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Simple analytical model of the 
effect of high pressure on the 
critical temperature and other 
thermodynamic properties of 
superconductors
Mateusz Krzyzosiak1, Ryszard Gonczarek2, Adam Gonczarek3 & Lucjan Jacak2

Within the general conformal transformation method a simplified analytical model is proposed to study 
the effect of external hydrostatic pressure on low- and high-temperature superconducting systems. A 
single fluctuation in the density of states, placed away from the Fermi level, as well as external pressure 
are included in the model to derive equations for the superconducting gap, free energy difference, and 
specific heat difference. The zero- and sub-critical temperature limits are discussed by the method of 
successive approximations. The critical temperature is found as a function of high external pressure. It is 
shown that there are four universal types of the response of the system, in terms of dependence of the 
critical temperature on increasing external pressure. Some effects, which should be possible to be 
observed experimentally in s-wave superconductors, the cuprates (i.e. high-Tc superconductors) and 
other superconducting materials of the new generation such as two-gap superconductors, are revealed 
and discussed. An equation for the ratio 1 ≡ 2Δ(0)/Tc, as a function of the introduced parameters, is 
derived and solved numerically. Analysis of other thermodynamic quantities and the characteristic ratio 
2 ≡ ΔC(Tc)/CN(Tc) is performed numerically, and mutual relations between the discussed quantities 
are investigated. The simple analytical model presented in the paper may turn out to be helpful in 
searching for novel superconducting components with higher critical temperatures induced by pressure 
effects.

A revival of theoretical studies on a new generation of superconducting materials has been recently brought by 
the discovery of iron-based superconductors1,2. Efforts on the theoretical front line have been accompanied, and 
in many cases driven, by increasingly better characterization techniques. Recent studies on novel superconduct-
ing materials have also focused on high-Tc copper-oxide quasi two-dimensional superconducting systems that 
are particularly promising in application-based solutions. Other materials of particular interest include various 
doped superconducting compounds such as spinel- and perovskite-type structures of superconducting com-
pounds of a trivalent rare-earth and a divalent alkali-earth ion. Superconducting compounds of MgB2 with a C, Al 
or Sc substitution, or organic superconductors with controlled bandwidth and band filling have also been actively 
studied in recent years3–12. In particular, theoretical research, supported by experimental data, points to the fact 
that applying high external pressure after the dissociation process in H3S, results in the onset of a superconducting 
state with the transition temperature of 203 K13–19.

An important tool for quantitative theoretical studies of superconducting systems is the gap equation, accom-
panied by the carrier concentration equation, and analysis of the free energy3,4,20–26. The gap equation appears 
in similar forms in the BCS-theory, the Eliashberg formalism, and the Van Hove scenario, with the latter taking 
into account the low-dimensional structure of high-Tc materials, implying the presence of fluctuations in the 
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density of states. Theoretical description of such superconducting systems usually requires to take into account 
spin-fluctuations or strong-correlation effects. These can be included by means of an effective Hamiltonian of 
the strongly-interacting Hubbard model, with a given (multiband) one-particle dispersion relation enriched by 
self-energy corrections, fitted carriers concentration, and a quite general form of the pairing potential. The lat-
ter can be decomposed into an antisymmetric and a symmetric part determining the symmetry of the order 
parameter27–38.

In order to address some of the above problems in a systematic analytical manner, the framework of the con-
formal transformation method can be used, especially if the behavior of a superconducting system at the zero- or 
sub-critical temperatures is of particular interest5–8,39–41. This approach allows one to derive some original fun-
damental relations for basic parameters characterizing a superconducting system, such as the energy gap, critical 
temperature, free energy difference, and heat capacity jump as functions of a single fluctuation in the density of 
states. This fluctuation (a peak) in the density of states is located a certain distance x0 from the Fermi level. With 
an additional parameter χ, characterizing the height of the fluctuation, the effect of an external pressure p can be 
incorporated in the model by means of the set of three parameters χ, x0, and p. For a comprehensive list of sym-
bols used in the paper, please refer to Table I in the Appendix.

Within the proposed model, it is also possible to study the relation between the energy gap Δ at T = 0 and the 
transition temperature Tc, quantified by the ratio ≡ Δ T2 (0)/1 c . Another characteristic ratio ≡ ΔC T C T( )/ ( )2 c N c , 
where ΔC(Tc) = CS(Tc) − CN(Tc), defines the leap of the heat capacity between the superconducting and the normal 
phase at the transition temperature. The fundamental thermodynamic quantities, and hence the ratios 1  and 2 , 
are measured in experimental studies of superconductors and can be easily compared against theoretical results.

In the approach presented in this paper we do not consider the cases when a d-wave superconducting state is 
realized in the system, or when phase transitions with a discontinuous order parameter, or regions of the pseu-
dogap, emerge in the system4,8,41,42.

Formalism
In order to discuss the effect of high pressure on a superconducting system we use the conformal transformation 
method40, that we have developed in our previous papers3,6–8,27,43–45.

The conformal transformation is a mathematical procedure which can be applied to an arbitrarily complex 
model of a s-wave and d-wave superconductor, high-Tc cuprates, or more complicated systems such as two-gap 
superconductors, set within the framework of mean-field approximation with a certain pairing potential. The 
method transfers the model from the original reciprocal (momentum) space to an isotropic space, where all 
properties of the system included in the dispersion relation are transferred to the scalar field of the density of 
states. Consequently, the pairing potential, which in general has a spin-antisymmetric or a spin-symmetric struc-
ture, becomes expressed in terms of a double series of spherical or Fourier harmonics indexed by the number l 
for 3D or 2D systems, respectively. For the spin-antisymmetric part, only the harmonics with even values of l are 
included, whereas for the spin-symmetric part – only those with odd values.

In most of various approaches used to explain different properties of superconductors of the new generation, 
including those with high critical temperatures46, a single microscopic mechanism responsible for high-Tc super-
conductivity is assumed. However, such mechanism has not been equivocally identified yet. Some of recent ideas 
include a mechanism based on coupling through electron-electron interaction47, or spin exchange48,49, as well as a 
modified phonon-mediated mechanism50,51 proposed by Anderson52,53 and based on the concept of the resonat-
ing valence bond states. On the other hand, in all of these approaches it is commonly assumed that whatever the 
mechanism is, it results in formation of Cooper pairs.

The effective interaction between fermion charge carriers in strongly correlated systems is quite complicated, 
as it in general depends on both the spin of charge carriers and the current they carry. Because of the expected 
magnetically-mediated nature of pairing, arising from exchange of magnetic fluctuations, the conventional 
phonon-mediated pairing mechanism raises doubts. Therefore, we will assume that a generic, boson- mediated, 
strongly anisotropic attraction mechanism provides the required pairing potential.

The advantage of the conformal transformation method is that some effects, such as, for example, particle-hole 
asymmetry and the spectral function defined in the Eliashberg equations can be also included. The final product 
of the conformal transformation method is then a set of equations which possess the symmetry of the original 
reciprocal space. Considering the symmetry group of that space, which usually is a non-abelian group, one can 
separate its elements into several equivalence classes and find the corresponding irreducible representations. 
Consistently, there must always exist basis functions gathered in subsets, containing one or a few functions, being 
invariants of the symmetry group. Hence, for a fixed harmonic l (of the spherical or the Fourier double-series 
expansion), the allowed structure of the energy gap must be defined be a combination of the basis functions 
of invariant subsets. Nevertheless, there always exists a trivial irreducible representation corresponding to the 
one-element invariant subset representing the identity element. This subset determines the structure of the s-wave 
energy gap, for which l = 0 and the suitable spherical and Fourier harmonic is just a constant function.

The final form of the set of equations, after the conformal transformation is applied, reveals the symmetry 
group of the original reciprocal space, and includes a quite complicated dimensionless scalar field of the density 
of states. These equations, in general, are related by the common form of the energy gap. However, in the limit 
T → Tc, the energy gap Δ = 0, and all equations of this set become separated.

In the present discussion, our starting point is a set of two equations for a pressure-free system (p = 0), 
derived within the Green function formalism in the mean-field approximation. One of these equations is the 
momentum-space gap equation
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where N denotes the number of lattice sites. Eq. (2) determines the chemical potential μ, and allows us to 
express μ in Eq. (1) in dependence on the conduction band filling n (defined for the normal phase at T = 0). 
The transformed dispersion relation appearing in Eqs (1) and (2) is usually defined with respect to the Fermi 
level. Therefore, within this approach it is also possible to study superconducting systems with a partially-filled 
conduction band. It can also be applied to anisotropic superconducting systems with an arbitrary dispersion 
relation for spin-singlet s-wave, and d-wave symmetry states, as well as for the spin-triplet p-wave symmetry 
state, including the high-Tc superconducting cuprates, with a given symmetry defined in the reciprocal space (or 
transformed to that space). Other factors, such as the carrier concentration, and the pairing potential amplitudes 
in the singlet and the triplet paring channels V0 and V1 can also be discussed. It is possible to study the stability of 
these symmetry states in more complicated scenarios3,8,35,41,43,44,54,55. Here, however, we formulate a simple model, 
which appears as a result of reduction of more involved models of novel low- or high-Tc superconductors. In the 
approach outlined in the present paper, we confine the discussion to the case which can be considered as equiv-
alent to a class of spin-singlet s-wave superconducting systems, characterized by one constant pairing potential 
amplitude g defined as below.

Gap equation and free energy.  Let us consider an anisotropic superconducting system with a fixed carrier 
concentration. We assume a generic form of the dispersion relation ξk, and pressure p = 0, and apply the confor-
mal transformation method developed in refs3,27,44. Next, restricting the pairing potential to exactly one harmonic 
l = 0, with amplitudes V0 = g and V1 = 0 being consistently fixed as well, a spin-singlet s-wave is formed, and the 
gap equation (1) reduces to the form
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where ν0 is the density of states of the BCS type. The so-called cut-off parameter ξp is determined individually for 
each superconducting system and depends on the pairing mechanism as discussed above40. It corresponds to the 
Debye energy (kBTD) for systems with electron-phonon pairing potential. The symbol 〈…〉 denotes averaging 
over planar or spherical angles ω in the two- or three-dimensional space, respectively27,40. Since the dimensionless 
scalar field of the density of states ξ ω( , )  is the only function depending on ω in the equation, after averaging, 
Eq. (3) simplifies to
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where N Kξ ξ ω= 〈 〉( ) ( , )  is the dimensionless density of states, being the final product of the conformal transfor-
mation approach. Examples of analytical formulas for the density of states in the 2D tight-binding model, with the 
nearest-neighbor and the next-nearest-neighbor integrals taken into account, are given in ref.27. Note that effects 
of the particle-hole asymmetry and some extra factors, such as e.g. the spectral function defined in Eliashberg 
equations, can be directly included in  ξ( ) as well. Because in the BCS-like model  ξ =( ) 1, we assume it in the 
form  ξ ρ ξ= +( ) 1 ( ). According to previous studies45, the function ρ can substantially change various param-
eters of a superconducting system, especially if the function has a narrow fluctuation (a peak) in the vicinity of the 
Fermi level. Moreover, the results obtained for peaks of various shapes yield similar results, with differences of the 
order of a few per cent39. Therefore, at this point, we do not need to consider any particular analytical properties 
of the function ρ, treating it as a locally constant function.

In the next step, introducing the symbols: x = ξ/2T, xp = ξp/2T, and D = Δ/2T, we rewrite Eq. (4) as
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where the function ρ(ξ) has been redefined into  x( ), which can be again modelled in various ways. The factor g 
can be eliminated by taking into account Eq. (5) in the limit cases T = Tc and D = 0.

Employing results given in refs20,35, one can easily reproduce the free energy difference ΔF = FS − FN between 
the superconducting and the normal phase as
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Hereafter, we take into account a model form of  x( ), which so far has been treated as constant in local inter-
vals. Now, the function  x( ) should have a narrow fluctuation (a peak) which is shifted a distance x0 from the 
Fermi level. Since various particular forms of the fluctuation produce similar results, we propose to take the 
function x( )  in the following form
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where x0 is the point, away from the Fermi level, where  x( )j  is maximum. This point can be either below the 
Fermi level (for x0 < 0) or above it (for x0 > 0). The effect of such a fluctuation on the enhancement of the critical 
temperature is strongly suppressed45.

The parameter χ fixes the height of the local fluctuation, which can be positive as well as negative when the 
averaged fluctuations away from the point x0 are higher than those at the very point x0. The half-width of the 
fluctuation is denoted as η = 2arccosh ( 2 )j2 .

Moreover, for j → ∞ the function  χδ→ −x x x( ) 2 ( )j 0 , where δ(x) is the Dirac delta56,57. The case χ = 0 cor-
responds to the BCS-like model, i.e. the free-electron model with restricted pairing interaction near the Fermi 
level. The pairing interaction is characterized by two independent parameters g and xp, which should be taken 
with reference to real superconducting materials. Then one can compare thermodynamic quantities in the 
BCS-like model with those in the approach under discussion.

External Hydrostatic Pressure
The superconducting state is formed in a fermion-carrier system that is located in the interior of a supercon-
ducting sample. The structure of the superconducting material determines many properties of the carrier system 
through the (usually complicated) form of their dispersion relation. External pressure imposed on the supercon-
ducting sample, causes the sample, as well as the system of fermion carriers, to stabilize under new conditions. 
This new equilibrium, in particular, defines a modified dispersion relation of carriers, parametrized now by the 
external pressure p. In more detail, applying high pressure p to a superconducting sample, supplies an extra 
energy to each unit cell, which may consist of one or a few atoms. The amount of that additional energy is vp, 
where v is the specific volume, defined in the real space, occupied by a charge carrier. The supplied energy is 
absorbed by unit cell atoms, and hence a new equilibrium state is reached with the dispersion relation ξk(p), 
parametrized also by p. Therefore, we can treat ξk(p) as a function of the wave vector k and the pressure p and, 
expand it in a series
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and ξk(0) is the dispersion relation for the pressure-free system. Since applying high pressure to a superconduct-
ing material can merely cause a small linear increase of the energy of unit cell atoms by vp, it will induce a propor-
tional linear increase of the charge carrier energy as well. Therefore, we state that Qp > 0 should be proportional 
to, or rather should be of the order of, ☆m M vp( / )A , where ☆m  is the effective mass of the charge carrier and MA is 
the total mass of unit cell atoms. Hence, for example, assuming p ~ 109 Pa, v ~ 10−28 m3, ∼ −☆m M/ 10A

5 and kB = 1, 
381 10−23 J/K, we get a rough estimate of Qp ~ 0.1 K in the temperature scale. Therefore, 

Q p xp, since xp is iden-
tified with the Debye temperature for superconductors with electron-phonon pairing potential.

Consequently, we can follow the conformal transformation method and repeat all its steps with the dispersion 
relation ξ = ξk(p) − Qp. Eventually, Eq. (5) for p > 0 assumes the form
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where κ = Q/2T. Although the local fluctuation is precisely mapped by x( )j  for fixed j and χ, in ref.39 we show that 
for j > 100, corresponding to narrow fluctuations, numerical and analytical results coincide with the case j → ∞, 
and can be better fitted by the self-correcting parameter χ within the applied model. Hence, furthermore, we 
replace  x( )j  by 2χδ(x − x0).

Critical temperature under high pressure.  For a system at the critical temperature T = Tc, when Δ = 0, 
gap equations derived e.g. for s- and d-wave superconductors, become separated from each other, and can be 
considered independently. Note that for all cases other than pure s-wave, the scalar field of density of states is 
averaged with the spherical harmonics or the Fourier harmonics, yielding effectively also a density-of-states-type 
function, that can be modelled similarly to a standard density of states function.

Then, including a single fluctuation in the form 2χδ(x − x0) in Eq. (9) and neglecting terms of the order of 
(Qp/ξp)2, we find the critical temperature as a function of χ and p, for a given value of x0, in the form
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In order to make sure that the values of x0 and κ are fixed in calculations, it is assumed that they are defined 
with respect to the critical temperature for a pressure-free system (p = 0), which is denoted as Tc(χ, x0, 0). Hence
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is a function of p, and τ = 1 for p = 0. As a result of this step, Eq. (10) becomes implicit, with the function Tc(χ, x0, 
p) on both sides of the equation. However, it can be transformed to a more convenient form
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The function x xtanh( )/  is even and positive for all real x, and decreases from 1 to 0 as |x| varies from 0 to ∞. 
Therefore, for x0 < 0 the critical temperature Tc(χ, x0, p) achieves a maximum for a fixed χ > 0 and a minimum for 
χ < 0, if p = −x0/κ. Hence, with respect to the case p = 0, we have
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On the other hand, if x0 ≥ 0, according to Eq. (11), the applied pressure drives the critical temperature down-
wards Tc(χ, x0, p) ≤ Tc(χ, x0, 0) if χ > 0 or upwards Tc(χ, x0, p) ≥ Tc(χ, x0, 0) if χ < 0. Consequently, for the four 
possible combinations of parameters x0 < 0, x0 > 0 and χ > 0, χ < 0, four types of response to the applied pressure 
are possible, as far as the critical temperature is concerned. These four cases are illustrated in Fig. 1.

Moreover, from Eq. (11) we can also derive the pressure coefficient (at zero pressure)
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Figure 1.  Four possible types of the dependence of the critical temperature on high external pressure, where 
α = κp/|x0| is a dimensionless positive scaling parameter for pressure: (a) Tc(1) > Tc(0) and x0 < 0, then χ > 0, 
(b) Tc(1) < Tc(0) and x0 < 0, then χ < 0, (c) only Tc(0) is given, x0 > 0 and χ > 0, (d) only Tc(0) is given, x0 > 0 and 
χ < 0. It is shown that the shape of the curves changes, depending on the parameter x0.
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and f(x) ≤ 0 if x ≥ 0 and f(x) ≥ 0 if x ≤ 0, and f(0) = 0, whereas g(x) ≤ 0 and g(0) = 0 as illustrated in Fig. 2.
Hence, cp < 0 if x0 < 0 and χ < 0, i.e. for the type-(b) behavior, and cp > 0 if x0 > 0 and χ < 0, i.e. for the type-(d) 

behavior, which is correct since the critical temperature is then a decreasing or an increasing function of pressure, 
respectively. However, for the type-(a) and type-(c) behavior, the sign of cp may change although the critical tem-
perature is an increasing or a decreasing function of pressure, respectively. Consequently, an additional condition 
1 + χg(x0) > 0 must be imposed on the parameters χ and x0. Therefore, any detailed analysis requires the values 
of χ, x0 and κ to be known.

In order to fit the parameters introduced in the model, it is necessary to have at hand some experimental data 
for the critical temperature at pressure. Assuming that the critical temperatures under normal conditions Tc(0), 
and the maximum or the minimum critical temperature Tc(1) achieved under a high pressure pm are known, 
based on Eq. (11), we can find the critical temperature for an arbitrary value of the pressure αp as
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where α ≥ 0, and x0 < 0 must be postulated. Here Tc(0, x0) = Tc(0) and Tc(1, x0) = Tc(1) are independent of x0. 
Moreover, κ = −x0/pm, and the critical temperature as a function of pressure Tc(p) must be derived from the 
equation
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Although the parameter χ is eliminated from Eq. (14), it can be derived back from Eq. (12), and the conditions 
Tc(0) < Tc(1) and Tc(0) > Tc(1) correspond to χ > 0 and χ < 0, respectively.

In the case x0 < 0, when the temperatures Tc(0) and Tc(1) at a high pressure pm are known, the pressure coeffi-
cient cp at p = 0 can be derived as a function of a single parameter x0 as

=

















−



















−

c x T
p

T
T

h x T
T

h x( ) (0) ln (1)
(0)

( ) 1 ln (1)
(0)

( ) ,
(15)
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=
−

− .h x x x
x x

( ) tanh
tanh

1
2

Note that h(x) = h(−x), h(x) > 0, h(0) = 2 and h(x) ~ |x|−1 when |x| → ∞.
Moreover, cp(x0) must be negative if Tc(0) > Tc(1), positive if Tc(0) < Tc(1), and it vanishes for large values of 

|x0|. When the temperatures Tc(0) and Tc(1) are given, and Tc(0) > Tc(1), the pressure coefficient cp(x0) is always 
negative, whereas Tc(0) < Tc(1), the pressure coefficient cp(x0) starts to be positive for values of x0 of sufficiently 
large magnitude. Therefore, small values of |x0| must be excluded.

Let us consider a superconducting system with a single fluctuation of the density of states shifted a distance x0 
away from the Fermi level (where | | x x0 p), where we also include the effect of high external pressure. As we 

Figure 2.  Functions f (red curve) and g (blue curve).
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have argued before, the external pressure contributes an extra (linear) term to the dispersion relation of charge 
carriers, with no changes to the density of states involved. For the pressure pm ~ 109 Pa, this extra term is of order 
0.1 K. In terms of dimensionless quantities that we use in calculations, we normalize it by Tc, i.e. the critical tem-
perature for the system under discussion. Hence, κpm ~ 0.1 and for the pressure of magnitude not exceeding 
106 Pa, no effect is expected. On the other hand, if | | x 10 , when the external pressure is not included, and since 

≅x xtanh( )/ 1, according to Eq. (10) we conclude that the critical temperature depends only on χ and is the same 
as for x0 = 0.

Let us now verify the characteristic behavior of the critical temperatures under increasing pressure shown in 
Fig. 1. Experimental data for high-Tc superconductors such as LBCO58, mercury-based high-Tc compounds59, as 
well as H3S17,60 reveal behaviour similar to type-(a). A suitable choice of the values for the parameters x0, Tc(0) 
and Tc(1) can result in a quite good quantitative agreement. Also, the experimental data for sulfur hydride (H2S) 
or sulfur deuteride (D2S) with the superconducting critical temperature above 200 K (under high hydrostatic 
pressure)17,61 reveals that at in the high-Tc range, the critical temperature vs. pressure dependence is compatible 
with the type (a).

Furthermore. the experimental data for the pressure shift of the critical temperature for a single crystal of rhe-
nium (which are similar to the thallium data), as well as the pressure shift of the critical temperature for Re and 
Re-Os alloys at very low concentrations (less than 0.11%)62, reveal the relationship corresponding to the case (b).

On the other hand, the critical temperature for V3Si63, Nb3Sn64, MgB2
65, SrAlSi66, and Re-Os alloys (with con-

centrations greater than 2.75%)62 decreases linearly with pressure. Therefore, this behavior corresponds to the 
type (c) when κx p0 .

Finally, the pressure dependence of the critical temperature for V0.54Ru0.4667 and CaAlSi66 coincides with that 
of the type-(d), with the pressure-induced change of the critical temperature in V3Si63 corresponding to the linear 
part of this case.

Note that a similar picture of the Tc vs p, that is of type-(d), was obtained for H3S0.925P0.075 in the range of pres-
sure from 150 to 250 GPa and critical temperatures c.a. between 225 and 250 K68.

Moreover, ref.66 quotes the values of the pressure coefficient for SrAlSi (cp = −0.12 K/GPa) and the pressure 
coefficient at zero pressure for CaAlSi (cp = 0.21 K/GPa).

In order to analyze the increase of the critical temperature under high pressure69–74, one should assume that 
the peak in the density of states is located below the Fermi level, i.e. x0 < 0 and |x0| ~ 0.1 ÷ 1, which corresponds 
to the case (a) shown in Fig. 1. Then the critical temperature significantly increases for sufficiently high pressure 
until p ≤ −x0/κ. If the pressure exceeds the value of −x0/κ, the critical temperature decreases and it can become 
very small in the higher pressure range.

In order to illustrate the versatility of the developed approach, in Table 1 we present five examples of values for 
a set of parameters characterizing type-(a) superconductors, and one example corresponding to type (b). These 
parameters are: the critical temperature at zero pressure – Tc(0), the supreme critical temperature achieved at 
pressure pm – Tc(1), the value of the pressure pm itself, and the pressure coefficient (at zero pressure) cp(x0). The 
corresponding values of the model parameters x0, χ, and κ are derived from Eqs (12) and (15), and the relation 
κ = −x0/p, respectively.

In Fig. 3, based on Eq. (14), we present the dependence of the critical temperature Tc(α, x0) on pressure 
defined as αp for α ∈ [0, 2.5], for six cases given in Table 1. Comparing the plots (1)–(6) obtained within our 
simple model with some other results in literature, one should state that they coincide to a satisfactory degree in 
a quite wide range of pressure values. Namely, plots (1) and (2) correspond to the curves obtained for the super-
conductors α–FeSe (orthorhombic crystal structure) and high-quality FeSe polycrystal presented in refs71,74. The 
dome-shaped dependence of the critical temperature with the threshold value of the external pressure at 6.5 7 GPa 
is well reproduced within our simple one-peak model with the values of parameters listed in the first two rows 
of Table 1. The threshold pressure defines the value at which a widely reported four-fold increase in the pressure 
occurs. It is worth to notice that above 6 GPa this sudden enhancement of superconductivity is accompanied by a 
suppression of magnetic order75, which may also contribute to fact that our model can still be applied here.

Moreover, plot (3) reproduces the relation for FeSe05Te0.5
76, and plot (4) coincides with the curve for the HTC 

superconductor La2−xBaxCuO4−y
58. Finally, plot (5) is in agreement with the corresponding relation for Hg-122359, 

and plot (6) reproduces the relation for a single crystal of rhenium62.

Example

Tc(0) Tc(1) pm cp(x0) x0 χ κ Representative 
superconductor[K] [K] [GPa] [K/GPa] [1] [1] [GPa−1]

(1) 12 37 7 1.02 −4.0 1.501 0.571 α–FeSe

(2) 7 30 6.5 1.33 −3.6 2.014 0.554 FeSe

(3) 13.5 26.2 2 9.752 −1.8 1.399 0.90 FeSe0.5Te0.5

(4) 32 40 1.33 4.006 −2.4 0.378 1.805 La2−xBaxCuO4−y

(5) 137 164 34 1.79 −0.653 1.481 0.019 Hg-1223

(6) 1.695 1.684 0.65 −0.03 −0.55 −0.072 0.846 Re

Table 1.  Example values of model parameters: x0, χ, and κ, determined based on the experimentally 
measurable quantities: Tc(0), Tc(1), pm, and cp(x0). The sets of values correspond to type-(a) behavior for (1)–(5), 
and type-(b) behavior for (6). They are matched with representative superconducting materials listed in the last 
column of the table.
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Zero-temperature case.  Considering the case of T = 0 for  χδ= −x x x( ) 2 ( )j 0  with the pressure effect 
included, we need to redefine the symbols introduced in Eq. (5) as follows: x = ξ/2Tc(χ, x0, p), xp,χ = ξp/2Tc(χ, x0, 
p), and D(0, χ, x0, p) = Δ(0, χ, x0, p)/2Tc(χ, x0, p). Then Eq. (5) assumes the form

∫
ν χδ τ

τ κ χ
=

+ −

+ +− χ

χ

g
dx x x

x p D x p

1
2

[1 2 ( )]

( ) (0, , , )
,

(16)x

x
0 0

2 2
0p

p

,

,

where we again note that x0 and κ must be fixed with respect to the critical temperature Tc(χ, x0, 0) defined for 
p = 0. Evaluating the integral and omitting terms of order (Qp/ξp)2 we obtain

ν

ξ χ

χ
χ

τ κ χ
= +

+ +g

T x p

D x p x p D x p

1 ln
/ ( , , )

(0, , , ) [ ( )] (0, , , )
,

(17)

p

0

c 0

0 0
2 2

0

where the values of D(0, χ, x0, p) and Tc(χ, x0, p) vary along with x0 and p.
Let us now find the free energy difference by means of Eq. (6). After some algebra we get

χ
ν

χ ν χ χ

τ κ τ κ

Δ = − Δ −

×






+ + − | + | −




τ κ+ +

F x p x p T x p

x p D x p

(0, , , )
4

(0, , , ) 2 ( , , )

2 [ ( )] 2 ,
(18)

c

D

x p D

0
0 2

0 0
2

0

0
2 2

0
[ ( )]

2

0
2 2

Figure 3.  Examples of the critical temperature Tc(p) vs. pressure p = αpm dependence for α ∈ [0, 2.5] and a few 
postulated sets of values of Tc(0), Tc(1), pm, and cp(x0) given in Table 1. Plots (1)–(5) illustrate type-(a) behavior, 
whereas plot (6) depicts a type-(b) curve.
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and here

χ
χ

=
Δ

.D x p
T x p
(0, , , )

2 ( , , )
0

c 0

Assuming that the same parameters ν0, g and ξp are fixed for both the BCS–like model (χ = 0) and the model 
under discussion (χ ≠ 0, p > 0), Eq. (17) one yields

χ χ

τ κ

Δ = Δ










+ + 















.
χ
χ

Δ
x p

x p
(0, , , ) (0, 0, 0)exp

[ ( )]
(19)

x p
T x p

0

0
2 (0, , , )

2 ( , , )

2
0

c 0

The Ratio 1 (χ)
The derived Eqs (10) and (19) allow us to discuss the ratio 1 as a function χ, x0, and p. Taking into account that 
 χ χ χ= Δx p x p T x p( , , ) 2 (0, , , )/ ( , , )1 0 0 c 0 , we have the following equation

χ χ=
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where τ must be found from Eq. (11) first. We find  χ x p( , , )1 0  numerically, assuming that  χ⩽ ⩽x p3 ( , , ) 41 0  
and including that for the BCS case (χ = 0)  = .3 5281 . Comparing the obtained results with experimental data 
for some superconducting superconductors16,21–25,77–79 we can find the corresponding value of the parameter χ, 
and hence calculate the values of χ( )1  for these systems.

The ratio 1  as a function of pressure for superconducting systems with χ = −0.15, 0.15, and 0.85 is shown in 
Fig. 4. With the peak in the density of states moving farther away from the Fermi level (i.e. with increasing |x0|), 
the maximum (or minimum, for χ > 0) in 1 shifts towards the region of lower pressure values. Moreover, with 
the increasing value of the parameter χ that maximum (minimum) flattens out. This tendency is also confirmed 
in Fig. 5 showing the 3D graph of the ratio 1  as a function of pressure and the parameter χ for a system with 
x0 = −1.

The Ratio 2(χ)
The ratio  ≡ ΔC T C T( )/ ( )2 c N c , where ΔC(Tc) = CS(Tc) − CN(Tc) defines the jump of the heat capacity between 
the superconducting and the normal phase at the transition temperature as a function of χ, x0 and p. In order to 
find its value, we need to consider Eq. (9) and use Eq. (6) in the sub-critical temperature range, when 
 x( )j  = 2χδ(x − x0).

Sub-critical temperature range.  In the sub-critical temperature range, i.e. for  χT T ( )c , with the pressure 
included, we have to refer the discussion to the case p = 0, where x0 and κ are steady. In this region, the magnitude 
of Δ(T, χ, x0, p)/2T is small and, in the first order of the perturbation method, Eq. (9) can be transformed to the 
form
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and ϕ(x) ≤ 1 is an even and positive function of the real variable x. Moreover, ϕ(0) = 1 and it quickly approaches 
0 as |x| increases from 0 to ∞. Taking into account the form of Eq. (21) obtained for T = Tc(χ, x0, p) (Δ = 0), and 
plugging it into Eq. (21), we find
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Figure 4.  Ratio 1 as a function of pressure for superconducting systems with χ = −0.15 (a), 0.15 (b), and 0.85 
(c) and different values of x0 < 0 indicated in the legends. α = κp/|x0| is a dimensionless positive scaling 
parameter for pressure.

Figure 5.  Ratio 1 as a function of pressure and the parameter χ for x0 = −1. Here −0.5 ≤ χ ≤ 2.5 and 
0 ≤ α ≤ 3, with x0 + κp = x0(1 − α).
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Let us complete the discussion in this section with the equation for the free energy difference ΔF derived 
according to Eq. (6) in the first order of the perturbation method. Using Eqs (21) and (22), after some algebra we 
obtain

χ
ν χ

ϕ τ κ χ
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Specific heat jump.  Using standard thermodynamic relations for the free energy difference (23), we can find 
the normalized heat capacity difference ΔC(T)/CN(Tc) which, in the first-order perturbation method, determines 
the normalized heat capacity jump at T = Tc(χ, x0 + κp). Taking into account that the characteristic ratio 
 ≡ ΔC T C T( )/ ( )2 c N c , in the case under discussion we have

 χ = = .
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where ν π=C T T( )N c
1
3 0

2
c must be constant and independent of χ. Therefore, Tc ≡ Tc(0, 0, 0) and in order to elim-

inate Tc(χ, x0, p)/Tc(0, 0, 0) from Eq. (24) we have used Eq. (10). The magnitude of this jump for p = 0 and x0 = 0 
at the critical temperature decreases from 1.459 to 1.380 for −0.576 < χ < −0.279 and it starts to increase for 
χ > −0.279. If χ = 0, it is equal to the BCS value of 1.426, and for χ > 0 the magnitude of the jump is still 
increasing.

According to the experimental data for the pressure dependence of the critical temperature given in ref.16, 
the superconductors SrAlSi and MgB2 have been identified as type-(c) with x0 > 0 and χ > 0, and CaAlSi — as 
type-(d) with x0 > 0 and χ < 0. However, the experimental data for the normalized heat capacity of CaAlSi, SrAlSi 
and MgB2 at the normal pressure (p ≈ 0), suggest that the superconductors SrAlSi and MgB2 should be of type-(b) 
with x0 < 0 and χ < 0 whereas CaAlSi — of type-(a) with x0 < 0 and χ > 0. Then the normalized heat capacity 
jump exceeds the BCS value for χ > 0 and its magnitude remains smaller than the BCS value for χ < 0. However, 
if these superconductors were of type-(a) or -(b), there would need to exist some values of the external pressure 
for which the critical temperatures achieve their maximum or minimum, respectively.

Additional relations and comments.  Based on Eq. (20), we can derive χ in dependence on  χ x p( , , )1 0 . 
Plugging it into Eq. (24) we find 2 as a function 1  in the form
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Note that the ratio 2 vs 1 obtained for x0 = 0 and p = 0 in ref.39 coincides with that of type-(a) and that of 
type-(b) derived for the maximum or the minimum critical temperature Tc(1), respectively, i.e. achieved when 
x0 + κp = 0. Then Eq. (25) simplifies to
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It is worth to emphasize that this relation has been verified by comparing with experimental data for some 
low-temperature superconducting materials39. On the other hand, for some superconductors that can be of 
type-(a), -(b), -(c), or -(d), in order to derive the ratio 2  vs 1 for a particular superconductor and for a given 
value of p, the set of three values of x0, κ, and τ must be known. However, for all such sets for which the expression 
τ(x0 + κp) has exactly the same value, the ratio 2  vs 1 can be easily found from Eq. (25). Moreover, since the 
rhs of Eq. (25) is an even function of τ(x0 + κp), the results obtained for ±τ(x0 + κp) are identical.

In Fig. 6 the graphs of the ratio 2 vs 1  are presented for the case x0 + κp = 0 and for given hypothetical 
values of τ, x0, and κp. Some points on these graphs will refer to different superconductors if the values of the 
expression τ(x0 + κp) for the corresponding parameters τ, x0, and κp coincide. Additionally, in Fig. 7, the ratio 2  
vs 1  for 0 ≤ τ(x0 + κp) ≤ 0.5 is plotted. Please note that, if p = 0 then τ = 1, and such a case corresponds to a 
narrow fluctuation shifted a distance x0 from the Fermi level. It is an extension of the approach discussed in ref.39.

Using the numerical form of χ x p( , , )1 0  derived from Eq. (20) we can rewrite Eq. (19) in the form
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and hence find the free energy difference (12) as
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Eqs (27) and (28) allow us to evaluate Δ(0, χ, x0, p) and ΔF(0, χ, x0, p) numerically as functions of χ, cf. Fig. 8.
Moreover, based on Eqs (10), (22) and (23) we can also estimate the changes of Δ(T, χ, x0, p) in dependence 

on χ, x0, and p for sub-critical temperatures (  χT T x p( , , )c 0 ). Namely, in the first-order perturbation method,
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Figure 7.  Ratio 2 vs 1 for 0 ≤ τ(x0 + κp) ≤ 0.5.
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The form of Φ(χ, x0 + κp) is given in Fig. 9.
Note that in the superconducting state ΔF(T, χ, x0, p) given by Eq. (23) must be negative, hence we demand 

the parameter χ > −1.279/ϕ(τ(x0 + κp)), remembering that ϕ(x) ≤ 1.

Conclusions
In the paper, we have identified four universal types of the response of superconductors to an external high pres-
sure, in terms of the dependence of the critical temperature on pressure. We have found and discussed the forms 
of the superconducting gap, free energy difference, and specific heat difference for T = 0 and in the sub-critical 
temperature range T Tc, with the external high pressure included. A range of numerical results shows that 
experimental data can be used to find the critical temperature as a function of pressure and discuss other proper-
ties of superconducting systems under high pressure.

Similar thermodynamic relations were also obtained in refs80,81, where the pressure was included in terms of 
lattice deformation. According to the results presented there, high pressure modifies peaks in the density of states 
to a small (negligible) degree.

The presented simplified model is based on the assumption that the crystal structure of a superconductor 
is stable under high pressure. In general, however, in some materials high pressure can induce structural phase 
transitions, and properties of such systems may change drastically. Then, the one-particle dispersion relation ξk 
assumes a new, stable form, and if the superconductivity is not suppressed, the new system can be analyzed again 
within the conformal transformation method, using the approach presented in this paper. However, compared 

Figure 8.  Free energy difference as a function of χ. Here x0 + κp = x0(1 − α) with x0 = −1 and α = 0.5.

Figure 9.  The dependence of the function Φ on the parameter χ. Here x0 + κp = x0(1 − α) with x0 = −1 and 
α = 0.5.
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to the system before the structural phase transition has taken place, it may reveal quite different properties. In 
particular, one type of dependence of the critical temperature on pressure may be replaced by another when the 
pressure is being increased. A similar effect on the critical temperature of the high-Tc superconducting system 
YBCO should be observed when the oxygen content is being adjusted82,83.

The agreement of the results obtained within the simple model with experimental data and ab-initio calcula-
tions, suggests that effects included in the model dominate when the critical temperature changes with increasing 
external pressure. We may then conclude that some other effects, that may have been included in calculations, 
give almost negligible contribution. We emphasize that, within the used formalism, all other extra effects find 
their expression in the complex form of the scalar field of the density of states. This scalar field, for s-wave super-
conducting systems, simply reduces to the usual density of states, enriched by the presence of strong fluctuations. 
In a simple model, these fluctuations are replaced by a single narrow peak. This approach allows us to identify 
conditions that must be satisfied for the critical temperature to change with pressure, as well as the form of this 
change. Therefore the simple model should prove to be useful in the quest for superconductors with increasingly 
higher critical temperatures.

The success of the simple model presented in our paper originates from the following fact: The conformal 
transformation method allows us to transform any model (formalism) describing a superconductor, including a 
HTSC, with a given symmetry defined in the reciprocal space (or transformed to that space) to a mathematically 
fully equivalent model in an isotropic reciprocal space. At this stage, mathematical transformations are reversible. 
Although the space becomes isotropic, that does not mean that the description is simplified, because the usual 
electronic density of states becomes an involved function of 2 (or 3) variables a scalar field of the density of states 
that now carries all information about the system.

In the approach presented in this paper it was enough to take into account a model form of  x( )j , where a sin-
gle narrow fluctuation (a peak) located a distance x0 from the Fermi level in the density of states appears, repre-
sented by 2χδ(x − x0).

The position of this peak x0 and its weight χ, have allowed us to identify four universal types of the response 
of superconductors, in terms of the dependence of the critical temperature on increasing external pressure, also 
confirmed by experimental data. We would also like to emphasize that the forms of the density of states vs. energy, 
obtained by ab-initio calculations presented in refs16,68,84–87, include strong fluctuations, with the main ones placed 
below the Fermi level, in agreement with our simple model.

Although here the parameters χ and x0 are independent of the pressure p, in more detailed studies, one might 
also adjust their values for high pressure. Also, in reference to the quoted ab-initio results, one might introduce a 
number of various fluctuations (peaks) in the density of states in the form χ δ∑ −x x2 ( )i i i , where xi is the dis-
tance of the i-th fluctuation from the Fermi level and xi as well as χi can be either positive or negative80. Such an 
approach should make possible to improve the accuracy of the description of thermodynamic properties of some 
simple and composed superconducting systems7,21–23,26. However, the most promising case seems to be the one 
when just two fluctuations are included.

As a closing remark, let us emphasize that although the approach presented in this paper corresponds to the 
Van Hove Scenario, it is obtained in a quite general manner by applying the more general conformal transforma-
tion method, that includes the Van Hove Scenario as its special case3,7,8,20,27,35,41,88.

Data availability.  All data generated or analyzed during this study are included in this published article.
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