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Introduction
Bladder cancer (BLCA) is a common malignant tumor that 
arises from the abnormal proliferation of urothelial cells on the 
inner surface of the bladder.1 As one of the top 10 most com-
mon cancers in the world, BLCA poses a heavy burden on pub-
lic health.2,3 According to whether the tumor invades the 
bladder wall muscle layer, BLCA patients are divided into non-
muscle invasive bladder cancer (NMIBC) and muscle invasive 
bladder cancer (MIBC). NMIBC accounts for 70% to 80% of 

cases and has a favorable prognosis but has a high recurrence 
rate. MIBC accounts for 20% to 30% of cases and is associated 
with invasive tumor behavior, metastatic potential, and poor 
overall survival (OS).4,5

BLCA is characterized by substantial intra-tumoral and 
inter-tumoral heterogeneity at the genomic, transcriptional, 
protein, and cellular levels.6 This heterogeneity arises from sub-
clonal evolution during tumor progression, metastasis, and 
treatment, leading to diverse molecular profiles and cellular 
phenotypes.7 Single-cell analysis reveals a dynamic landscape 
where tumor cells exhibit both epithelial and mesenchymal-like 
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transcriptional states, with bidirectional plasticity between these 
states occurring within and among tumor subclones. For exam-
ple, a dominant transcriptional state characterized by low 
PPARG expression has been associated with an aggressive 
tumor phenotype.8

Single-cell sequencing has emerged as a powerful tool to 
unravel the complexity of tumor heterogeneity by profiling 
individual cells.9 In combination with organoid models, this 
technology enables comprehensive characterization of cellular 
communications and signaling networks.10 Tumor cells exhibit 
substantial heterogeneity, with distinct subpopulations charac-
terized by diverse mutational profiles, gene expression patterns, 
and functional capabilities.11-13 These intra-tumoral disparities 
contribute to differential treatment responses and clinical out-
comes.14 For instance, invasive tumor subpopulations often 
display elevated expression of cancer stem cell markers, such as 
SOX9 and SOX2, associated with increased aggressiveness and 
treatment resistance.15 The tumor microenvironment (TME) 
is a complex and dynamic ecosystem that profoundly influ-
ences tumor behavior.16 Comprised of a heterogeneous mixture 
of immune cells, stromal cells, and extracellular matrix (ECM) 
components, the TME fosters a complex interplay with tumor 
cells, promoting growth, invasion, metastasis, and immune eva-
sion.17 Tumor cells actively shape the TME through the secre-
tion of growth factors (such as vascular endothelial growth 
factor VEGF) and ECM modifying enzymes, while the TME 
reciprocally influences tumor cell phenotype and behavior.18 
These pro-cancer modifications include the expression of 
antiapoptotic molecules that prevent tumor cell death. The 
TME is often characterized by an immunosuppressive milieu, 
with immune checkpoint molecules, such as PD-L1, and 
immunosuppressive factors, including transforming growth 
factor-β (TGF-β) and interleukin (IL)-10, contributing to 
immune evasion.19,20 Additionally, the TME is frequently 
hypoxic due to aberrant angiogenesis, characterized by leaky 
and dysfunctional microvessels. These microenvironmental 
factors collectively contribute to tumor progression and thera-
peutic resistance.21 Cancer-associated fibroblasts (CAFs) are 
pivotal components of TME, exhibiting heterogeneity in their 
origin, phenotype, and function.22 A specific CAF subpopula-
tion, characterized by PDGFRα + ITGA11 + expression, has 
been implicated in promoting lymphangiogenesis through the 
interaction of ITGA11 with the SELE receptor on lymphatic 
endothelial cells, subsequently activating the SRC-p-
VEGFR3-MAPK pathway in BLCA.23 CAFs can contribute 
to tumor progression by secreting growth factors, cytokines, 
and ECM components, remodeling the ECM, and supporting 
tumor angiogenesis and immune suppression.24 A comprehen-
sive understanding of the intricate communications between 
tumor cells, immune cells, and the TME is essential for the 
development of effective immunotherapies.

We conducted a comprehensive single-cell RNA sequenc-
ing (scRNA-seq) analysis of BLCA tumor tissues and orga-
noids to unravel the underlying mechanisms driving tumor 

progression. By profiling cellular heterogeneity, we identified 
novel subpopulations and their interactions within the TME. 
Furthermore, we discovered a prognostic signature associated 
with patient survival and immune response. These findings 
offer insights into the molecular complexity of BLCA and pro-
vide a rational basis for developing targeted therapies.

Methods
Sample collection

This study was approved by the Ethics Committee for Clinical 
Research of Zhongda Hospital Affiliated to Southeast University 
and conducted in accordance with recognized ethical guidelines. 
A BLCA tissue was collected from 1 patient who underwent 
radical cystectomy at Zhongda Hospital Affiliated to Southeast 
University. The diagnosis of BLCA was independently confirmed 
by 3 pathologists. Written informed consent was obtained from 
the patient prior to tissue collection for subsequent scRNA-seq.

Tissue dissociation and preparation

The fresh tumor tissue was stored in the GEXSCOPE® Tissue 
Preservation Solution (Singleron) and transported to the 
Singleron lab on ice as soon as possible. The specimens were 
washed with Hanks Balanced Salt Solution (HBSS) for 3 
times and minced into 1 to 2 mm pieces. Then the tissue pieces 
were digested with 2 ml GEXSCOPE® Tissue Dissociation 
Solution (Singleron) at 37°C for 15 minutes in 15 ml centrifuge 
tube with sustained agitation. After digestion, using 40-micron 
sterile strainers to filter the samples and centrifuging the sam-
ples at 1000 rpm for 5 minutes. Then the supernatant was dis-
carded, and the sediment was resuspended in 1 ml PBS 
(HyClone). To remove the red blood cells, 2 ml GEXSCOPE® 
red blood cell lysis buffer (Singleron) was added at 25°C for 
10 minutes. The solution was then centrifuged at 500g for 
5 minutes and suspended in PBS. The sample was stained with 
trypan blue (Sigma) and microscopically evaluated.

Single cell RNA sequencing

Single-cell suspensions were converted to barcoded scRNA-
seq libraries by using the Chromium Single Cell Library, Gel 
Bead & Multiplex Kit (10× Genomics), and following the 
manufacturer’s instructions. Briefly, cells were partitioned into 
Gel Beads in Emulsion in the ChromiumTM Controller 
instrument where cell lysis and barcoded reverse transcription 
of RNA occurred. Libraries were prepared using 10× Genomics 
Library Kits and sequenced on Illumina Nova6000 with 150 bp 
paired end reads.

Data sources and preprocessing

The scRNA-seq datasets GSE217956 and GSE222315 were 
downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/). GSE217956 contains samples from 2 MIBC patients 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/


Chen et al	 3

and 1 NMIBC patient, including organoids and corresponding 
primary tumors.25 Raw sequencing data in SRA format were 
downloaded using prefetch (version 3.0.2) and converted to 
FASTQ files using fastq-dump (version 3.0.2). Subsequently, 
the FASTQ files were quantitatively analyzed using CellRanger 
(version 7.1.0) developed by 10× Genomics to obtain the 
expression profile matrix of each cell.26 BLCA clinical informa-
tion, TPM, FPKM and count transcriptome profiling and sin-
gle nucleotide variation (SNV) data were obtained via the 
TCGAbiolinks (version 2.28.4) package from the TCGA 
(https://portal.gdc.cancer.gov/). A total of 412 BLCA samples 
and 19 normal control tissues were included. Survival informa-
tion was available for 404 BLCA samples. GSE13507 and 
GSE32894 were used to validate the risk model.

ScRNA-seq data analysis

Downstream analysis of scRNA-seq data was conducted using 
the R package Seurat (version 4.3.0.1).27 Seurat offers a compre-
hensive suite of tools for quality control, normalization, dimen-
sionality reduction, unsupervised cell clustering, and cell 
annotation.28 The raw count matrix was first converted to a 
Seurat object. High-quality cells were selected based on the fol-
lowing criteria: (i) the number of detected RNA features (nFea-
ture_RNA) was between 200 and 6000 and (ii) the percentage of 
mitochondrial genes per cell (percent.mt) was below 5%. The 
filtered data was normalized using the NormalizeData function. 
Highly variable genes within each dataset were identified using 
the FindVariableFeatures function.29,30 Using dimensionality 
reduction techniques such as principal component analysis 
(PCA) to identify the most informative components explaining 
cellular variability. This enables visualization and clustering of 
cells in a lower-dimensional space. The FindNeighbors and 
FindClusters functions were employed to identify discrete cell 
clusters based on their gene expression profiles. The 
FindAllMarkers function was used to pinpoint differentially 
expressed genes (DEGs) that characterize each cluster.31 We 
characterized the identities of cell types of these clusters based 
on expression of known markers: EPCAM, KRT8, KRT18, 
KRT19, and CD24 (Epithelial cell), CLDN5, CDH5, 
PECAM1, CD34, and VWF (Endothelial cell), COL14A1, 
FGF7, DCN, MYLK, MYH11, ACTA2, and TAGLN (fibro-
blast),32 CD79A and CD79B (B cell),27 LYZ, CD68, CD163, 
CD14 and FCER1G (Monocyte/Macrophage), CD3D, CD3E, 
CD3G, CD2, and IL7R (T cell),33,34 GNLY, and KLRD1 (NK 
cell), CDH1, CDH3, CLDN4, EPCAM, ST14, and MAL2 
(Epithelial markers), VIM, SNAI1, SNAI2, ZEB2, FN1, 
MMP2, MMP3, MMP9, AGER, TWIST1, ZEB1, FOXC1, 
FOXC2, TWIST2, and CDH2 (Mesenchymal markers).35

Infer-copy number variation (CNV) analysis

InferCNV method was utilized to infer chromosomal copy 
number variations (CNVs) from scRNA-seq data, providing 
insights into the genomic landscape of epithelial cells. The 

genes were annotated with chromosomal positions using the 
AnnoProbe R package (version 0.1.7), which facilitated the 
mapping of genes to their respective genomic locations. 
Subsequently, the infercnv R package (version 1.14.2) was 
employed to analyze the expression profiles, comparing tumor 
cells to a reference panel of fibroblasts, endothelial cells, T/NK 
cells, monocytes/macrophages, and B cells. This approach 
effectively highlights the CNV heterogeneity and genomic 
instability in tumor cells.36

Identif ication of malignant epithelial cells

To identify malignant epithelial cells, we extracted the CNV 
matrix from InferCNV analysis. We calculated the mean and 
standard deviation of CNV values for each gene in normal ref-
erence cells. Subsequently, we computed the overall mean and 
standard deviation by averaging the means and standard devia-
tions across all genes. The normal range of CNV values was 
defined as 2 overall standard deviations above or below the 
overall mean. CNV values within this range were assigned a 
score of 0. For values outside this range, a scoring system was 
applied: 2 to 6 overall standard deviations above or below the 
overall mean were assigned a score of 1, 6 to 10 were assigned 
a score of 2, 10 to 14 were assigned a score of 3, and greater 
than 14 were assigned a score of 4. The resulting CNV score 
matrix was subjected to hierarchical clustering to identify cell 
clusters with similar CNV profiles. Clusters primarily com-
posed of normal reference cells were classified as non-malig-
nant, while clusters exhibiting extensive chromosomal 
aberrations (high CNV scores) were classified as malignant 
epithelial cells.37

Pathway analysis

DEGs were identified in cell subpopulations using Seurat’s 
FindMarkers function with an adjusted P-value cutoff of .05. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis were con-
ducted on these DEGs using the clusterProfiler R package 
(version 4.8.3). Additionally, gene set enrichment analysis 
(GSEA) was performed using GSEABase R package (version 
1.62.0), ranking all genes by average log2 fold change and 
employing the Molecular Signature Database (MSigDB; 
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).38

Malignant epithelial cell pseudotime trajectory 
analysis

Monocle2 R package (version 2.30.1) was employed to investi-
gate the dynamic cellular states and progression within the 
malignant epithelial cells.39 Highly variable genes identified by 
Monocle were used to order cells in pseudotime. State2 was 
designated as the root state, and the DDRTree algorithm was 
applied for dimensionality reduction. Visualization of the min-
imum spanning tree facilitated the identification of cellular 

https://portal.gdc.cancer.gov/
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trajectories. DEGs along the pseudotime were determined 
using the differential GeneTest function, with a q-value cutoff 
of 0.05. The BEAM function was employed to analyze gene 
expression changes across different trajectory branches.

SCENIC analysis

To investigate the motifs enriched in subpopulations, the regu-
lons analysis was conducted via pyscenic package (version 
0.9.19)40 and the hg19-refseq_r45-v9 databases for GENIE3, 
RcisTatget, and AUCell. Leveraging the normalized expression 
matrix generated by Seurat, we constructed gene regulatory net-
works and identified key motifs driving cellular heterogeneity.

Cell cycle analysis

We employed the CellCycleScoring function within the Seurat 
package. This method leverages predefined gene sets (s.genes 
and g2m.genes) to assign S and G2/M phase scores to indi-
vidual cells.41 Based on these scores, cells were categorized into 
4 cell cycle phases: G1, S, G2, and M. This approach enabled 
the identification of cell cycle progression patterns within dif-
ferent cell subpopulations and provided a foundation for fur-
ther exploration of cell cycle regulatory mechanisms.

Cell-cell communications analysis

CellChat R package (version 1.6.1) was used to investigate 
intercellular communication among identified cell subpopula-
tions.42 This tool enabled the inference of ligand-receptor 
interactions and the construction of cell-cell communication 
networks based on scRNA-seq data.

Protein–protein interaction (PPI) network analysis

The PPI network was constructed using the STRING data-
base43 with a minimum required interaction score of 0.4 in S2 
DEGs. This network was subsequently visualized using 
Cytoscape software (version 3.9.1). To identify highly inter-
connected genes potentially driving subpopulation-specific 
functions, the Clustering Coefficient plugin within Cytoscape 
was employed. The top 100 genes from the network analysis 
were then used to define functional modules, while 5 hub genes 
most interconnected genes were prioritized for further investi-
gation and potential prognostic model development.

Risk model construction and survival analysis

To develop a risk model for predicting survival outcomes in 
BLCA patients based on hub genes, we constructed a risk model 
through multivariate Cox regression analysis, assigning a risk 
score to each sample. Risk score = coefficient1 × gene1 expres-
sion + . . . + coefficientN × geneN expression. In the independ-
ent validation set, we used the coefficients obtained from the 
previously established multivariate Cox regression model to 

perform a weighted summation of the expression levels of each 
gene to calculate the individual risk score. Samples were further 
stratified into high-risk and low-risk groups based on the median 
risk score.44 Kaplan-Meier curves and receiver operating charac-
teristic curves (ROC) were utilized to compare survival rates and 
predictive accuracy between the 2 risk groups.

Nomogram and prognostic model construction

To construct a prognostic model for predicting OS in BLCA 
patients, multivariate Cox regression analysis was utilized to 
identify independent prognostic factors. Utilizing these identi-
fied factors, a nomogram model was developed using the rms 
package (version 6.7.0). This nomogram visually represents the 
impact of each factor on OS and enables the prediction of 
patient survival probabilities at 1, 3, and 5 years based on their 
clinical characteristics.

Results
Comparative analysis of single-cell expression 
landscape between BLCA tumors and organoids

To explore BLCA cellular diversity and assess organoid model 
fidelity, we analyzed the publicly available GSE217956 dataset 
(Supplemental File 2: Table S1). After quality control, we iden-
tified 10 029 cells for downstream analysis. Batch effect correc-
tion significantly mitigated technical variability, resulting in 
reduced sample dispersion within the UMAP embedding 
(Figure 1A). After dimensionality reduction and unsupervised 
cell clustering, using markers, we annotated the cells into dif-
ferent clusters (Figure S1A, S1B), including epithelial, stromal, 
and immune cell clusters (Figure 1B and C). Organoid models 
recapitulate the cellular diversity of primary tumors to a certain 
extent, especially the heterogeneity of epithelial cells, but the 
proportions of immune cells and stromal cells are different 
from those of primary tumors (Figure 1D). We evaluated the 
expression of epithelial and mesenchymal markers in the sam-
ples (Figure 1E). We observed a progressive decrease in the 
cumulative expression of epithelial gene sets and a concomitant 
increase in the cumulative expression of mesenchymal gene sets 
as tumor stage advanced. This was further supported by the 
increased proportion of fibroblasts and endothelial cells in 
higher-stage tumors. These findings suggest that EMT is a 
hallmark of tumor progression, as evidenced by the decreased 
epithelial gene expression and increased mesenchymal gene 
expression, as well as the enhanced infiltration of stromal cells 
in advanced tumors.45

Molecular characterization and functional profiling 
of malignant and non-malignant epithelial cells in 
BLCA

To analyze the molecular landscape of BLCA epithelial  
cells, we performed inferCNV analysis on all epithelial cells, 
using non-epithelial cells as a reference. Obviously, Organoid1 
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recapitulated specific CNVs observed in Tumor1, including 
amplifications and deletions on chromosomes 5 and 11  
(Figure 2A). Hierarchical clustering identified 8 epithelial cell 
clusters based on their CNV profiles (Figure S2A, Supplemental 
File 2: Table S2). Clusters 5 and 7 exhibited low CNV scores 
and high proportions of non-epithelial cells, suggesting their 
normal epithelial cells (Figure 2B). Meanwhile, they did not 
show large-scale chromosome segment deletion or amplifica-
tion. Conversely, other clusters displayed substantial CNV het-
erogeneity. Cluster 4 had a low overall CNV score but had 
significant amplifications and deletions on chromosomes 2 and 
19 (Figure 2C). GSEA and functional enrichment analysis 
revealed distinct biological processes associated with malignant 
and non-malignant epithelial cells (Figures 2D and S2B). 
Malignant cells showed enrichment of metabolic pathways, 

particularly those related to fatty acid metabolism, as evidenced 
by the upregulation of genes such as EPCAM, ERBB3, FGF4, 
DHRS2, and QSOX1. Notably, ERBB3, frequently mutated in 
BLCA (Figure S2C), is a potential therapeutic target.46 At the 
same time, fatty acid metabolism was found to mediate tumor 
metastasis and immunosuppression in breast cancer.47 In con-
trast, non-malignant epithelial cells were enriched in inflam-
mation-related pathways and express CXCL1, IL1A, S100A2, 
KRT5, and KRT17, which are in the tumorigenesis stage 
(Figures 2E and S2D). Our findings reveal substantial CNV 
heterogeneity among BLCA epithelial cells, identifying dis-
tinct markers differentiating malignant and non-malignant 
cells. The acquisition of a malignant phenotype is associated 
with metabolic rewiring, oncogenic pathway dysregulation, and 
immune microenvironment alterations.

Figure 1.  Single-cell expression atlas and cell typing in BLCA tumors and organoids: (A) uniform manifold approximation and projection (UMAP) 

dimensionality reduction of single cells. Left: UMAP plot before batch correction, highlighting batch effects. Right: UMAP plot after batch effect correction, 

demonstrating removal of batch effect, (B) UMAP plot of single cells colored by assigned cell type, (C) dot plot illustrating marker expression across 

different cell types, (D) comparison of cell type proportions between tumor and organoid samples, and (E) violin plots comparing expression of epithelial 

and mesenchymal markers in different samples. Top panel: epithelial marker expression. Bottom panel: mesenchymal marker expression.
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Gene expression patterns and functional 
characteristics of malignant progression

To elucidate the molecular underpinnings of malignant progres-
sion, we constructed the pseudotime trajectory for tumor cells 
(Supplemental File 2: Table S3). The trajectory was validated by 
the expression dynamics of key genes, including CD44, MYC, 
and S100A9,48 which exhibited distinct expression patterns 

along the differentiation continuum (Figure 3A). Notably, 
NMIBC cells predominantly clustered at the trajectory’s initia-
tion, suggesting an early-stage tumor phenotype (Figure S3A). 
Comparative analysis of tumor and organoid cells revealed dis-
tinct pseudotime distributions, with organoids primarily located 
at the trajectory’s terminus with a higher degree of differentia-
tion (Figure 3B). We identified distinct clusters of DEGs that 
exhibited dynamic changes along the pseudotime trajectory. 

Figure 2.  InferCNV analysis and functional enrichment analysis of BLCA epithelial cells: (A) heatmap of epithelial CNVs inferred using the InferCNV 

algorithm, (B) CNV score distribution and cellular composition of epithelial clusters. Box plots illustrating the distribution of CNV scores within each 

cluster, while bar plots depicting the proportion of epithelial and non-epithelial cells, (C) the InferCNV result heatmap verifies that clusters 5 and 7 are 

classified as normal epithelium, while the remaining clusters are classified as malignant, (D) GSEA analysis of malignant and non-malignant epithelial 

cells, and (E) violin plots depicting the expression levels of markers in malignant and non-malignant epithelial cells.
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Early differentiation stages were characterized by the upregula-
tion of pro-inflammatory and proliferative pathways, including 
MAPK, TNF, and IL-17, and suppression of apoptosis due to 
p53 dysfunction (Figures 3C and S3B). These findings suggest 
that the early stages of malignant progression are characterized 
by enhanced inflammation, increased proliferation, and an 
impaired apoptotic response.49 Subsequent trajectory bifurcation 
identified 2 distinct cell fates with divergent molecular programs 
(Figure 3D). One branch exhibited continued activation of 
oncogenic signaling pathways, resembling the early differentia-
tion state. The other branch displayed an enrichment of meta-
bolic and cytoskeletal remodeling pathways, suggesting a more 
aggressive phenotype50 (Figure 3E). Key driver genes associated 
with these distinct cell fates were identified, including MCL1, 
ATF4, RELA, TNF, NFKBIA, and CASP9 in the first branch, 

and EPCAM, EGFR, UPK3B, ERBB3, KRAS, and IGF1R in 
the second branch (Figures 3F, S3D, and S3E). Notably, high 
expression of EGFR, MCL1, and JUN correlated with poor 
patient prognosis (Figure S3C). These findings collectively 
demonstrate the complex heterogeneity of tumor cells and their 
dynamic evolution along a differentiation trajectory. The identi-
fied molecular signatures and key driver genes provide insights 
into the mechanisms underlying tumor progression and poten-
tial therapeutic targets.

Distinct subpopulations in tumor cells

Hierarchical clustering identified 4 subpopulations within tumor 
cells (Figures 4A and S4A). Subpopulation1 (S1) and subpopula-
tion3 (S3) were enriched in organoids, while subpopulation2 (S2) 

Figure 3.  Tumor cell differentiation trajectory and functional characterization: (A) unsupervised transcriptional trajectory of tumor cells predicted by 

Monocle2, (B) distribution of organoid and tumor cells on the trajectory, (C) heatmap illustrating the expression of identified genes associated with tumor 

cell progression, (D) heatmap showing the expression of identified genes associated with tumor cell states, (E) functional enrichment analysis of gene 

sets in distinct cell states, and (F) gene expression dynamics along the trajectory branches.
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and subpopulation4 (S4) were more prevalent in tumors. 
Organoid models recapitulated the presence of S1 and S4, 
emphasizing their utility in capturing tumor heterogeneity 
(Figure S4B). S1 and S3 exhibited transcriptional similarity 
(Figure 4D), characterized by elevated expression of markers 
(SPNS2, CEACAM6; Figures 4B and S4E) and shared regula-
tory motifs (ZNF91, NR2F6, NR1H2, SMARCA4, USF2, and 
TFF3; Figure 4E and F). However, S3 displayed higher gene 

expression and occupied a more advanced differentiation state 
compared to S1 (Figure S4C). Meanwhile, S3 was enriched in 
tight junction and cytoskeleton, which may be related to invasion 
and metastasis (Figure 4I).51 S2 was mainly found in early tumors 
(Figure S4B) and had high genomic instability (Figure S4D) and 
a proliferative phenotype (Figure S4C). It exhibited anti-apop-
totic and proliferative phenotype marked by the expression of 
BTG1, NFKBIA, EGR1, VEGFA, and FGF4 (Figure 4B). 

Figure 4.  Identification of tumor cell subpopulations: (A) UMAP plot showing the distribution of 4 tumor cell subpopulations, (B and C) violin plots 

illustrating the markers in S1, S3 (B) and S4 (C), (D) heatmap visualizing DEGs between 4 tumor subpopulations, (E) dot plot illustrating differentially 

expressed motifs in each subpopulation, (F and G) UMAP plots of the expression levels of motifs NR2F6 (F) and EGR1 (G), (H) bar plot depicting the 

proportion of cells in different cell cycle phases in each subpopulation, (I) dot plot illustrating the enrichment of biological processes and pathways in each 

subpopulation, and (J) violin plot showing the S2 geneset score of each subpopulation in the validation set. Sankey plot comparing the proportion of S2 in 

patients without lymphovascular invasion, with lymphovascular invasion and T3b high stage in the validation set.
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Additionally, S2 showed activation of multiple oncogenic signal-
ing pathways, including p53, apoptosis, MAPK, IL-17, TNF and 
HIF-1 (Figure 4I). S2 was regulated by multiple transcription 
factors including EGR1, CEBPB, ELF3, EZH2, and MAFF 
motifs (Supplemental File 2: Table S4, Figures 4G and S4G). S4, 
enriched in later-stage tumors, displayed increased proliferation 
(Figure 4H), ribosomal biogenesis, and expression of PLPP2 and 
TCEA3 (Figures 4C and S4F). The S2 geneset score for each cell 
in the validation set was scored using the AddModuleScore and 
AUCell. In NMIBC, subpopulation 0 was identified as anti-
apoptotic subpopulation with high expression of apoptosis and 
early-related genes (DDIT4, RACK1, JUNB). Results showed 
that the anti-apoptotic subpopulation was more abundant in the 
sample without lymphovascular invasion and least abundant in 
MIBC, indicating that the anti-apoptotic subpopulation is more 
prevalent in early-stage disease and may be associated with 
BLCA progression (Figures 4J, S4H, and S4I). The results 
revealed 4 tumor cell subpopulations with different biological 
characteristics. These subpopulations exhibited different molecu-
lar features, cell behaviors, and associations with tumor progres-
sion, providing new insights into BLCA heterogeneity and 
potential therapeutic targets.

Identif ication and functional characteristics of 
f ibroblast subpopulations

We performed unsupervised clustering and identified 2 fibro-
blast subpopulations (Figure 5A). Subpopulation 0 was enriched 
in myofibroblastic cancer-associated fibroblasts (mCAFs) mark-
ers, such as RGS5, ACTA2, and MYLK, and was classified as 
mCAFs. Subpopulation 1, which expressed the inflammatory 
cancer-associated fibroblast (iCAF) marker PDGFRA, was 
named iCAFs (Figure 5B).52 Notably, high expression of 
ACTA2, MYLK, and PDGFRA correlated with poor OS 
(Figure 5C). mCAFs uniquely expressed NOTCH3 and 
PPP1R14A, while iCAFs primarily expressed IL33 and FAP 
(Figures 5D and S5A). NOTCH3 is expressed in vascular 
smooth muscle cells (VSMCs) and plays a key role in vascular 
development and differentiation.53 PPP1R14A regulates the 
phosphorylation status of PPP1CA substrates and smooth mus-
cle contraction.54 In breast cancer, IL33 drives lung metastasis 
and suppresses immunity.55 FAP, which can contribute to immu-
nosuppression and promote tumor metastasis, is also expressed 
in tumor-associated macrophages.56 Similarly, elevated expres-
sion of NOTCH3, PPP1R14A, IL33, and FAP predicted poor 
clinical outcomes and may serve as potential markers for tumor 
progression and prognosis (Figure S5B).57 SCENIC analysis 
(Supplemental File 2: Table S5) revealed enrichment of NFIX, 
CREB3L1, FOSL1, MEF2C, and MAFF motifs in mCAFs, 
suggesting their potential roles in regulating myocytes and extra-
cellular matrix, thereby contributing to metastasis.58-61 FOXP2, 
WISP2, and HOXB13 motifs were expressed in iCAFs, sug-
gesting their potential roles in tumor progression and immune 

regulation (Figure 5E). GSEA indicated that mCAFs have 
potential roles in maintaining muscle structure and regulating 
vascular smooth muscle contraction, and iCAF is likely involved 
in regulating inflammatory responses through cytokine signaling 
(Figures 5F and S5C). These findings demonstrate distinct 
fibroblast subpopulations with divergent roles in the TME, sug-
gesting potential therapeutic targets.

Cell-cell communication drives tumor progression

This study constructed a cell-cell communication network 
(Supplemental File 2: Table S6). This network includes tumor 
cells, fibroblasts, immune cells (T/NK, B, macrophages), and 
endothelial cells (Figure 6A). Tumor subpopulation S2 may 
promote tumor progression by expressing FGF4 and activating 
FGFR1 on CAFs.62 Notably, Kaplan-Meier curve analysis 
indicated that FGF4 deregulation affected the OS rate of 
patients, leading to prognostic significance (Figure 6B and D). 
Additionally, stromal cells promoted S2 metastasis through 
growth factor secretion (Figure S6A). iCAFs express 
chemokines such as CXCL1 and CXCL2, which act on 
CXCR4 of immune cells and ACKR3 of stromal cells to pro-
mote metastasis,63,64 whereas mCAFs interact with endothelial 
cells through NOTCH signaling pathway (Figure 6C and E). 
CAFs are found in breast cancer to promote tumor metastasis 
through NOTCH signaling pathway.65 Endothelial cells also 
influence CAFs through NOTCH signaling (Figure S6B). 
Tumor cells and immune cells secrete VEGFA, which activates 
VEGF receptors on endothelial cells, thereby regulating angio-
genesis and providing nutrients and oxygen for tumor growth 
(Figure S6C).66 Tumor cells further modulated the TME 
through factors like GDF, impacting stromal cells (Figure 
S6D). We revealed a multifaceted cellular communication net-
work driving tumor progression. Tumor cells, fibroblasts, and 
endothelial cells play pivotal roles in shaping the TME. The 
intricate interplay of these cells, mediated by signaling path-
ways like FGF, CXCL, NOTCH, and VEGF, underscores the 
need for multi-targeted therapeutic approaches.

Molecular mechanisms of tumor subpopulation S2 
driving tumor progression

To explore the molecular mechanisms underlying S2 driving 
tumor progression, we performed a comprehensive analysis of 
DEGs. The PPI network revealed complex interactions among 
DEGs, implicated in metabolism, apoptosis, differentiation, 
and migration (Supplemental File 2: Table S7 and Figure 7A). 
Modular analysis of the top 100 genes (Clustering Coefficient) 
identified functional modules related to cell apoptosis, metabo-
lism, proliferation, and migration (Supplemental File 2: Table 
S8 and Figure 7B), suggesting their multifaceted roles in tumor 
progression. To identify potential oncogenic drivers, we exam-
ined the mutational landscape of key PPI network genes using 
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TCGA data. Genes involved in apoptosis and proliferation, 
such as DUSP2 and BCL2L11, exhibited high mutation rates 
(Figure 7C). Among the top 5 genes (Figure 7D), SAT1, TIFA, 
and IL20RA were frequently mutated in BLCA (Figure S7A). 
Survival analysis revealed that high expression of RNASEK 
was associated with significant improvement in OS, while ele-
vated IL20RA and SAT1 were associated with poorer patient 
prognosis (Figures 7E and S7B). SAT1 is involved in 
p53-mediated ferroptosis and the regulation of polyamine 
metabolism in breast cancer.67 TIFA modulates lung cancer 
cell survival and proliferation through regulating the synthesis 

of apoptosis-associated proteins.68 Furthermore, IL20RA 
showed negative correlations with immune checkpoint mole-
cules, suggesting potential implications for immune evasion.69 
RNASEK may play a role in regulating the balance between 
cell survival and death by regulating autophagosome degrada-
tion.70 Meanwhile, CDC42EP3 plays a tumor-promoting role 
in glioma progression by targeting CCND1.71 Our findings 
underscore the complex molecular mechanisms driving 
S2-mediated tumor progression. The identification of key 
genes and their functional interactions provides valuable 
insights into potential therapeutic targets.

Figure 5.  Identification and functional characterization of fibroblast subpopulations: (A) UMAP plot showing the distribution of 2 fibroblast subpopulations, 

(B) violin plots illustrating the markers (RGS5, ACTA2, MYLK, and PDGFRA) between the 2 fibroblast subpopulations, (C) Kaplan-Meier curves 

demonstrating the association between the expression levels of ACTA2, MYLK, PDGFRA and OS, (D) heatmap showing DEGs in fibroblast 

subpopulations, (E) dot plot illustrating differentially expressed motifs in fibroblast subpopulations, and (F) GSEA of fibroblast subpopulations.
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Development and validation of a prognostic risk 
model to predict survival and guide immunotherapy 
in BLCA

Multivariate Cox regression analysis identified RNASEK and 
TIFA as independent prognostic factors associated with OS 
(Figure 8A). The risk score was calculated based on the 

expression levels of 5 hub genes. Patients were stratified into 
high-risk and low-risk groups based on their risk scores. 
Kaplan-Meier survival analysis demonstrated significantly bet-
ter OS in the low-risk group (Figure 8B and C). External vali-
dation in the GSE13507 and GSE32894 datasets confirmed 
the model’s clinical applicability and robustness (Figure S8A), 

Figure 6.  Cell-cell communication network and key signaling pathway analysis in the TME: (A) cell-cell communication network. The nodes represent 

different cell subpopulations, and the thickness of the edges reflects the strength of the communication between different cell subpopulations, (B) dot plot 

illustrating ligand-receptor pairs involved in communications between S2 and other cell types, (C) dot plot depicting ligand-receptor pairs mediating 

communications between mCAFs and iCAFs with other cell types, (D) violin plots showing the expression levels of key FGF pathway genes in different 

cell subpopulations. Kaplan-Meier curve analysis demonstrating the association between FGF4 expression and OS, and (E) dot plot illustrating the 

expression levels of key genes in the CXCL and NOTCH pathways across different cell subpopulations.



12	 Cancer Informatics ﻿

with area under the curve (AUC) values exceeding 0.7 for 1-, 
3-, and 5-year OS (Figure 8D). Cox regression analysis further 
confirmed the prognostic importance of risk score, age and 
clinical stage (Figure 8E). A nomogram incorporating these 
factors was developed to facilitate patient-specific risk assess-
ment (Figure 8F). In addition, the relationship between the 
risk score and immunotherapy response was investigated. Low-
risk patients exhibited lower TIDE scores, decreased dysfunc-
tion and exclusion scores, and increased MSI scores, suggesting 

a more favorable immune microenvironment and potential 
better response to immunotherapy (Figures 8G and S8B).72 
Meanwhile, the risk score positively correlated with immune 
checkpoint molecule expression (Figures 8H and S8C), sug-
gesting potential resistance to immunotherapy in high-risk 
group patients. We established a robust prognostic risk model 
for BLCA patients. The model’s association with the tumor 
immune microenvironment highlights its potential as a predic-
tive biomarker for immunotherapy response.

Figure 7.  PPI network and mutation analysis of highly expressed genes in tumor subpopulation S2: (A) bar graph illustrating the results of functional 

enrichment analysis of the PPI network of highly expressed genes in S2 constructed using the STRING database, (B) PPI network consisted of the top 

100 genes divided into 4 functional modules, (C) box plot depicting gene mutation frequency and a waterfall plot visualizing gene mutation types and 

distribution for selected key genes from the PPI network, (D) 5 hub genes identified from the PPI network, (E) Kaplan-Meier survival curve comparing 

patient survival based on RNASEK expression levels, and (F) dot plot illustrating the correlation between the expression levels of 5 hub genes and 

immune checkpoint genes.
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Discussion
BLCA heterogeneity poses a significant challenge in clinical 
management.73 Despite extensive research, translating findings 
into effective treatments remains elusive.6 This study explored 
the molecular characteristics of tumor progression and estab-
lished a regulatory network depending on TME. Meanwhile, 
we developed a prognostic model with clinical predictive value. 
These findings advance our understanding of BLCA patho-
genesis and hold promise for improved patient outcomes 
through targeted therapeutic strategies.

Previous studies have shown that organoids recapitulate cel-
lular diversity, gene expression, and mutational profiles of their 
corresponding parental tumors,74 which is also demonstrated 
by our findings. Notably, while organoids effectively repre-
sented epithelial cell components, they exhibited limited repre-
sentation of immune and stromal cell populations. This 

disparity arose from the differential proliferative and survival 
capacities of these cell types. The inherent self-renewal capac-
ity of cancer stem cells enriched the epithelial lineage within 
organoid cultures,75 while immune and stromal cells under-
went depletion due to their shorter in vitro lifespan. Meanwhile, 
organoids often displayed increased differentiation compared 
to parental tumors.

Increased stromal content and mesenchymal gene expres-
sion at higher tumor stages strongly support a key role for 
EMT in driving BLCA progression. This finding is consistent 
with previous studies showing that EMT is associated with 
increased invasiveness.76 During tumorigenesis, we found that 
malignant epithelial cells exhibited metabolic reprograming 
and upregulation of malignancy-associated genes (eg, EPCAM, 
ERBB3, and FGF4).77 In contrast, normal epithelial cells dem-
onstrated a distinct profile characterized by chemokine 

Figure 8.  Risk model construction and prognostic evaluation: (A) multivariate Cox regression analysis delineating the prognostic impact of molecular 

factors on OS, (B) Kaplan-Meier curve demonstrating the distinct survival outcomes between risk score groups, (C) survival status plot contrasting the OS 

of risk score groups, (D) predicted AUC for 1-, 3-, and 5-year survival in BLCA, (E) multivariate Cox regression analysis delineating the prognostic impact 

of age, gender, pathological stage, and risk score on OS, (F) nomogram model construction integrating prognostic factors for a comprehensive risk 

assessment in BLCA patients. (G) Violin plot comparing TIDE scores between risk score groups, and (H) scatter plots illustrating the correlation between 

the risk score and the expression levels of CD276, PDCD1LG2, and PVR.
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expression (eg, CXCL1, CXCL2, and CXCL8) and immune-
inflammatory pathway activation.78

Tumor cells exhibit heterogeneity during progression, which 
contributes to drug resistance and poor prognosis. Analysis of 
malignant epithelial cell pseudotime trajectory revealed differ-
ent behaviors of cells at different differentiation stages. We 
found that the early stages were characterized by enhanced 
proliferation and inflammation, while the later stages showed 
increased metabolic activity. We also identified potential key 
genes for cell fate determination (eg, EGFR, UPK2, ATF4, 
and RELA). We also identified distinct subpopulations in 
malignant epithelial cells. Tumor subpopulation S1 and S3 
showed high expression of SPNS2 and CEACAM6, which 
have been previously associated with colorectal cancer malig-
nancy and tumor progression.79,80 S1 and S3 have strong meta-
bolic capabilities and cytoskeletal regulation, indicating that 
they belong to highly invasive and metastatic malignant sub-
populations. S4 showed high expression of PLPP2 and 
TCEA3, a high proportion of S phase and enrichment in drug 
metabolism pathways. PLPP2 has been associated with lipid 
raft-mediated proliferation in lung adenocarcinoma,81 while 
TCEA3 is involved in vascular differentiation in embryonic 
stem cells.82 These findings suggest that S4 represents a prolif-
erative subpopulation with potential drug resistance. Notably, 
we identified an anti-apoptotic subpopulation predominantly 
present in early-stage tumors. This subpopulation exhibited 
high mutation rates and transcriptional dysregulation, enriched 
in apoptosis and p53 pathways. Concurrently, activation of 
oncogenic signaling pathways (MAPK, TNF, HIF-1, and 
PI3K-Akt) and regulation by motifs (EGR1, CEBPB, ELF3, 
EZH2, and MAFF) were observed. Further analysis of the 
communication regulation mechanism of this subpopulation 
revealed that it can promote tumor growth and metastasis 
through the interaction of FGF4, VEGF, and GDF signals 
with stromal cells. We also found that fibroblast heterogeneity 
affects the TME, with iCAFs and mCAFs promoting tumor 
metastasis in different ways.83,84 However, this study only ana-
lyzed tumor tissues and organoids, and further functional 
experiments are needed to verify the tumorigenicity and mech-
anisms driving progression of malignant epithelial cells.

PPI network analysis revealed that the anti-apoptotic sub-
population contained functional modules of apoptosis, prolifera-
tion, differentiation and metabolism, highlighting the complex 
regulatory landscape within this subpopulation. Translating 
these findings into clinical practice, a prognostic risk model was 
developed using the hub genes (SAT1, CDC42EP3, IL20RA, 
RNASEK, and TIFA). This model effectively stratified patients 
into high- and low-risk groups with significantly different OS. 
Meanwhile, a nomogram was constructed to facilitate clinical 
application. Notably, the risk score positively correlated with 
immune checkpoint gene expression, suggesting potential differ-
ences in immunotherapy response. Patients in the low-risk group 
exhibited lower TIDE scores, indicating a potential for improved 

response to immunotherapy.85 These findings underscore the 
clinical utility of this prognostic model in patient stratification 
and treatment decision-making. Further exploration of the 
model’s predictive capabilities in larger cohorts is warranted.

Conclusions
This study comprehensively characterized BLCA heterogene-
ity by integrating single-cell analysis, organoid models, and 
multi-omics approaches. We identified tumor subpopulations 
with distinct biological behaviors and revealed key molecular 
and cellular drivers of tumor progression. A prognostic risk 
model was developed to stratify patients and guide treatment 
decisions. Understanding the intricate communications 
between tumor cells, stroma, and the immune microenviron-
ment is critical for developing effective therapeutics.
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