
Digital MDA for enumeration of total nucleic acid
contamination
Paul C. Blainey and Stephen R. Quake*

Departments of Bioengineering and Applied Physics, Stanford University and Howard Hughes Medical Institute,
318 Campus Drive, Stanford, CA 94305, USA

Received August 11, 2010; Revised October 12, 2010; Accepted October 14, 2010

ABSTRACT

Multiple displacement amplification (MDA) is an iso-
thermal, sequence-independent method for the
amplification of high molecular weight DNA that is
driven by r29 DNA polymerase (DNAP). Here we
report digital MDA (dMDA), an ultrasensitive
method for quantifying nucleic acid fragments of
unknown sequence. We use the new assay to
show that our custom r29 DNAP preparation is
free of contamination at the limit of detection of
the dMDA assay (1 contaminating molecule per
assay microliter). Contamination in commercially
available preparations is also investigated. The
results of the dMDA assay provide strong evidence
that the so-called ‘template-independent’ MDA
background can be attributed to high-molecular
weight contaminants and is not primer-derived in
the commercial kits tested. dMDA is orders of mag-
nitude more sensitive than PCR-based techniques
for detection of microbial genomic DNA fragments
and opens up new possibilities for the ultrasensitive
quantification of DNA fragments in a wide variety of
application areas using MDA chemistry and
off-the-shelf hardware developed for digital PCR.

INTRODUCTION

Multiple displacement amplification (MDA) is an isother-
mal, sequence-independent method for exponential amp-
lification of high molecular weight DNA (1). MDA, which
relies on the strong strand-displacement synthesis activity
of f29 DNAP, has revolutionized analyses of
small-quantity DNA samples by providing a means to
carry out high fidelity whole genome amplification while
maintaining more uniform locus representation than
competing techniques, especially those based on PCR
(2–6). However, background amplification limits the ap-
plication of MDA in the most demanding applications, i.e.
for single-cell analysis, forensics and analysis of ancient
samples (7–13).

There has been a debate in the literature whether this
background amplification arises from high molecular
weight DNA contaminants and/or from side products of
the MDA reaction derived from the random primers used
(4,5,11,14,15). In the best case, background amplification
merely reduces product yield. In other cases, downstream
analyses based on product quantification, genotyping or
sequencing may be compromised.
In previous work using MDA in microfluidic devices,

where amplification reactions are carried out in small
volumes, typically 60 nl, we have observed contaminating
sequences in <10% of nanoliter single-cell amplifications,
suggesting that the concentration of contaminating mol-
ecules in the MDA reaction mix was lower than one per
60 nl. However, over a period of about a year, we noticed
an increase in levels of bacterial DNA contaminating the
commercial MDA reagents. After changing suppliers
several times and continuing to experience high levels of
reagent contamination, we set out to create our own
‘high-purity’ MDA reagent set and to develop an assay to
measure contaminant levels directly. We found standard
PCR methods (including digital PCR) relying on the 16S
small subunit ribosomal RNA (ssu rRNA) gene locus to
be inadequate, and developed a new method, digital MDA
(or dMDA), for direct, quantitative, measurement of
contaminating DNA fragments with extremely high sensi-
tivity. The new method may have utility in other applica-
tion areas as discussed below.

MATERIALS AND METHODS

Containers and buffers

All glassware and plasticware used for cell growth, protein
extraction, protein purification, digital PCR (dPCR) and
dMDA were factory new or cleaned with detergent in hot
water, rinsed in hot water, treated with a 0.6% hypochlor-
ite solution and rinsed with sterile, UV-treated water. All
solutions not containing nucleotides, primers, DNA tem-
plates or enzymes were obtained in the most pure form
available, then filtered at 0.2 mm and UV-treated
(Stratalinker model 1800, 30min, 100 from source on ice)
after mixing in any additives. Chemical additions were
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made as concentrated aqueous solutions, which were
similarly filtered and UV-treated.

Commercial MDA reagents

The commercial MDA reagents and enzymes used in this
study were all purchased in early 2010. The products used
were: Repli-G Midi (Qiagen), GenomiPhi v2 (GE) and
RepliPHI (Epicentre).

Gene synthesis

A gene encoding wild-type f29 DNAP with cleavable
hexahistidine and glutathione S-transferase affinity purifi-
cation tags fused to the N-terminus was chemically
synthesized with codons optimized for over-expression in
Escherichia coli (GenScript).

Protein expression

Escherichia coli BL21 DE3 cells (Invitrogen) were trans-
formed with the pGS-21a plasmid containing the f29
DNAP construct by heat shock and plated on LB-agar,
selecting for ampicillin resistance. The next day, a fresh
colony was used to inoculate 2 l of autoclaved Terriffic
Broth containing 100mg/ml ampicillin and 100U DNAse
I (New England Biolabs). The cells were grown to anOD600

of 0.1 at 37�C in an air incubator, when the culture was
induced with 200 mMIPTG and left to grow for 6 h at 30�C.
Denaturing poly(acrylamide) gel electrophoresis (PAGE,
Invitrogen NuPAGE 4–12% Bis–Tris gel, 1� MES
running buffer, stained with SYPRO Ruby) confirmed
over-expression of a protein approximating 90 kDa in the
soluble fraction of the cell lysate.

Protein extraction

Cells were harvested by centrifugation at 800 g. The cells
were resuspended in 10ml lysis buffer (0.25�PBS, 0.2%
Tween-20, 5% glycerol, 1mM EDTA, 0.2mg/ml
PEFAbloc, 5mM DTT). Half of the suspension was
frozen and 5ml were diluted to a volume of 40ml in
lysis buffer. The cells were broken by sonication in a
glass beaker set in ice at power setting 9 using a program-
mable probe-type sonicator (Misonix sonicator XL). son-
ication treatment (150 s) was applied in 10 s bursts with
30 s between bursts. After sonication, Magnesium
Chloride was added to 2.5mM, calcium chloride to
0.5mM, lysozyme (Hampton Research) to 2mg/ml, imid-
azole to 20mM, along with 100U DNAse I. The lysate
was incubated with slow mixing at room temperature for
10min, after which the sample was cooled on ice and
sodium chloride added to 0.25M. The lysate was clarified
by centrifugation at 20 000 g and the supernatant filtered
at 0.2mm.

Protein purification

All subsequent steps were carried out inside a PCR work-
station (Airclean Systems) inside a 4�C cold room. The
lysate was loaded at 1ml/min on a new 1ml HisTrap
HP column (GE Healthcare) equilibrated with His wash
buffer (0.25� PBS, 0.2% Tween-20, 5% glycerol, 2.5mM
MgCl2, 0.5mM CaCl2, 20mM imidazole, 0.4M NaCl and

5mM DTT) using a syringe pump (Harvard Apparatus
PHD 2000). All chromatographic steps were carried out
using disposable plastic syringes and the syringe pump.
The column was washed with 10ml His wash buffer and
the product eluted with 4ml His Elution buffer (0.25�
PBS, 0.2% Tween-20, 5% glycerol, 2.5mM MgCl2,
0.5mM CaCl2, 300mM imidazole, 0.25M NaCl and
5mM DTT) at 1ml/min. The sample was filtered at
0.2 mm, diluted to 20ml with 0.01M Tris pH 8 containing
0.2% Tween-20, 2.5mM MgCl2, 0.5mM CaCl2 and 5%
glycerol. 100 U DNAse I (New England Biolabs) and 50U
RNAse A (Sigma Aldrich) were added and the sample
incubated for 10min at room temperature. The sample
was then loaded at 0.4ml/min on a 1ml GSTrap column
(GE Healthcare) equilibrated with His wash buffer. The
column was washed with 10 column volumes His wash
buffer and eluted at 1ml/min in 4ml GST elution buffer
(50mM Tris–HCl pH 8.0, 0.1M NaCl, 0.2% Tween-20,
5% glycerol, 2.5mMMgCl2, 20mM reduced glutathione).
Imidazole was added to the sample to 30mM which was
then applied at 1ml/min to a fresh 1ml HisTrap HP
column equilibrated with His wash buffer. The column
was washed with 10ml His wash buffer and the product
eluted in four fractions at 1mg/ml with 4ml His Elution
buffer.

The fractions were filtered at 0.2 mm and stored in the
cold room while a PAGE gel (Invitrogen NuPAGE 4–
12% Bis–Tris gel, 1� MES running buffer, stained with
SYPRO Ruby) following the expression and purification
was run. The gel confirmed a high concentration of the
target protein in the second fraction from the final
HisTrap elution. Using the calculated extinction coeffi-
cient for the product at 280 nm, 163 230/M/cm, the con-
centration of the 0.8ml fraction was determined at 4.3mg/
ml, indicating a net yield of �3.5mg. The total expression
was estimated in excess of 30mg/l of culture; the purifica-
tion procedures were intentionally biased towards product
purity at the expense of yield. No effort was made to
remove the three minor low molecular weight bands,
which are most likely C-terminal fragments of the
desired product that co-purify on the affinity resins. The
product was diluted with His wash buffer and glycerol to
1.4mg/ml (50% glycerol, 1.0mg/ml WT equivalent
weight). An additional 0.3% Tween-20 was supplemented
before filtering at 0.2 mm. Aliquots (50 ml) of the enzyme
were frozen at �60�C for storage.

Activity assays

The commercial and high-purity f29 DNAP reagents
were tested for activity in 50 ml MDA reactions. The
template was 10 000 genomic equivalents E. coli K12
genomic DNA prepared by the DNeasy method for
Gram-negative cells (Qiagen), denatured by alkaline treat-
ment and neutralized according to the GenomiPhi v2
reaction protocol for chemical denaturation. Reaction
master mixes were made up according to the manufactur-
ers’ instructions, omitting any chemical or thermal
template denaturation steps and supplementing 0.3%
Tween-20 and 1� SYBR GREEN I (Invitrogen), used
to follow the reactions in real time during a 16 h, 30�C

e19 Nucleic Acids Research, 2011, Vol. 39, No. 4 PAGE 2 OF 9



incubation on the MX3005-P thermocycler (Stratagene).
In all cases, a single master mix was subdivided immedi-
ately prior to enzyme addition. The crude products were
also analyzed by agarose gel electrophoresis to assess the
presence of high molecular weight amplified DNA.
Endonuclease activity was tested by incubation of
enzyme samples with 1 mg f� 174 virion (ss, closed
circular) DNA (New England Biolabs) at 37�C for 4 h in
DNAse I reaction buffer (New England Biolabs).

DNA shearing

Twenty nanograms E. coli K12 genomic DNA [again
prepared by the DNeasy method (Qiagen) for Gram-
negative cells] was diluted in 200ml 20mM Tris, pH 7.5,
containing 0.05% Tween-20. The DNA was sheared using
a Hydroshear device (Digilab) with the standard shearing
assembly (speed code 12, 20 cycles). Shearing to a size
range between 3 and 5 kb was confirmed by agarose gel
electrophoresis (data not shown).

Digital PCR

Digital PCR targeting microbial ssu rRNA gene sequences
was carried out in 12.765 digital arrays (Fluidigm) accord-
ing to the manufacturer’s protocol on a Biomark thermo-
cycler. Reaction mixes were set up in a PCR workstation
(Airclean Systems), while templates were mixed in and the
chip loaded on a clean benchtop in the open lab. In all
cases, a single master mix was subdivided immediately
prior to enzyme addition, thorough mixing and applica-
tion to the digital array sample wells. For signal gener-
ation, we used the universal Taqman scheme (16,17) and
the locked nucleic acid FAM probe #149 (Roche). The
broad-specificity ssu rRNA primers (18), with sequences
515F GTGCCAGCMGCCGCGGTAA, 515F-UPL GG
CGGCGAGTGCCAGCMGCCGCGGTAA and 1391R
GACGGGCGGTGWGTRCA, were obtained from
Integrated DNA Technologies (IDT). A standard UNG
(2min, 50�C), hot-start (5min, 95�C), two-step (95�C,
30 s; 65�C, 60 s; 45–50 cycles) thermocycling program
was used. The dPCR fluorescence image presented repre-
sents the reaction endpoint and is background-subtracted,
with the contrast (linearly) scaled to best depict the
positive reaction chambers.

Digital MDA

Digital MDA was carried out in 12.765 digital arrays on a
Biomark thermocycler (Fluidigm). Reaction master mixes
were made up according to the manufacturers’ instruc-
tions in the PCR workstation, omitting template denatur-
ation steps and supplementing 0.3% Tween-20 and 1�
SYBR GREEN I (Invitrogen). No template control reac-
tions were loaded on the chip in the PCR workstation,
while template-containing solutions were loaded in the
open on a clean benchtop. In all cases, a single master
mix was subdivided immediately prior to enzyme
addition, thorough mixing and application to the digital
array sample wells. The thermal program consisted of a
16 h incubation at 30�C, with an image recorded every
15min. Escherichia coli genomic DNA was not denatured
prior to amplification. Intact � DNA was denatured by

alkaline treatment (0.4M KOH, 10mM EDTA) and
neutralized prior to mixing with amplification reagents.
Average fluorescence intensities were extracted by
averaging the pixel intensity values from the relevant
image regions. In all cases, the dMDA fluorescence
images presented represent the reaction endpoint and are
background-subtracted, with the contrast (linearly) scaled
to best depict the positive reaction chambers.

RESULTS

To produce a f29 DNAP sample free of nucleic acid con-
tamination, we followed an affinity chromatography
strategy, taking advantage of nuclease treatment at
several steps to digest contaminating DNA and RNA.
Furthermore, all glassware and plasticware were factory
new or washed with detergent and hypochlorite as
described in the ‘Materials and Methods’ section. All so-
lutions were prepared from the cleanest available compo-
nents, then filtered at 0.2 mm and UV-treated to eliminate
contaminants and degrade remaining nucleic acids. All
open-tube steps following clarification of the lysate were
carried out in a PCR workstation located inside a
coldroom.
We designed a synthetic gene encoding wild-type f29

DNAP with dual, cleavable, N-terminal affinity tags
(hexahistidine and glutathione S-transferase). The expres-
sion plasmid was transformed into E. coli, which was
grown on the liter scale in DNAse-treated media and
induced to over-produce the target enzyme by standard
methods. The cells were lysed by sonication and
lysozyme treatment and the lysate was spiked with
DNAse I. The protein was purified by serial affinity chro-
matography steps on metal-affinity and glutathione
resin. After an initial metal-affinity step with limiting
resin, the preparation was treated with DNAse I and
RNAse A before subsequent affinity purifications on the
glutathione resin and fresh metal-affinity resin to remove
the DNAse and RNAse endonuclease activities. Figure 1A
shows a denaturing and reducing acrylamide gel following
the steps of the purification. The major purification
product occurs just below the 98 kDa marker, consistent
with the expected 93 kDa molecular weight of the target
construct. The bands in the purified product <63 kDa
are most likely C-terminal deletions of the designed
product: no effort was made to remove these. We note
that affixing one tag to each end of the protein would
enable selection of the full-length product using the
same purification procedure. The purification netted
3.5mg of the tagged product based on the absorbance of
the sample at 280 nm.
To test the activity of the purified enzyme, we ran 50 ml

MDA reactions using E. coli genomic DNA as a template
with 1� SYBR GREEN I. All four reactions gave a strong
fluorescence signal a few hours into the reaction (data not
shown). Figure 1B shows the presence of high molecular
weight DNA products on an agarose gel in reactions
driven by the high-purity enzyme and three commercial
f29 DNAP preparations. This indicates that the affinity
tags on our f29 DNAP preparation do not eliminate the
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polymerase activity of the enzyme in MDA. Observing
this, we chose not to cleave the tags, since the biochemical
steps necessary to do so have the potential to reintroduce
contamination. We also tested for residual nuclease
activity by incubating 1 mg of single-stranded circular
template with the enzyme for 4 h. The high-purity
enzyme and the commercial preps tested negative for
endonuclease activity (data not shown).
To compare the sensitivity of dMDA with dPCR for

highly fragmented DNA, we prepared 3–5 kb fragments
of E. coli genomic DNA and used the same fragment prep-
aration in dPCR and dMDAassays in 12.765 digital arrays.
The dPCR assay (Figure 2A), using broad-specificity ssu
rRNA primers (18) shows poor sensitivity for the genomic
fragments at concentrations up to nanograms permillileter,
although a ssu rRNA amplicon was efficiently detected
at 4000 copies per milliliter under the same conditions in
the same chip (data not shown). In contrast, dMDA
(Figure 2A) easily detects the fragments at reaction concen-
trations down to 1 fg/ml, demonstrating much improved
sensitivity compared with the PCR-based assay in enumer-
ation of low-quality DNA fragments. The scoring of
positive spots is straightforward in digital MDA due to
the black and white, or ‘digital’, nature of the amplification
and faithful segregation of the reaction products within
their chambers of origin.

Figure 2A shows replicate dMDA experiments driven
by the f29 DNAP we prepared and a commercial prepar-
ation (Epicentre). Interestingly, the no template control
(NTC) reactions give different results. The high-purity
enzyme panel shows only one spot, indicating that the
reagents used to make up the MDA reaction buffer
(which included the ‘reaction buffer’ and ‘sample buffer’
components an exceptionally clean GE GenomiPhi v2 lot)
and by extension, the high-purity enzyme, appear largely
free of contamination from amplifiable DNA fragments.
In contrast, the NTC reaction with Epicentre enzyme
(dissolved in the same MDA reaction buffer) shows
many spots, indicating a detectable level of contamination
with MDA-amplifiable DNA fragments in the commercial
enzyme preparation. The NTC reactions each contained
150 nM enzyme, indicating that several hundred
MDA-active contaminating fragments are present per
microliter (100U or 0.1mg) of the Epicentre enzyme.
The number of contaminant molecules detected here rep-
resents a lower limit. Tiny or heavily damaged DNA frag-
ments may not be detected and since no denaturation of
the enzyme solutions was carried out (in order to avoid
compromising the enzyme activity), neither would fully
duplexed molecules be detected.

To assess digital MDA as a quantitative method for
nucleic acid determination, we carried out assays on a

Figure 1. Expression and activity of the high-purity j29 DNAP. (A) Denaturing acrylamide gel following expression and purification of
affinity-tagged j29 DNAP. Lanes show content of crude lysate, column flow-throughs (FT) and eluates. The arrow indicates the expression
target. Bands in product below 63 kDa marker in the final product (second Ni affinity elution) are most likely C-terminal deletions of the
designed product: no effort was made to remove these. (B) Agarose gel showing MDA products from ml-scale reactions using 10 000 GE E. coli
genomic DNA as template. The variously sourced enzymes all produced high molecular weight DNA products.
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monodisperse template, � DNA. In order to maximize the
sensitivity of dMDA by rendering all the template mol-
ecules susceptible to MDA, we denatured the input
material by alkaline treatment prior to dilution. The
results are shown in Figure 2B, which indicate a faithful
linear response of digital MDA counts to � DNA concen-
tration using both enzyme samples.

The intensity time course from the calibration experi-
ment provides another basis for assessment of high-purity
enzyme’s specific activity (Figure 2C). The measurement of
f29DNAP activity is non-trivial due to the presence of two
catalytic sites with opposing enzymatic activities whose
relative balance depends on substrate concentrations. For
strand-displacement synthesis, a third (helicase) activity
enters the equation, with its own dependencies on the
nature of the substrates and reaction conditions.
Nonetheless, early rates of average fluorescence increase
give an indication of the polymerase activity in MDA

under a specific condition. The timecourse in Figure 2C
shows the appearance of fluorescence in amplification of
the denatured � DNA by equimolar amounts of the
high-purity f29 DNAP and the Epicentre f29 DNAP.
Both preparations give strong amplification within the
first few hours, with the signal rising faster and higher in
the reactions with the high-purity f29 DNAP in this
instance. In other head-to-head experiments, we have
observed similar timing and rates of signal increase,
leading us to believe that the high-purity f29 DNAP is
comparable in specific activity to that which we obtained
from Epicentre. Thus we assign the activity of our 15 mM
stock at 1000U/ml to match the specific molar activity of
the Epicentre f29 DNAP.
To directly compare contaminant levels in different prep-

arations of f29 DNAP, we ran NTC dMDA assays using
enzyme from four sources and the same reaction buffer
employed in Figure 2. The results were quantified by

Figure 2. Digital MDA versus dPCR quantification of 3–5 kb E. coli genomic DNA fragments. (A) Digital assay panels, 765 reactions per panel.
Digital PCR does not effectively detect the E. coli genome fragments (positive control panel with amplicon template not shown). All three digital
PCR panels and the positive control reaction were prepared from the same reaction mix and run in a single chip. Digital MDA easily detects E. coli
genome fragments down to femptograms per microliter. The Epicentre enzyme shows higher background in the no template control than the
high-purity enzyme prepared in-house. All six digital MDA panels shown were prepared using the same reaction mix (except for the enzyme)
and run in a single chip. (B) Calibration curve showing quantification of denatured � DNA. Panels were scored at 1.5 h for high-purity j29 DNAP
reactions and at 4 h for Epicentre j29 DNAP reactions. Each datapoint corresponds to a single digital assay panel with error bars that represent
95% confidence intervals based on event counting statistics. The coefficient of determination, R2, exceeded 0.999 in both cases. (C) Time-dependent
appearance of digital MDA signal in digital amplification of denatured � DNA. Both the high-purity and Epicenter j29 DNAP preparations show
strong MDA activity. All the data presented in parts (B) and (C) were obtained from a single chip run.
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counting spots and are plotted in Figure 3B, which reveals
high contamination levels in the enzyme samples obtained
from all three manufacturers and very low levels in our
high-purity sample. We also made a more stringent test
for contamination in the high-purity f29 DNAP sample
by over-loading a digital MDA assay with a 10-fold
higher concentration of the high-purity enzyme. In order
to maintain parity in enzyme activity, the excess f29
DNAP was heat-killed (65�C for 10min). No positive
spots were detected, indicating that the high-purity f29
DNAP has fewer than one MDA-active contaminating
fragment per 500U. This also implies that nonzero contam-
inant counts observed in NTC assays with the high-purity
f29 DNAP preparation (visible in Figure 2, ‘high-purity’
NTC and Figure 3B, ‘high-purity’) most likely arise from a
source other than the high-purity enzyme.
The level and nature of contamination varies widely

across enzyme and reaction buffer lots from all the
manufacturers. Some of the reaction buffer lots we
tested revealed contamination in the range of thousands
of fragments per reaction microliter. The sequence-
independence and high sensitivity of the dMDA assay
can be used to test individual lots of enzymes and
buffers for critical applications and determine the
number of contaminating fragments per unit enzyme
activity and per microliter reaction volume.

DISCUSSION

Digital assays for nucleic acid detection work by direct
or indirect counting of analyte molecules and require
single-molecule detection sensitivity. Digital assays

requiring enzymatic amplification to generate higher
signal levels for counting rely on the physical segregation
of analyte molecules by limiting dilution such that indi-
vidual analyte molecules can be separately amplified and
counted (19). This is the case for both dPCR (20,21) and
dMDA. We have developed a quantitative and sensitive
method for assaying nucleic acid contamination based on
carrying out a large number of single-molecule MDA
reactions in a microfluidic device. Termed digital MDA
in analog to digital PCR, the technique is useful to
enumerate the number of high molecular weight
MDA-active template molecules of unknown sequence in
a sample.

Until development of the dMDA assay, we found the
quantification of contaminating bacterial DNA in MDA
reagents to be surprisingly difficult. In principle, real-time
MDA could be used to quantify contaminates, although
calibrating such an assay presents a problem when the
template characteristics are unknown. We could achieve
good sensitivity by running universal 16S QPCR on the
products of NTC MDA reactions. However, because the
degree of pre-amplification by MDA was unknown (both
in the gross sense and in a locus-specific sense as a conse-
quence of MDA amplification bias), the result was not
quantitative and could not be effectively used to
compare different reagent sets or the effects of different
reagent treatments. On the other hand, if we strove for a
fully quantitative readout by direct QPCR, we found no
consistent signal above the baseline amplification of mi-
crobial DNA from the PCR reagents themselves.
Microfluidic dPCR addresses the problem of interference
by PCR reagent contamination by reducing the assay

Figure 3. Digital MDA on Fluidigm 12.765 digital array reveals varying levels of contamination in j29 DNAP from three commercial providers.
j29 DNAP prepared in-house shows little contamination. A single reaction mix including exceptionally clean lots of the GE MDA ‘reaction’ and
‘sample’ buffers were used in all cases. (A) Example image of dMDA assay endpoint (all four panels are from a single chip run). Readout is digital,
indicating contaminants, but not primer-derived products, underlie background amplification. (B) Quantification of dMDA assay results, indicating
contaminant levels in the various enzyme preparations. The boxplots show data quartile ranges, median (black line) and outlier values (crosses).
Results from several enzyme lots are pooled for each manufacturer, with 9–13 total dMDA assays per enzyme source.
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volume, but with an unacceptable tradeoff in detection
sensitivity. For example, even under ideal conditions,
1000 GE of E. coli DNA per milliliter in 10 kb fragments
will give only two spots per panel on the 12.765 digital
array (in PCR mode) and would be undetectable on the
48.770 digital array (in PCR mode).

Because the ssu rRNA gene makes up <1% of many
bacterial genomes, there is a significant sensitivity gain to
be had in using the MDA reaction rather than PCR for
fragment detection, since any fragment, rather than just
ssu rRNA gene-containing fragments, can be detected by
MDA. For determination of MDA reagent contamin-
ation, there are the further advantages that no interference
from additional reagents need be introduced and that the
presence of MDA-inactive substrates is of no consequence
since they cannot compete with amplification of desired
templates, although MDA-inactive substrates would
formally contribute to false-negative counts in quantifica-
tion applications. The performance advantage of dMDA
over dPCR is sizable for assays of highly fragmented or
damaged DNA, as demonstrated in Figure 2 and expected
in specific application areas such as forensics, studies of
ancient DNA and astrobiology.

The high-purity f29 DNAP reagent is useful not only to
support the dMDA quantification method, but also for
our original goal of carrying out single-cell MDA reac-
tions free of contamination. Table 1 indicates the
expected number of contaminating DNA fragments in
MDA reactions at three scales: 6, 60 and 6000 nl. The
dMDA reactions presented in this paper are 6 nl in
volume, while our microfluidic single-cell MDA reactions
are typically 60 nl in volume, and 6 ml represents the
smallest MDA reactions typically set up manually or
with fluid-handling robots. Using the commercial
enzyme preparations, all of the 6 ml MDA reactions will
be contaminated, while more than half of the 60 nl MDA
reactions could be contaminant-free, depending on the
manufacturer chosen and the particular enzyme lot. We
and others have made the disconcerting observation that
contaminants in the commercial MDA reagents are not
limited to the expression host (presumably an E. coli B
strain), but are rather drawn from an eclectic, albeit
stereotyped group of bacterial species, making informatic
subtraction of contaminating sequences an unattractive
solution.

With the high-purity enzyme, even microliter-scale
MDA reactions free of contamination are possible. The
commercial suppliers of MDA reagents typically specify
10 ng as the minimum quantity of template material. This
limitation is not imposed by the sensitivity of MDA, but
rather by the competing amplification of contaminants
that reduce the amplification yield from the intended
template material. The ability to amplify smaller
amounts of template contaminant-free is a critical capabil-
ity for single-cell genomics and other applications where a
small amount of template material needs to be specifically
amplified in a sequence-independent manner.
In the 12.765 digital array, with a clean f29 DNAP

preparation, the dMDA limit of detection is below 1
fragment perml and the limit of quantification (10 posi-
tives per d12 panel) is two fragments per microliter (�1 fg/
ml for 2 kb fragments) or about one bacterial GE per
microliter given uniformly-sized fragments. The fact that
we see a somewhat larger number of spots than expected
for uniform fragments indicates that smaller fragments
exist in our E. coli genomic sample, that dMDA can
detect these smaller fragments with high efficiency, and
that the practical quantification limit for highly frag-
mented bacterial DNA is much better than one GE per
microliter. The LOD and LOQ values can be pushed even
lower by using more than one panel per sample on the
12.765 chips or by increasing the assay volume in a differ-
ent microfluidic device or emulsion-based platform.
Assuring a low reagent background, including low con-
tamination of the DNA polymerase, is key to realize the
improved sensitivity in a larger assay volume. Conversely,
shrinking the compartment volume is called for in dMDA
quantification of nucleic acids at higher concentrations
without dilution.
The LOQ <1 fg/ml demonstrated here for dMDA

compares favorably with chemical, immunologic and
PCR-based assays for organismal DNA. With respect to
PCR detection of DNA fragments, the factor by which
dMDA is expected to outperform dPCR depends on
several features of the analyte, including PCR target
locus density, the DNA fragment size and the template
quality. For example, taking bacterial DNA in 4 kb frag-
ments, with a PCR target locus density of 1 per Megabyte
(typical of ssu rRNA genes), under idealized circum-
stances, there exist 250 analyte molecules for dMDA for
each PCR-active analyte molecule, implying two to three
orders of magnitude better sensitivity for the MDA-based
assay. However, our real-world data show an even greater
performance advantage for dMDA (Figure 2). This is due
to the fact that dMDA comes closer to its theoretical po-
tential than does dPCR on the sheared E. coli test sample.
First, the shearing operation creates double-stranded
breaks at random locations in the template DNA,
reducing the fraction of fragments carrying the intact
target locus for PCR. Second, it is likely that nicks are
introduced by the harsh shearing condition in addition to
double-stranded breaks. Since we carried out no steps to
repair the template and diluted the template at low ionic
strength, the presence of nicks is likely to reduce further
the fraction of PCR-amplifiable fragments. The require-
ments for intact target loci and longer priming sites render

Table 1. Contaminating DNA fragment number as function of

enzyme batch and MDA reaction volume, based on median fragment

values shown in Figure 3B and the assumption that all reagents other

than the enzyme are free of contaminates

Frag/6 nl
MDA reaction

Frag/60 nl
MDA reaction

Frag/6 ml
MDA reaction

Qiagena 0.040 0.398 39.8
GEa 0.044 0.444 44.4
Epicentreb 0.023 0.233 23.3
High-purityb 0.000 0.002 0.24

a1 ml enzyme per 50 ml MDA reaction.
b100U enzyme per 50 ml MDA reaction.
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PCR-based quantification more sensitive to template
quality than MDA-based assays.
Digital MDA also provides new insights into the MDA

process itself. For instance, we can test hypotheses about
the source(s) of background amplification in microliter-
scale MDA reactions. The digital nature of the dMDA
results (i.e. bimodal distribution of spot intensities) and
template concentration-dependence in observed in experi-
ments with E. coli genomic DNA fragments strongly im-
plicate high molecular weight contaminants, but not
primer-primer interactions, as the source of background
amplification. The bimodal distribution of spot intensities
cannot be explained by varying combinations of random
primer sequences in different nanoliter MDA reactions.
For perfectly random hexamers at 50 mM, the 6 nl wells
in the 12.765 digital array each contain 150 billion primer
molecules. Since there are 4096 6-mer sequence variants,
each sequence is represented by nearly 50 million copies in
each reaction well. According to random sampling statis-
tics, the relative variation in concentration of sequence
variants from well to well is <0.02%. Such small differ-
ences in representation are unlikely to explain the
observed variation of SYBR green fluorescence intensity
in the dMDA assay. The fact that the background
level of SYBR green in negative spots does not in-
crease over the course of the reaction is also inconsistent
with the generation of high molecular weight product
from primers alone in the GE and Qiagen
reaction mixes. Thus, we are able to show that the back-
ground amplification indeed arises from high molecular
weight contaminants and is not intrinsic to the MDA
reagents.
This realization, in combination with the application of

dMDA as a means of counting nucleic acid fragments in a
sequence-independent manner, opens up new possibilities
for the ultra-sensitive detection of DNA in various
contexts. Often, in assays for the presence of microbes,
ssu rRNA-encoding DNA serves as a proxy analyte for
the organisms themselves. Digital MDA promises to
improve the sensitivity of such assays by orders of magni-
tude in contexts where the loss of sequence-specificity can
be tolerated or constitutes an advantage. The dMDA assay
extends several features of the dPCR assay to MDA,
including absolute quantification that requires no
standard curve. Digital MDA demonstrates superior
sensitivity to dPCR in this application because every
MDA-active DNA fragment is detected, rather than
some fraction containing a particular, intact, sequence
locus (which may be a tiny fraction). Digital MDA
of whole genomes or chromosomes from cells represents
the ultimate goal of sample preparation for single-
cell genomics. Capabilities for cell lysis and product
recovery need to be integrated to access this
application. Forthcoming innovations in hardware plat-
forms intended for digital PCR will improve perform-
ance (especially sample throughput and dynamic range)
while driving down costs for both digital PCR and
digital MDA.
The ability to conduct contaminant-free MDA has im-

portant implications. For instance, positive and negative
amplification results are more obviously apparent; small

quantities of template DNA can be amplified with high
fractional yield; and the reaction products can be
analyzed without the false-positive signals or interfering
sequences that arise from contaminants. In addition,
there may be benefits of compartmentalization for certain
studies that rely on MDA for preparative amplifications.
MDA sequence and length bias may be reduced in
metagenomic or library-based applications by eliminating
competition among template molecules for amplification
reagents. For example, a high-amplification-efficiency
template molecule is limited to the reagents inside its
microchamber, while a low-amplification-efficiency
template molecule can be given extra time to catch up as
it utilizes a privileged supply of reagents inside its own
microchamber. Emulsion dMDA may prove to be
another effective way to access the advantages of
compartmentalized MDA.

Here, we introduced a new method, dMDA, for quan-
titatively enumerating the number of high molecular
weight DNA fragments in a sample. We demonstrated
the dMDA limit of quantification at 1 fg/ml for 2 kb frag-
ments or less than one (fragmented) bacterial GE per
microliter and identified a straightforward development
path toward even better sensitivity. Digital MDA allows
the enumeration of DNA fragments and other MDA-
active DNA templates (such as plasmids and single- or
double-stranded minicircles) on an absolute basis,
without a standard curve. Furthermore, the digital
nature of the microfluidic MDA results is consistent
with high molecular weight DNA contaminants as the
sole source of the so-called ‘template-independent’ MDA
background. This method has applications in quality
control of pharmaceuticals, biological and chemical
reagents (especially DNA-modifying enzymes and assay
components), as well as in characterization/quantification
of DNA libraries, water quality testing, surveillance of
industrial reactors, counter-bioterrorism, forensics, space
exploration and astrobiology. Digital MDA is well-suited
for analysis at the site of sample collection due to the low
power requirements for isothermal incubation and
straightforward interpretation of the raw data.

We also overproduced and purified a tagged f29
DNAP with extremely low levels of nucleic acid contam-
ination. Such a clean preparation of a strand-displacing
polymerase is required to realize the low dMDA LOQ and
LOD values quoted above. We characterized contamin-
ation in commercial lots of f29 DNAP, finding levels suf-
ficient to interfere with sensitive applications (such as
single cell genomics or quantification of DNA fragments
at concentrations <10 fg/ml) in every lot from the three
vendors tested. High contaminant levels were also
observed in most lots of MDA reaction buffers. We
recommend that suppliers of reagents for ultrasensitive
molecular biology applications use dMDA to quantify
the concentration of contaminating DNA fragments and
report the detected level in units of contaminating
fragments per unit enzyme activity and fragments per
reaction microliter to the end user. No contamination
was detected above the dMDA LOD in the high-purity
f29 DNAP sample prepared in-house.
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