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A dilute suspension of active Brownian particles in a dense compressible vis-
coelastic fluid, forms a natural setting to study the emergence of non-
reciprocity during a dynamical phase transition. At these densities, the
transport of active particles is strongly influenced by the passive medium and
shows a dynamical jamming transition as a function of activity and medium
density. In the process, the compressible medium is actively churned up - for
low activity, the active particle gets self-trapped in a cavity of its own making,
while for large activity, the active particle ploughs through the medium, either
accompanied by a moving anisotropic wake, or leaving a porous trail. A
hydrodynamic approach makes it evident that the active particle generates a
long-range density wake which breaks fore-aft symmetry, consistent with the
simulations. Accounting for the back-reaction of the compressible medium
leads to (i) dynamical jamming of the active particle, and (ii) a dynamical non-
reciprocal attraction between two active particles moving along the same
direction, with the trailing particle catching up with the leading one in finite

time. We emphasize that these nonreciprocal effects appear only when the
active particles are moving and so manifest in the vicinity of the jamming-
unjamming transition.

There is a lot of interest in the effective long-range interactions that
emerge amongst active particles moving through a dynamically
responsive medium. Examples include motile particles embedded in a
Stokesian fluid" or on an elastic substrate? and diffusiophoretic flows in
a viscous suspension of chemically active particles’. The absence of
time reversal symmetry manifests in large density fluctuations at
steady state®®, and in the appearance of nonreciprocal interactions
between particles>** "%

In this paper, we ask whether nonreciprocal interactions could
emerge as a result of a dynamical phase transition. To realise such
emergent nonreciprocity, we study a dilute collection of motile active
particles embedded in a dense compressible fluid suspension close to

dynamical arrest. Our results are based on (a) numerical simulations of
an agent-based model, and (b) analytical and numerical treatments of
hydrodynamic equations. We find that there is a dynamical feedback
between the motility of the active particles and the corresponding
slow remodelling of the passive compressible medium. Such active
particles are ploughers, as opposed to cruisers whose motility speed is
unaffected by the medium, e.g., ref. 2. As a result, ploughers exhibit a
jamming-unjamming transition at fixed medium density. We find that
in the unjammed phase, the moving active particles develop a dynamic
nonreciprocal interaction with each other arising from the compres-
sibility of the passive medium. We emphasise that this long-range
nonreciprocal sensing appears only when the active particles are

'Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore, India. 2Institute for Theoretical Physics, Georg-
August-Universitat Gottingen, 37077 Géttingen, Germany. 3Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA. “International Centre for

Theoretical Sciences (TIFR), Bangalore, India. These authors contributed equally: Jyoti Prasad Banerjee, Rituparno Mandal.

madan@ncbs.res.in

e-mail: shashi@ncbs.res.in;

Nature Communications | (2022)13:4533


http://orcid.org/0000-0002-8421-7500
http://orcid.org/0000-0002-8421-7500
http://orcid.org/0000-0002-8421-7500
http://orcid.org/0000-0002-8421-7500
http://orcid.org/0000-0002-8421-7500
http://orcid.org/0000-0002-4728-937X
http://orcid.org/0000-0002-4728-937X
http://orcid.org/0000-0002-4728-937X
http://orcid.org/0000-0002-4728-937X
http://orcid.org/0000-0002-4728-937X
http://orcid.org/0000-0001-6210-6386
http://orcid.org/0000-0001-6210-6386
http://orcid.org/0000-0001-6210-6386
http://orcid.org/0000-0001-6210-6386
http://orcid.org/0000-0001-6210-6386
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31984-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31984-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31984-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31984-z&domain=pdf
mailto:shashi@ncbs.res.in
mailto:madan@ncbs.res.in

Article

https://doi.org/10.1038/s41467-022-31984-z

moving through a momentum non-conserving medium, and conse-
quently shows up in the neighbourhood of the jamming-unjamming
transition.

Our study reveals a hitherto unappreciated facet in this intensely
researched field of dense active assemblies™, where the focus has
been on fluidisation”, intermittency'® and jamming'®” close to glass
transition. The current work should be relevant to a variety of cellular
and non-cellular contexts, where the medium is dense but compres-
sible, pliable but slow to relax. Such situations can occur in the (i)
transport of constituent or embedded particles in the cytoplasm??*,
(i) facilitated transport of transcription factories and exogenous par-
ticles embedded within the cell nucleus®, (iii) movement of bacteria
and cancer cells in fabricated soft porous media or in tissues®*?’, (iv)
burrowing movement of ants and worms in dense soil***, and (v)
intrusion of active particles in a disordered bubble raft or a dense
suspension of solid colloidal particles® .

Results

Dynamics of active Brownian particles in a passive medium
Our model of the two-dimensional background passive medium is
similar to the Kob-Andersen®*® binary mixture of soft spheres with a
volume fraction ¢ so as to be able to tune it across a glass transition at
constant temperature 7. To this passive medium, we add a dilute
amount ¢, < ¢ of active Brownian soft particles (ABPs)****?, which are
made motile by assigning to them independent random forces f=fn,
whose orientation n = (cos 8, sin 0) is exponentially correlated over a
persistence time 7. The dynamics of all the interacting particles label-
led i are described by a Langevin equation subject to a thermal noise 9
of zero mean and variance equal to 2yksT, while the subset i € A of
ABPs are subject to additional active stochastic forces,

N
mx;= —yX; — aij; Vi +fm; Lo+ 9, M
0,=& foric A

where 1, is the indicator function which ensures that the active
forces are restricted to particles i in the active set A. The orientation
angle 6; undergoes rotational diffusion described by an athermal noise
&, with zero mean and correlation (§;(£)§;(¢)) :21*16,-1-6(1‘ —t). Its
effect on the x-dynamics is an exponentially correlated vectorial noise
with correlation time 7, which being unrelated to the drag y, violates
the fluctuation-dissipation relation. The inter-particle potential Vj is

Fig. 1| Active motile particles in a dense medium—approach to glass and vis-
coelasticity. A Schematic of dilute suspension of self-propelled particles of area
fraction ¢, (red particles with arrows showing instantaneous direction n of pro-
pulsive force f n) moving through a dense compressible passive fluid of area frac-
tion ¢ (grey particles). B Dynamical phase diagram in the f— ¢ plane for fixed
T=0.5, ¢,=0.017 and 7= 50, showing macroscopic liquid and solid (glass) phases
adjoining the cage-hopping “super-cooled liquid” regime, as determined from the
a-relaxation time, 7, (Supplementary Note 2). The glass transition at density ¢ver(f)

taken to be purely repulsive (inverse power law) with particle diameter
o (details of the simulation appear in Supplementary Note 1). We work
in the high friction limit, where particle inertia can be ignored.

Starting from homogeneous and isotropic initial conditions, we
evolve the system to its steady state by integrating over a time of order
10% 7, where 7, is the density relaxation time, also called a-relaxation
time (Supplementary Note 2). Throughout, we work in the low-
temperature regime 7=0.5,107,1073, over a wide range of densities
¢ €[0.08, 0.97], and scan through a broad range of the active para-
meters f and 7.

Interplay between active self-propulsion and viscoelasticity of
the medium

Figure 1A shows a schematic of a dilute suspension (¢, < ¢) of self-
propelled particles moving through a dense compressible medium.
While the macroscopic structural properties of such dense assemblies
are rather innocuous, their dynamical features display characteristic
slow relaxation, aging®” and dynamical arrest” as the density ¢ is
increased. The dynamics of the medium at large space and time scales,
is summarised in a phase diagram (Fig. 1B) in the f— ¢ plane (for fixed T,
¢. and 7). The phase diagram is constructed by computing the a-
relaxation time 7, from the decay of the density overlap function Q(¢)
(Supplementary Note 2) using the definition Q(r,) =1/e. This phase
diagram clearly shows macroscopic liquid and solid (glass) phases
adjoining a cage-hopping “super-cooled” regime; fitting 7, to a Vogel-
Fulcher form (Supplementary Note 2) provides an estimate for the
glass transition density ¢ver(f) (Fig. 1B)".

Typical of an approach to a glass, the mean square displacement
(MSD) averaged over all the passive particles shows a plateauing and
cage-hopping dynamics, as the density ¢ is increased (Fig. S1)*****¢,
From these graphs we extract the long time diffusivity D.. (Supple-
mentary Note 2). In the limit ¢, < ¢ and of small 7, we may deduce the
linear microrheological properties of the passive medium from the
Fourier transform of the MSD*, with an effective temperature
obtained from the mean kinetic energy of the passive particles. Fig. 1C
clearly shows that the medium is a viscoelastic Maxwell fluid, with the
elastic response G - w? and the viscous response G - w, for small w,
where the crossover timescale 7;, increases exponentially with the
increase in area fraction ¢ close to the glass transition.

We now turn our attention to the minority component, the small
fraction of motile active particles—Fig. 2A-D show typical trajectories
of the active motile particles at increasing values of ¢, keeping f and t

6 =0.70,G"
GI/

(open circles) is obtained by fitting 7, to a Vogel-Fulcher form (Supplementary
Note 2). The black squares represent state-points where the simulations have been
performed. C Frequency dependence of the elastic G’ and viscous G” responses, at
different values of ¢, shows that the passive system (i.e., f= 0) behaves as a vis-
coelastic Maxwell fluid with relaxation time 7,,. (inset) 1, as a function of area
fraction ¢ increases exponentially close to the glass transition. These quantities are
time averaged (over the time origin) and ensemble averaged (over 64 independent
simulations). The numerical errors are very small, less than 1% of the actual values.
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Fig. 2 | Crossover in transport characteristics of minority active particles.
A-D Typical trajectories of the active particle as a function of ¢ at fixed f=1 and
7= 50, showing (i) activity-dominated transport, (ii) glass dominated cage-hopping
transport and (iii) dynamical arrest, recorded over a time ¢=500. E Mean square
displacement (scaled by time) computed from active particle trajectories suggests
a crossover as a function of ¢. These quantities are time averaged (over the time
origin) and ensemble averaged (over 64 independent simulations). The numerical

foo™"

errors are very small, less than 1% of the actual values. F Crossover scaling collapse
of the late time diffusion coefficient D..(¢, f), described in (2), in the scaling variable
Y=f/6¢", where 6¢ (0.026 < ¢ < 0.770) is the deviation from the MCT value,
dmcr(f). The scaling exponents are found to be u = 6.5 and v=2.5. The dashed lines
suggest a crossover of the scaling function from D(y) — y? to D(y) — y, asy
increases.

fixed. The density of the passive medium affects the transport of the
active particles—thus at low density ¢, the motile particles show an
activity-dominated transport (Fig. 2A, B), which crosses over to a cage-
hopping dominated transport (Fig. 2C), as ¢ increases. As ¢ increases
further, while still being less than ¢@ver(f), the active particles get
dynamically arrested, (Fig. 2D). The plot of the MSD of the active
particles for the different values of ¢ (Fig. 2E), suggests a crossover
collapse from activity-dominated diffusion proportional to fr to a
glass dominated cage-hopping diffusion with a Vogel-Fulcher form to,
finally, dynamical arrest. We verify this using a crossover scaling form
for the late time diffusion coefficient (Fig. 2F)

D¢, )=60" D(y = %) @)

with 6¢) = ¢'(f) — ¢, the deviation of ¢ from its value where the late time
diffusion coefficient goes to zero. There are two possible choices for
¢'(H—the Vogel-Fulcher glass transition density ¢yer (from an
exponential fit) used to define the phase diagram in Fig. 1B and
dwmct, which is the mode-coupling estimate (having a power law form)
of the glass transition. The reason for choosing ¢ucr = ¢ (f) rather than
¢vrr is because the latter, being greater than ¢ycr, is very difficult to
approach either experimentally or in a simulation. The excellent
collapse with exponents i = 6.5 and v = 2.5, suggests ‘critical behaviour’
at the mode-coupling transition, ¢ncr(f). The asymptotic behaviour of
the crossover scaling function D(y) at small y (Fig. 2F), suggests that
D..=f 6¢*, which crosses over to D..~f6¢* as y = f6¢>° goes to oo,
We remark on the connection between the crossover scaling of
the MSD of active particles as a function of the density of the passive
medium with recent observations on the crossover behaviour of
bacterial motility in a three dimensional porous medium as a

function of porosity®. In as much as our study applies to this bacterial
motility context, we suggest that the reported crossover in ref. 25
reflects a phenotypic change arising from a coupling of the normal
bacterial movement to the physical properties of the dense passive
medium.

Remodelling of the compressible viscoelastic medium by the
motile particles
We see that there is a strong feedback between the nature of active
particle transport and the dynamical remodelling of the passive
medium by the active particles*s. This is especially prominent in
the “super-cooled” liquid regime above the glass transition, where the
active motile particles churn up the medium, inducing large density
fluctuations that result in long-lived density modulations that back-
react on the transport of the active particles. For a fixed active force f
and temperature T, the physical characteristics of the under-dense
regions are a result of the interplay between the active driving time t
and the ¢-dependent density relaxation time, 7,(¢).

Associated with a typical trajectory of the active particles shown in
Fig. 3, we generate a density map of the medium in the vicinity of the
active particle, as a function of 7 and 7,(¢), keeping f large (f=3.0) and
T low (T=107). The geometry and dynamics of the under-dense
regions created by the active particles, show striking variations—(i) a
halo (density wake) that moves with the motile particle, (ii) a static
cavity that traps the active particle and (iii) a long-lived porous and
tortuous trail as the active particle ploughs through the medium. In
Fig. 4A, we show how the shape of the under-dense region sharply
changes from circular to elongated as a function of 7. This geometrical
transition appears to coincide with a dynamical transition in the active
particle transport—Fig. 4B shows that the speed of the active particle
[(R)| goes from being non-zero (where the active particle ploughs
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Fig. 3 | Remodelling of the compressible medium by the active particles. Under-
dense regions in the compressible medium (darker blue colours indicate low p, and
the yellow colours indicate a high p where p is the local density) that is remodelled
by the motile particles, as a function of the persistence time 7 and density relaxation
time 7,(¢), for fixed (large) f. The geometry of the under-dense regions goes from
being a static cavity to a moving wake around the motile particle, to a long-lived

10° 7, ()

porous trail. The associated trajectories of the active particles at 7,(¢) = 168 (left of
the phase diagram) and 7,(¢) = 3960 (right of the phase diagram) for the five values
of T corresponding to the phase diagram. The background colours outlining the
particle trajectories corresponding to the respective regions marked on the phase
diagram.
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Fig. 4 | Dynamical transition in the active particle transport. A The geometry of
the under-dense regions is characterised by a shape parameter, g = :ﬁ , where 1.
are the eigenvalues of the moment of gyration tensor (Supplementary Note 3), and
goes from being circular (¢ = 0) to elongated (¢ = 1) as t increases. B Mean of the
magnitude of the velocity (over a time interval A¢=20) of the active particle, as a

function of the persistence time 7 shows a dynamical transition at 7 = 1, below which

it gets self-trapped in a cavity of its own making. C Dynamical response of the
passive medium recorded at different time points, to a step active force from a
single active particle (shown at right), measured in the frame of reference of the
moving particle. The response is fore-aft asymmetric and relaxes slowly on
switching off the active force.

through the medium) to zero (where the active particle is self-trapped
in a quasi-circular cavity of its own making), as t decreases.

The profile and lifetime of the under-dense regions upon active
remodelling, is a dynamical imprint of the transiting active particle
(both its magnitude and direction) on the medium. In Fig. 4C, we
activate only one of the particles of the medium, by imposing a step
active force for a fixed duration. We measure the dynamical response
of the passive medium (the change in p(x, t), the local density from its
initial uniform profile) from the start of the activity, in the frame of
reference of the moving active particle. We see that the density
response 6p(x,y) is fore-aft asymmetric and that this asymmetric
profile relaxes slowly on switching off the active force. This demon-
strates that the passive medium (i) is a compressible fluid, and (ii)
retains a memory of the moving event (its magnitude and direction)
for some time.

In summary, we find that the active particles remodel the passive
compressible medium and that the remodelled compressible medium
reacts back on the active particle affecting its large scale movement.

The back-reaction from the passive medium, can either facilitate
movement of the active particle (in the ‘moving wake’ and ‘porous’
regimes) or trap the active particle (in the active ‘self-trapping’ regime
—a similar self-trapping regime has been described in ref. 49, although
it must be noted that the active particles considered there are squir-
mers, carrying a force-dipole in a momentum conserving background
fluid. Self-propelled droplets have also recently been shown to get
chemotactically caged in chemical trails of their own making>). A
striking example of such facilitated transport of active particles in a
compressible gel is the the ATP-dependent movement of transcription
factories that move through the dense nuclear medium of cells*.

Hydrodynamics of active particles moving in a compressible
viscoelastic fluid

For a deeper understanding of the interplay between the movement of
the active particles and the asymmetric dynamical response of the
compressible passive medium, we construct a set of active hydro-
dynamic equations’ and analyse their solutions in simple situations.

Nature Communications | (2022)13:4533
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The passive compressible fluid is described by the local density p
and velocity v fields, while the dilute collection of active particles i with
position R,(¢) are propelled by an active force of magnitude f along
their orientations n,(¢). The density of the medium obeys a continuity
equation,

9p+V-(pV)=0 3

Since the dynamics is overdamped, the local velocity of the medium is
obtained by local force balance,

Iv=nV2v — BoVp + ‘%f n;()6(r — R(0)) “)

where the velocity of the compressible fluid is driven by the body-
forces f n,_, imposed by the moving active particles. Note that this
contribution is present, since the dynamics takes place in a medium
that does not conserve momentum.

The second term on the right represents the forces that oppose
the movement of the passive particles that are being pushed by the
active body-forces. These come from an active pressure, which, to
leading order, arises from a local compressibility of the passive fluid,
P p?+..., due to inter-particle interactions (at low T, the linear con-
tribution is insignificant). The “compressibility” B, with units of
force x length, is positive and can in principle depend on p.

The other terms correspond to the usual momentum dissipation,
a viscous contribution n coming from collisions with the passive par-
ticles and friction I arising from both collisions with other particles
and from the ambient medium. Importantly, in the high density regime
approaching the glass transition, these kinetic coefficients 7 and I' may
be strongly dependent on the local density p.

The dynamics of the active particles in the overdamped limit is
also given by force balance. In the dilute limit, low ¢,, when there are
no direct interactions between active particles, the balance is again
between the propulsive body-forces and the local pressure due to the
compressible fluid,

YR = fn; — CpVplyeg, )

0,=E0) (6)

for all i € A. Note that n; = (cos 6;,sin 6;), and the athermal orienta-
tional noise & has zero mean and is delta-correlated,
O = 21*16y6(t —t'). Equation (5) accounts for the back-
reaction of the medium on the dynamics of the active particles, which
feels a block due to particle pile up ahead of it. We have assumed in (6)
that the direction of the propulsion force is set by some internal
detailed-balance violating mechanism, independent of the passive
medium. Note that the active compressibility C is positive, dependent
on p, and could be different from B. Further, in the limit of low ¢,, one
expects y to be a single particle friction, while T to be a collective
frictional dissipation; the latter could be high when p is large.

We will refer to such polar active particles as ploughers, as
opposed to cruisers, whose speed is unaffected by the medium, e.g.,
ref. 2.

Note that although the passive and active particles have com-
parable sizes, we treat the passive medium using a coarse-grained
density, but the active particles as “point-particulate”. Thus, our
hydrodynamic description should be valid over scales larger than a few
particle sizes.

We now check whether the continuum hydrodynamic equations,
(3)-(5), describe, in a coarse-grained sense, the agent-based dynamics
represented by (17). For this we compute the local coarse-grained

density and velocity fields of the passive fluid from our simulation
trajectories, using an interpolation and smoothing scheme (Supple-
mentary Note 3).

Take the case of a single particle, with no orientational fluctua-
tions—Fig. 5A shows a simulation snapshot of an active particle sur-
rounded by the compressible medium. We compute the coarse-
grained fields, p(r, t), v(r, ) and their spatial derivatives—these results
appear in Fig. 5B-D. To verify (4), we plot vy(r, t) vs. pd,p to obtain B/T,
from which we compute v,(r, t). The relation between the local velocity
of the medium and the pile up of the density embodied in (4) is shown
to hold up in Fig. 5B, even making allowance for a possible density
dependent coefficient B/T (the contribution from viscous dissipation is
significantly lower than the rest and so we drop it). We find that there is
a dynamical transition between self-trapping at low f and movement
(Fig. 5C). From this, we obtain the value of y from the slope using (5)
and hence C/y (Fig. 5D). From this we see that the form of the back-
reaction embodied in (5) is also borne out in Fig. 5D, albeit with a
density (or force) dependent C/y (inset Fig. 5D). Note that, consistent
with our discussion above, C/y is an order of magnitude larger than B/T.
The fact that C/y drops suddenly beyond f= 2.5, would suggest that the
friction experienced by the active particle increases with increasing f
and then saturates to a constant value. In principle, if this drop is large
enough, this could lead to an active discontinuous shear thickening®.

Linearised hydrodynamics of a single active particle moving in a
compressible medium

We first look at the dynamics of a single active particle in the com-
pressible medium. Let us take the limit of large 7, and so over the
timescale of interest, the orientation n is fixed, say along the x direction.
As the active particle moves through the medium, it creates density
inhomogeneities, which relax over time. Using (3) and (4) we get,

0,0+ V- (p79p) +L0, (067 — X(0, ) 0. ?

This nonlinear equation resembles an anisotropic Burgers equation
with a source®?, and so one might expect travelling pulse solutions. To
see this explicitly, we perform a linear analysis about the uniform
density of the ploughed medium. In this limit, we take I' and B to be
independent of p. Again in this limit, we ignore the back-reaction term
Cp V pin (5); we will say that the active velocity, vo, is reduced from its
bare value f/y in a p dependent manner.

After initial transients, the density excess of the medium can then
be written in terms of the collective coordinate,

p(r, 6)=p(r — R(t))

Analytical solutions of the resulting linearised equation can be easily
obtained by transforming the equation to coordinates in the moving
frame of the active particle, u=x-X(t) and w =y, followed by Fourier
transforming in (u, w) (see Supplementary Note 4). The excess density
profile p(u, w) in the co-moving frame takes the form,
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Fig. 5 | Verifying hydrodynamic equations by coarse-graining agent-based
simulations. A Simulation snapshot of the x-y configurations showing an active
particle at the origin (black dot) surrounded by particles comprising the com-
pressible medium. We compute the coarse-grained fields, p(r, ¢), v(r, ) and their
spatial derivatives in the shaded (blue) annular region and the thin shaded (black)
rectangular region (Supplementary Note 3). B To verify (4), we plot vy(r, £) vs. p0,p
in the blue-shaded region in A at a given time; the best-fit line (dashed line) gives the
parameter B/T =4.29 + 0.093. (inset) Using this value of B/T, we compute v,(r, ¢) and
pO,p vs. x along the thin black rectangular region in A and find good agreement.

C Mean velocity of the active particle X (red and green dots) vs. active force, f,
showing the dynamical transition between self-trapping at low f and movement.
The mean is obtained by averaging over different initial realisations of the passive
medium. Following (5), the value of y can be extracted from the slope at large f.
D To verify (5), we plot f/y — X and pd.p (just in front of the active particle) vs. f.
This allows us to compute the parameter C/y (inset), a measure of the back-reaction
of the medium on the motile particle. The value of C/y =150 is an order of magni-
tude larger than B/T and drops down to 100 at larger f. For C and D the smaller
background symbols indicate data from individual simulations.

with Ko and K; being the modified Bessel functions of the second kind,
and

(po +p(0, O)Ife_;

Dw= 2y, €T ©)
The decay length §is given by,
2Bp}
= 10
¢ Fop 10)

Since the fixed direction of motility breaks rotational invariance, it is
natural to expect an anisotropy in the density profile. However, what
comes as a surprise is that moving density profile breaks fore-aft
symmetry. This is most apparent when we set w=0", and use the

asymptotic expansion®
T, 1
— 4
2|z|e (1 8z >

for large z. We see immediately that in the moving frame, the density
profile in front to the motile particle is piled up and decays exponen-
tially over a scale & from the pile up. The larger the active force f, the
smaller is & implying a sharper pile up. However, behind the active
particle there is a long-range under-dense region, which decays as a
power-law |u|? (Supplementary Note 4).

Ko@)~ In
and

(143
K,(2) TN (1+82+ 12)

Knowing the density profile to linear order, we use (4) and (5) to
compute the velocity flow field of the passive fluid and the velocity of
the active particle. A comparison of the density profiles and the velo-
city flows with the simulation results is shown in Fig. 6A-F. The
agreement is satisfying; in particular the demonstration in Fig. 6C that
the excess density profile behind the moving active particle decays as
the advertised power-law. One may, in principle, improve on the linear
theory by setting up a diagrammatic perturbation expansion. How-
ever, since the linear theory compares well with the numerical simu-
lation of (17) and with the “exact” numerical solution of the nonlinear
equation (7) in d=1 (next section), we do not take this up here.

Accuracy of linear theory—comparison with “exact” numerical
analysis of nonlinear equation ind =1
A linear analysis in d =1, shows that the density profile is,

_(po*+p(0,0)f _u
pu)= Te ¢

=0 foru<o,

foru>0
13)

where the length scale is given by € = Bp3 /Tv,, (Supplementary Note 5).
The density piles up in front of the active particle and decays expo-
nentially ahead of it, while behind the active particle there is no wake.
We now check to see how this calculated profile compares with an
exact numerical solution of the nonlinear equation (7). The accurate
numerical solution of this nonlinear PDE requires some care due to
shock forming tendencies in the convective term (Supplementary
Note 6). The result for the density profile of the travelling pulse is
shown in Supplementary Fig. 5. The comparison with the linear theory
is quite good, the absence of the wake is vividly apparent in the one-
dimensional exact numerical solution (Supplementary Fig. 5).
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Fig. 6 | Density profile and flow field surrounding a single active particle
moving through the passive medium. A Density profile (heat map) and velocity
flow field (arrows, scaled for better visualisation) of the medium from simulations
(in the co-moving frame (u, w) scaled by the decay length £=14) at ¢ =0.45,T=0.1,
f=2.0,and 7~ «. B Corresponding density profile (heat map) and velocity flow field
(arrows, scaled for better visualisation) of the medium obtained from the linearised
hydrodynamic theory. C The linearised theory (inset) predicts that the excess
density of the passive medium is fore-aft asymmetric and shows an exponential
decay in front and an algebraic decay behind the moving active particle, which is

borne out by the simulations. The dark solid symbols show averages from multiple
simulation runs, together with standard deviation. D-F The profiles of excess
density and velocity components in the moving frame along u at w/§= 0" (red) and
w/§=0" (blue). Insets are the results from the linearised hydrodynamic equations.
The dark solid symbols show averages from multiple simulation runs, together with
standard deviation. The data presented here are averaged over time and 256
independent simulations and the errorbars, denoting the standard deviations, are
estimated from this ensemble).

Two active particles moving through the compressible medium
The fore-aft asymmetric long-range density wake around the motile
particle has an unusual effect on the interactions between two or more
motile particles. This is best illustrated by considering the dynamics of
two motile particles in a simplifying geometry where both particles
move in the same direction with their separation vector being parallel
or perpendicular to the direction of motion.

Let the trajectories of the two active particles be represented by
R;(?), Ry(?), in the limit of large persistence time, so that we can take the
orientations n; and n, to be time independent. To O(6p), these parti-
cles, individually, leave a time dependent anisotropic and fore-aft
asymmetric wake described by p(x, y, t), whose back-reaction on the
movement of the active particles themselves, is easily estimated

YR =fn, — CPoVPlself, = CPoVPh 2 (14)

YRy =f; — CpoVplselr, — CPoVPlr 1 15
where i < j denotes the effect of particlej on particle i. These equations
may be cast in terms of the relative coordinate R,,;=R; — R, and the
centre of mass R, = (R; + R,)/2. For the two geometries under con-
sideration, we find the following (details in Supplementary Note 4).

1. The separation vector between the leading particle 1 and the
trailing particle 2 is along the x direction, parallel to their direction
of motion (Fig. 7A).

We find that while the centre of mass velocity X, >0 (Fig. 7B
inset), the inter-particle separation X, decreases in time

(Fig. 7A), i.e., X <0, starting from the initial value, till it reaches
Xie1 = 1.5064€, which is a stable fixed point of the dynamics. This
corresponds to a bound state of the two particles in this
linearised theory, which appears to be consistent with the
simulations (Fig. 7C). The speed of approach of the particle 2 to
particle 1 first increases slowly and then rapidly decreases to
zero as the bound state is reached (Fig. 7C, inset). This
nonreciprocal sensing>*, is a consequence of the fore-aft
asymmetric wake and causes the trailing particle to catch up
with the leading one in finite time (Fig. 7B).

A dominant balance analysis of the equation for X, shows an
early time scaling of the form X, = |t—&*” as the particles
approach each other (Fig. 7C).

2. The separation vector between the particle 1 and the particle 2 is
along the y direction, perpendicular to their direction of
motion (Fig. 7D).

Here again the centre of mass velocity X, >0 (and is the same
as the single particle speed, Fig. 7E), and the inter-particle
separation Y, decreases in time (Fig. 7D), i.e., ¥, <0, starting
from the initial value. This leads to the trajectories of particles 1
and 2 converging towards each other in a symmetrical
manner (Fig. 7D).

An asymptotic analysis shows that the relative position Y,e < |
t-t{"* as t > t- (Fig. 7F).

The second case resembles the magnetic force between two
parallel wires carrying current in the same direction, and is a con-
sequence of the breaking of time reversal symmetry. Likewise, a pair of
active particles initially moving towards each other, will scatter off
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Fig. 7 | Dynamics of two particles moving through the passive medium. A-C.
Two active particles moving along the x-axis (the direction of their active forces
whose magnitude f=2, and large persistence time 7) with separation vectors par-
allel to the direction of motion. A Time dependence of the positions of the pair of
active particles (after subtracting the measured single particle displacement Xt),
along x. B The ratio of the particle velocities remains greater than one, indicating a
speed up of the trailing particle towards the leading particle, a manifestation of
nonreciprocity. Inset: the centre of mass velocity X, (£) remains positive and con-
stant (solid line is the prediction from theory). C The two active particles approach
each other in finite time ¢. The solid line, a prediction from theory, suggests a
scaling form X < |t — t|%, where a = 2/7. As the second particle approaches the first,
it forms a bound state with the first particle, characterised by the existence of a

stable fixed point at X, = 1.5064¢€ (inset), verified in the the numerical simulations
as a flattening of X, as t approaches t.. D-F Two active particles moving along the x-
axis with separation vectors perpendicular to the direction of motion (rest same as
above). D Time dependence of y-positions of the active particles showing con-
vergent trajectories. E The x-component of centre of mass velocity is positive and
constant, solid line is the prediction from theory. Inset shows y-component centre
of mass velocity is zero, indicating symmetric approach. F The two active particles
approach each other in finite time .. The solid line, a prediction from theory,
suggests that the relative position has a scaling form Y, |t - t.|*, where a =1/2

as t > t.. The data presented here are averaged over 256 independent simulations
and the errorbars, denoting the standard deviations, are estimated from this
ensemble.

(repel) and will slow down as they move away from each other. The
scattering of active particles in other geometries can also be worked
out to this order.

Discussion

In this paper, we have studied the dynamics of a dilute suspension of
active Brownian particles moving through a dense compressible pas-
sive fluid that dissipates momentum through friction. The dynamical
interplay between the active particles and the passive medium, not
only results in a remodelling of the passive medium, but also in a back-
reaction on the movement of the active particles themselves. Such
active ploughers show a jamming transition at fixed density of the
medium. In the unjammed phase, a moving active plougher generates
a fore-aft asymmetric density wake, which is the source of the long-
range nonreciprocal interaction between moving active particles
mediated dynamically through the passive compressible medium. This
emergent nonreciprocal interaction is a consequence of a dynamical
phase transition to a state with finite current. This leads to a non-
reciprocal sensing wherein a trailing particle senses and catches up
with a leading particle moving ahead of it. Further, the movement of
the active particle leaves a dynamical trace on the responsive medium,
these effects of nonreciprocity are more indelibly manifest in the
vicinity of the jamming-unjamming transition.

We recall that in (6) we have assumed that the direction of the
propulsion force is set by some mechanism internal to the active
particle and therefore independent of the passive medium. To
experience the full scope of nonreciprocal effects possible here, one
needs to extend the hydrodynamic equations (5), (6), to include an
active torque that drives n; to align along the direction of the smallest

(largest) density gradient V p—this will lead to both taxis and phoresis,
features that have been explored in refs. 3, 6 in other contexts. Such
considerations lead to a simple physical version of sense-and-capture,
even in the absence of any kind of chemical sensing.

The success of our hydrodynamic analysis motivates us to go
beyond the study of one and two active particles and look at many-
body effects™. Inref. 15, we had seen how the minority component self-
propelled particles cluster on account of activity; the long-range
nonreciprocal interaction observed here, will translate to a new kind of
nonreciprocal motility induced clustering®* of active particles mediated
by the passive medium. This and its relationship with the anisotropic
Burgers equation with coloured noise® will be taken up later.

Methods

Agent-based simulations

We work with a modified binary mixture (see Supplementary Note 1 for
details), at a fixed area fraction, ¢, where particles interact via a

potential,
o 2 o ) o —4
Vy i 46[/ <—[j> i UO ' UZ <—y> ' U4 <_y>
I I I
i i i

if ry<rc; or O otherwise. We fix the energy and length scales to be in
the units of exp and o, respectively.

Of these a small fraction of particles ¢, is made active—their
dynamics is described by active Brownian particles (ABP) (see Sup-
plementary Note 1 for details) immersed in a background of passive
particles. All particles are subject to a thermal noise 8 of zero mean and

6)
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variance equal to 2yT (setting kg =1), obeying FDT. The subset i € A of
ABPs are subject to additional active stochastic forces
f;=fn; =f (cos 6;, sinB;). The orientation of the propulsion force 6;
undergoes rotational diffusion, described by an athermal noise &, with
zero mean and correlation (§;(6)§;(t)) =2r*16,~j~6(t —t).

The full dynamics is described by the Langevin equation,

N

mx; = — yX; — aij% Vit Lien +9;, a7)
0,=& foric A
where 1, is the indicator function, which ensures that the active
forces are only imposed on particles i belonging to the active set A.

We perform Brownian dynamics (BD) simulations at fixed particle-
number, volume of the system and temperature of the heat-bath (NVT)
in 2-dimensions using a square box of reduced length Ly =45 and 90,
with periodic boundary conditions (PBC). For all the simulations rela-
ted to Figs. 1and 2, we keep the area fraction of active particles fixed at
$,=0.017 (dilute limit), and vary the number of passive particles
constituting the medium to control the overall density or area fraction
¢. The simulations to generate data for Figs. 3, 4, 5, 6 are performed
with one active particle in the passive medium.

Numerical solution of nonlinear hydrodynamic equations
ind=1

A finite volume discretization with an exponential scheme for the
convective flux was used to numerically solve the 1-dimensional non-
linear hydrodynamic equations (see Supplementary Note 6). The flux
at the interface of the i and (i-1)™ grid in this scheme is given by

D . .
Je= 5x (Bp™' - 4p")

_ Pe (18)
A= ePe —1
B=A+Pe,

where Pe = Y&X js the Péclet number and Ax is the grid spacing. This
scheme guarantees positive solutions and has low diffusive error as the
flux is formulated using the exact solution. A first order temporal
discretization was used in combination with a sweep between each
iteration using Newton’s method. We used the PDE solver available in
the NIST-FiPy package to obtain the numerical solutions.

Data availability

No additional data was used besides the results of numerical simula-
tions using the parameters described in the text. Additional summary
statistics of the data plotted may be available upon reasonable request.

Code availability
All code used to produce these results is available at https://github.
com/jyotiprasad/UnjammingEmergentNonreciprocity.
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