EGF [18]. Autophosphorylation of EGFR tyrosines 1068 and 1173 is followed by the 

activation of Ras, MEK, and ERK1/2 pathways [68]. For example, following stimulation of HeLa cells 

with HB-EGF, ERK1/2 phosphorilates at threonine 185 and tyrosine 187 [18,67]. 

4. GPCR-Dependent Transactivation of EGFR 

Ligation of G-protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors 

(GPCRs) leads to ADAM-dependent cleavage [69] of membrane-anchored HB-EGF into a soluble 

form of HB-EGF [24,70] capable of activating ErbB receptors on the same cell or on bystander  

cells [71,72]. Indeed, the transactivation of EGFR is a general function of GPCR  

signaling [18,24,67,73–77], which has been described in diverse cell types including fibroblasts, 

keratinocytes, astrocytes and smooth muscle cells [18,58,73]. Deregulated GPCR-dependent release of 

HB-EGF has been associated with hyperplastic tissue abnormalities [78]. Critical mitogenic effects 

through extracellular transactivation of EGFR follow to stimulation with GPCRs ligands including 

endothelin-1, lysophosphatidic acid [50], angiotensin-II [73] or CXC chemokine ligand 12 (CXCL12, 

stromal cell-derived factor-1) [18] via ADAMs 10, 12, or 17 depending on the ligand, GPCR, and cell 

type [24–29,79]. We demonstrated that CXCL12 transactivates EGFR through ectodomain shedding of 

HB-EGF [18,67]. CXCL12 binds to GPCRs CXC receptor 4 and 7 (CXCR4 and CXCR7) [80], and 

activates ADAM 10 at least in macrophages [18,67,81–83] and might increase the release of  

ADAM 17 [84]. Interestingly, ADAM 10 mediates also the cleavage of Notch and its ligand  

Delta [85]. The CXCL12-dependent HB-EGF transactivation mechanism is relevant to hematopoietic 

differentiation as well as leukemia progression [86]. Besides its role in development [87], CXCL12 

regulates important hematopoietic functions, induces cell adhesion and chemotaxis, and coordinates 

the circulation of hematopoietic stem cells, lymphocytes and monocytes/macrophages [86,88–91]. 

Stromal and endothelial cells constitutively express CXCL12 in bone marrow, lymph nodes, liver, lung 

and skin [92]. CXCL12 may induce mitotic signals, favor tissue invasion, and contribute to the 

development of a microenvironment infiltrated by M2-polarized macrophages that support cell 

survival [91,93]. Cancer cells usually express functional receptors for CXCL12 [67,89,90,94] and 

some cancers constitutively express CXCL12 [18,95].  

5. GPCR-Dependent Transinhibition of EGFR 

By binding to its receptors, CXCL12 may transactivate EGFR. As described above, for example, 

the ligation of CXCR4 activates membrane ADAMs that release HB-EGF from cell membrane, 

resulting in its binding to EGFR [24,69–72]. This induces a signaling cascade that is involved in 

pivotal phenomena such as proliferation or differentiation as well as morphogenesis depending on the 

microenvironmental context [18,50,73]. Usually, the transactivation occurs in a paracrine manner. In 

EGFR/GPCR double-positive cells, however, a transactivation along intracytoplasmic pathways has 

been reported [96] and shown to be important in breast cancer [97] and myeloma progression [98]. 

Furthermore, we provided evidence that in EGFR/CXCR4 double-positive cells CXCL12 may 

transinhibit EGFR [67]. Downstream of CXCR4, CXCL12 elicits signals via both G protein-dependent 

and β-arrestin-dependent pathways responsible for inducing rapid and late waves, respectively, of 

ERK1/2 phosphorylation [99–101]. In HeLa and 5637 cancer cell lines, CXCL12 elicits an 
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intracytoplasmic G-protein-dependent calmodulin/calcineurin pathway leading to a delayed 

autophosphorylation peak of EGFR that is reverted by later β-arrestin activation. The synthetic [N33A] 

CXCL12 [102] that activates preferentially G protein-dependent pathways and fails to activate  

β-arrestin-dependent ERK1/2 phosphorylation downstream of CXCR4 [67] can completely block 

EGFR phosphorylation [67]. Therefore a EGFR/CXCR4 double-positive cell may shed HB-EGF to 

tyransactivate bystander EGFR-positive cells [24,69–72], transiently delay the activation of its own 

EGFR [67] and enter into S-phase due to nuclear translocation of the cytoplasmic tail of HB-EGF [34]. 

This process can be expected to strengthen a gradient of cell proliferation along differentiation 

pathways functional to the maintenance of hematopoietic niches.  

6. Factors Inducing HB-EGF in Hematopoietic Cells 

A great variety of human hematological cell lines except for the B-derived ones, and blasts from a 

majority of acute myeloid leukemia cases express and release a fully functional HB-EGF molecule. 

These cells express HB-EGF mRNA, are sensitive to the cytolytic effect of diphtheria toxin exposure, 

and release soluble HB-EGF that exerts a strong proliferative effect on BALB/c-3T3 cells [11]. The 

expression of HB-EGF mRNA in these cells is strongly modified by factors relevant to the biology of 

hematopoietic cells at different stages of differentiation. DMSO, PMA, ATRA, IFNγ, 1α,25-(OH)2D3, 

and TNFα, are known to induce biological effects such as proliferation or differentiation in normal or 

neoplastic cells of different hematopoietic lineage. PMA, DMSO and, more interestingly, TNFα, 

1α,25-(OH)2D3, and especially ATRA, and costimulation with TNFα and ATRA induce an increase in 

transcripts for HB-EGF in either cell lines or ex vivo cells [9,11]. GM-CSF and CXCL12 also induce 

HB-EGF in a number of human cell lines, in human monocytes/macrophages, neutrophils, and ex vivo 

cancer cells, including acute leukemia cells [9,11,18]. For example, GM-CSF induces HB-EGF mRNA 

and acquisition of sensitivity to diphtheria toxin in neutrophils and acute myeloid leukemia cells that 

were previously HB-EGF-negative [9,11]. In HB-EGF promoter, putative binding sites for NF-kB, 

AP1, SP1, SP3 have been identified [103]. In addition, it has been shown that HB-EGF can be induced 

through Ras pathway activation [104,105]. TNFα has been reported to mobilize NF-kB [106]; the 

receptors for vitamins A and D, including 1α,25-(OH)2D3, recognize common response elements 

containing the AP1 site [107]; by binding to the β-subunit of its receptor, GM-CSF activates Ras and 

Raf-1 and the MAP kinase pathway [108]. Therefore, TNFα , ATRA, 1α,25-(OH)2D3, GM-CSF, and 

CXCL12 have the HB-EGF gene as a downstream target [9,11]. HB-EGF is intensely expressed along 

the hematopoietic cell differentiation by myeloid [11] and lymphoid progenitors too. Outside the 

hematopoietic system, there is convincing evidence that HB-EGF is involved in developmental tasks. 

Pancreatic and duodenal homeobox-1 is also a direct regulator of HB-EGF [109]. The Wilms’ tumor 

gene contributes to the regulation of the EGF family ligands during nephrogenesis [110]. Direct 

interaction between MyoD and the HB-EGF promoter is transiently found during skeletal muscle cell 

differentiation and the membrane form of HB-EGF is expressed preferentially in myotubes [48]. 
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7. HB-EGF in Hematopoietic Microenvironment 

HB-EGF plays a role in regulating the differentiation of stromal stem cells [45] and the proliferation 

of hematopoietic maturing cells, themselves a source of HB-EGF [9,11]. However, to describe the role 

of HB-EGF, it is important to stand back and take a broad view of how hematopoietic developmental 

tasks fit into the organization of what we commonly call the hematopoietic bone marrow 

microenvironment. Hematopoietic differentiation is characterized by a number of quite well 

recognized stages. At each differentiative stage, immature cells are present with progressively 

restricted potential towards the differentiation into blood cells. The differentiation cascade is formed 

by hematopoietic stem cells and hematopoietic progenitors from which all lineages of blood originate. 

Hematopoietic stem and progenitor cells seem to be nurtured in sites or niches where cell-to-cell 

interaction regulate the output of appropriate numbers of blood cells by ensuring hematopoietic stem 

cell survival and self-renewal [111,112]. The specific hematopoietic stem cell niche allows stem cells 

to proliferate, prevents them from differentiating, preserving their differentiation potential, and keeps 

them in place [45,112]. After leaving the stem cell niche, cells can differentiate. Though a variety of 

cell types have been involved in promoting this regulatory microenvironment [113],  

CXCL12-expressing reticular cells seem to play a fundamental role [114]. The microenvironment is 

dynamic and the number of niche cells can correlate with the number of hematopoietic stem  

cells [115]. The turnover and persistence of the niche is assured by CXCR4, the primary receptor for 

CXCL12 [80], which plays a pivotal role in maintaining hematopoietic stem cells, early B cell 

precursors and plasma cells in strict contact with the above-mentioned CXCL12-abundant reticular 

cells [92,93,114,116,117]. Though hematopoietic stem cells are slowly cycling and some are  

dormant [118–120], lineage-restricted progenitors are cycling actively [121]. CXCL12-abundant 

reticular cells maintain blood progenitor cells in a proliferative state. Signals that regulate differentially 

the proliferation of hematopoietic precursors may be elicited by TGF-β [122], angiopoietin-1 [123], 

Wnt [124], and HB-EGF [9,11,45,125]. Other proteins such as those belonging to Notch family may 

play a role, which seems to be less relevant than that played by the CXCL2/CXCR4 axis [126]. 

CXCL12-abundant reticular cells produce hematopoietic cytokines, CXCL12 and SCF [127]. As 

adipo-osteogenic progenitors, they may differentiate into mature cells that produce protein for bone 

formation or store energy [45]. Interestingly, cortical thymic epithelial cell compartment is required for 

early stages of T cell development in the thymus [128]. Cortical thymic epithelial cells express 

CXCL12 and the Notch ligand Delta-like 4 [129], thus providing signals for the attraction, survival and 

differentiation for T lymphocyte progenitors [130]. CXCL12-abundant reticular cells release CXCL12 

that is able to cleave HB-EGF from bystander cells [24,70–72] that in turn inhibits CXCL12-abundant 

reticular cell maturation [45,67]. Due to their CXCR4 expression [86], either normal hematopoietic or 

leukemic cells share a preferential homing into the bone marrow, namely into niches with  

CXCL12-rich ancillary stromal cells [45,92]. There, CXCL12 transactivates EGFR [18] that is mainly 

expressed by stromal cells and stem cells [45]. Finally, the release of the ectodomain fragment of  

HB-EGF transactivates EGFR in bystander cells but leads to intracellular transinhibition of EGFR [67] 

as well as nuclear translocation of the transmembrane/cytoplasmic proHB-EGF fragment, which 

promotes cell cycling [34,58–60]. Therefore hematopoietic progenitor cells increase their proliferative 

potential entering the differentiation process by the combined effect of CXCL12-dependent shedding 
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of HB-EGF and the intracellular release of HB-EGF transmembrane/cytoplasmic tail to translocate to 

nucleus to generate mitogenic signals [34]. The regulation of the tyrosine kinase activity of EGFR 

associated with the activation of cell cycling via direct nuclear factor mobilization further contributes a 

gradient of cell proliferation and differentiation functional to a flexible and dynamic maintenance of 

hematopoietic niches. Through chemotaxis and EGFR transactivation, CXCL12 promotes the shaping 

of niches where stromal and hematopoietic stem cells strictly interact in order to maintain the 

hematopoietic function (Figure 2). 

Figure 2. HB-EGF network relevant to hematopoietic niche. Cell-to-cell interactions and 

gradients of cell-shed factors, including CXCL12 and HB-EGF, lock both hematopoietic 

and stromal stem cells in the hematopoietic niche where they support each other to keep 

surviving as undifferentiated cells. Hematopoietic differentiation implies both asymmetric 

hematopoietic stem cell mitosis and maturing progenitor escape from the niche 

microenvironment partly due to receptor modulation.  
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hematopoiesis. Endothelial and stromal cells in bone marrow constitutively express CXCL12 [92] that 

induces cytokines that share protean activities involving cell growth and  

differentiation [22,39,86,87–91,93]. The axis CXCL12/CXCR4 (and possibly CXCL12/CXCR7) may 
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family and its receptors, namely HB-EGF/EGFR [53]. In the context of the hematopoietic system, the 
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crosstalk between CXCL12/CXCR4 and HB-EGF/EGFR contributes to the balance between cellular 

responses of differentiation and self-renewal that depend on the stimulation of EGFR [18,131]. Soluble 

HB-EGF inhibits the multilineage differentiation of stromal stem cells maintaining them open to 

proliferation [45] and available for cell-to-cell contact with hematopoietic stem cells in the specialized 

niches. In contrast, proliferation of hematopoietic progenitors changes from maximal to minimal 

according to the decreasing gradient of CXCL12 away from the niches. In the niches the balance is 

tipped preferentially to a self renewal-type of regulation in which the stromal environment participates 

actively [18,45,67,132,133]. Near the niches hematopoietic progenitors proliferate actively and start 

their differentiative journey. The hematopoietic microenvironment, therefore, is at the crossroad of 

regulated self-renewal and oncogenesis and links typically oncogenes and inflammation [134]. 

Interestingly, terminally differentiated neutrophils, monocytes/macrophages and lymphocytes may also 

coexpress CXCR4 and HB-EGF [9,11,18]. These cells are sensitive to CXCL12, upon which they 

release HB-EGF, share aptness to infiltrate normal tissues and cancers and to act either inducing niches 

supporting cancer stem cells as well as suppressing or fostering immunity. These infiltrating cells seem 

to reproduce a cancer/stromal microenvironment supporting cancer stem cells somehow similar to the 

hematopoietic environment. It seems indeed that oncogenesis is primarily coupled to niches [113]. 

This has suggested a role for the therapeutic use of inhibitors of the CXCL12/CXCR4 [135] and  

HB-EGF/EGFR [62–65] axes in the clinical setting, namely targeted to eradicate cancer stem cells that 

survive in the niches [136]. 

9. HB-EGF in Leukemia 

Leukemia encompasses a heterogeneous group of hematological malignancies characterized by a 

growth of immature (acute leukemias) or variously maturing (chronic leukemias) cells within the bone 

marrow. Clinical manifestations of acute leukemia include leukocytosis and deficient normal 

hematopoietic function due to leukemic cells infiltrating the bone marrow [137,138]. Chronic 

leukemias, including myeloproliferative and lymphoproliferative disorders, show progressive 

leukocytosis due to accumulation of more or less mature circulating blood cells and deficient 

hematopoietic function as a late event. They may change their biology and undergo progression to 

more rapidly evolving conditions, including disorders strictly resembling acute leukemia [139,140]. 

Perhaps it is not surprising that leukemia might develop by taking over hematopoietic stem cell niches. 

The relevant role played by ancillary cells in normal hematopoiesis and some emerging models 

suggest a role for bone marrow microenvironment in disease maintenance and resistance as well as in 

leukemia initiation and progression [113]. Though the predominant views have been developed in the 

setting of epithelial cancers, there are data supporting that leukemic cell survival and proliferation may 

be fostered by niche specific signaling and/or that leukemic cells may modify the microenvironment in 

order to ease their progression and/or that disruption of signaling between hematopoietic stem cells 

and their niches promote cancer initiation [113]. A number of cells and factors that govern cell-to-cell 

interactions and the processes in the bone marrow niches have emerged. CXCL12 [67,114,127] and 

HB-EGF via its dual signaling [11,18,45,125,141] play a role in remodeling hematopoietic niches 

allowing for stem cell maintenance and regulated differentiation vs. proliferation of hematopoietic 

progenitors. Most leukemias overexpress HB-EGF [11,63], CXCR4 [136,142], and even  
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CXCL12 [143]. Leukemia-involved cytokines such as TNFα [144,145] and GM-CSF [9,11], or 

hematopoietic differentiation-related factors such as ATRA and 1α,25-(OH)2D3 [11], have the  

HB-EGF gene as a downstream target and strongly increase HB-EGF expression [9,11]. Chronic 

myeloid leukemia cells express the chimeric protein BCR/ABL related to the (9;22) translocation, 

which plays a relevant pathogenetic role in this leukemia [146]. HB-EGF is one of the molecules 

transcriptionally induced by the chimeric protein BCR/ABL through activation of the Ras and MAP 

kinase pathways. Therefore the same factors that play a central role in the hematopoietic niche are 

involved in leukemia biology [136]. The hematopoietic niche is remodeled by these factors including 

HB-EGF to represent a protective microenvironment orchestrating a great deal of stimuli favoring 

leukemia initiation, progression, post-treatment persistence as minimal residual disease, and relapse.  

10. HB-EGF in Multiple Myeloma 

Multiple myeloma is another malignancy that grows within the bone marrow as a clonal expansion 

of plasma cells. Over unpredictable time periods, the disease leads to osteolytic bone lesions, 

hypercalcemia, insufficient haematopoietic function, and anomalous angiogenesis [147,148]. Multiple 

myeloma is preceded by an asymptomatic premalignant phase associated with bone marrow alterations 

suggesting microenvironment defects that favor the survival of plasma cells. It seems that additional 

bone marrow changes are needed for overt myeloma to develop [149]. Myeloma cells take over 

hematopoietic stem cell niches in bone marrow. A number of molecules relevant to normal 

haematopoiesis play a part in the biology of myeloma cells such as IL-6, VEGF, osteopontin, 

angiopoietin-1, Notch, Wnt, Hedgehog, and DKK1 protein [12,149–152]. Moreover, both homing and 

survival of myeloma cells largely depends on the CXCL12/CXCR4 axis [152,153]. CXCR4 has been 

targeted in the clinical setting of multiple myeloma with promising results [154]. EGF-family members 

such as NRG1, AR, and HB-EGF, which are expressed by cells from hematopoietic niches, can bind to 

heparan-sulphate proteoglycans on myeloma cells to promote myeloma growth [12,98,149,150,155]. 

The crosstalk between CXCL12/CXCR4 and HB-EGF/EGFR contributes in this case a direct 

proliferative stimulus to myeloma cells. However, the primary activity of these loops assures the 

survival of myeloma stem cells or anything similar inside the bone marrow niches [4,20,156]. In such a 

protective environment, mainly depending on cell-to-cell interactions based on fundamental players 

like CXCL12, Notch, and HB-EGF [152], myeloma stem cells can persist as minimal disease surviving 

treatment to relapse eventually as overt myeloma. EGF-signaling has been proposed as a promising 

target for myeloma treatment [149,155].  

11. Final Remarks 

The role of HB-EGF in hematopoiesis is somehow surprising to us. HB-EGF is an ancient player on 

the field of evolution, where it plays a role in fundamental signaling mechanisms that are also involved 

in hematopoietic stem cell niches. It participates to such events in association with a variety of other 

factors and together they orchestrate the complex network of hematopoietic regulated differentiation. 

Due to the relevance of the bone marrow niches for oncogenesis, HB-EGF represents a molecule 

relevant to the biology of hematopoietic malignancies that develop primarily in the bone marrow 

microenvironment such as acute and chronic either myeloid or lymphoid leukemias, as well as multiple 
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myeloma. It is possible that we can expect that the role of the bone marrow microenvironment is not a 

great deal different for malignancies arising in periphery and infiltrating the hematopoietic bone 

marrow secondarily. The relevance of these mechanisms is also supported by the promising results of 

targeted treatments in the preclinical and clinical setting. However, the very mechanisms, crosstalks 

and cell types fundamental for regulated differentiation in the hematopoietic system as well as their 

fine-tuning and global significance are far from being elucidated. 
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