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The rapid improvements in single cell sequencing technologies and analyses afford greater scope
for dissecting organoid cultures composed of multiple cell types and create an opportunity to
interrogate these models to understand tissue biology, cellular behavior and interactions. To this
end, retinal organoids generated from human embryonic stem cells (hESCs) were analyzed by
single cell RNA-sequencing (scRNA-Seq) at three time points of differentiation. Combinatorial data
from all time points revealed the presence of nine clusters, five of which corresponded to key ret-
inal cell types: retinal pigment epithelium (RPE), retinal ganglion cells (RGCs), cone and rod photo-
receptors, and Miiller glia. The remaining four clusters expressed genes typical of mitotic cells,
extracellular matrix components and those involved in homeostasis. The cell clustering analysis
revealed the decreasing presence of mitotic cells and RGCs, formation of a distinct RPE cluster,
the emergence of cone and rod photoreceptors from photoreceptor precursors, and an increasing
number of Miiller glia cells over time. Pseudo-time analysis resembled the order of cell birth dur-
ing retinal development, with the mitotic cluster commencing the trajectory and the large major-
ity of Miiller glia completing the time line. Together, these data demonstrate the feasibility and
potential of scRNA-Seq to dissect the inherent complexity of retinal organoids and the orderly
birth of key retinal cell types. STEM CELLS 2019;37:593-598

SIGNIFICANCE STATEMENT

The rapid improvements in single cell sequencing technologies have opened new opportuni-
ties for dissecting the complexity of organoids derived from stem or primary cells. To demon-
strate the feasibility of this approach, single cell RNA-sequencing on retinal organoids was
performed, which revealed the presence of multiple retinal cell types and their sequential
emergence during the differentiation time course. Data show that this method has great
potential for identifying multiple cell types arising within complex organoids, enabling detailed
molecular and temporal systematic studies and close comparisons between in vitro derived
tissues and in vivo organogenesis.

being able to generate photoreceptors and reti-
nal pigment epithelium (RPE) [2,3]. The subse-

INTRODUCTION

It has been estimated that 285 million people
are affected by visual impairment globally, with
retinal diseases accounting for approximately
26% of blindness [1]. Many inherited and age-
related retinal dystrophies culminate in the loss
of photoreceptors [2,3]. There are currently no
treatments to reverse this degeneration, thus
cell replacement has become a prerequisite on
the path toward therapeutic transplantations.
The derivation of human embryonic stem cells
(hESCs) in 1998 [4] and induced pluripotent
stem cells (hiPSCs) in 2007 [5] has provided the
much needed breakthrough as both cell types
can be expanded indefinitely in vitro as well as
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quent development of protocols to derive
three-dimensional retinal organoids from hESCs/
hiPSCs demonstrated that structures akin to the
developing eye and laminated retina arise and
many retinal cell types are produced [6,7].
Despite these rapid advancements, methods to
accurately define and characterize the cells that
arise within these organoids over time have not
been fully realized.

The improvements in next generation
sequencing technologies and protocols for the
application of these at a single cell level have
broadened their application to multiple systems
[8,9]. A few pioneering studies have applied
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Figure 1. Clustering analysis reveals the presence of nine cell clusters. Seurat was used to align all time points to generate a combined
data set. Clusters were then found and marker genes for each cluster identified and used to annotate them. The top 10 markers used for
cluster annotation are shown in Supporting Information Table S1.
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Figure 2. Comparison of individual clustering analysis at days 60, 90, and 200 of differentiation. Clusters for each time point were gener-
ated using Seurat and annotated using known retinal marker genes. The cells at different time points for each individual data set were
down sampled to an equal number of 578 to ensure that the number of cells did not affect the number of clusters generated.

single cell RNA sequencing (scRNA-Seq) in human retinal tissue complexity of retinal organoids is yet to be fully resolved by
and organoids [10-12]. These have largely focused on enriched scRNA-Seq. In this study we used high throughput Integrated
specific cell types through the use of reporters or bait genes. Fluidic Circuits (IFC) for scRNA-Seq with a capacity of 800 capture
Despite these important studies, we postulated that the full sites to interrogate hESC-derived retinal organoids through a
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Figure 3.

DAY 200

BRIGHTFIELD IMAGE
RETINAL ORGANOID

Immunohistochemical analysis of retinal organoids through the differentiation time course. Sections through retinal organoids

at day 60 (A) and day 90 (B) using antibodies against: KI67 (red), CRX (green), Recoverin (red), NRL (red), RXRy (red), HuC/D (red), and
Vimentin (red) along with the nuclear stain Hoechst 33342 (blue). (C): Sections through retinal organoids at day 200 showing expression
of selected retinal markers using antibodies against CRX (green), KI67 (red), Recoverin (red), rhodopsin (RHO; green, white arrowhead),
OPN1LW/MW (red, white arrow), OPN1SW (red), PKC-a (green, white arrow), VSX2 (red), PROX1 (red, white arrow), AP2a (green, white
arrow), HuC/D (red), brightfield image of a retinal organoid, Vimentin (red), and CRALBP (green). Scale bars = 50 pm except OPN1SW scale
bar = 20 um and brightfield image retina organoid at day 200 scale bar = 100 pm.

differentiation time course. Using a greater cell capture number
and an unselected single cell population allowed us to perform
cell typing of the organoid composition and to follow the devel-
opment of cell type emergence through the differentiation.

MATERIALS AND METHODS

A detailed description of all experimental procedures is pre-
sented in the Supporting Information.

www.StemCells.com

RESULTS AND DISCUSSION

A hESC (H9) cell line was differentiated to retinal organoids.
Samples were collected at 60, 90, and 200 days, dissociated,
partitioned into single cells using the Fluidigm C1 Single-Cell
mRNA-Seq HT IFC and processed for scRNA-Seq. Following
quality control and filtering (Supporting Information Fig. S1),
data from scRNA-Seq of each time point were normalized
(Supporting Information Fig. S2) and then merged using the
Seurat package to allow analysis of a higher cell number
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Figure 4. Pseudo-time analysis reveals the emergence of various retinal cell types during the differentiation process. (A): A pseudo-time
trajectory from the RPE, RGC, Miiller glia, cone, and rod photoreceptor clusters was constructed using monocle. (B): Order of cell emer-

gence is shown by day and cell type.

(1,976 single cells). The findCluster function revealed nine distinct
clusters (Fig. 1; Supporting Information Table S1 and Fig. S3).
The findMarkers function found the marker genes for each clus-
ter [13]. The top 10 marker genes were used to manually iden-
tify each cluster. Five of the clusters could be assigned to a
certain cell type, with cluster 0 identified with genes commonly
expressed in Miiller glia, cluster 1 to cone photoreceptors, clus-
ter 2 to retinal ganglion cells (RGCs), cluster 3 to rod photore-
ceptors and cluster 4 to RPE cells (Fig. 1). Cluster 5 expressed
a number of extracellular matrix (ECM) genes shown to be
expressed in retinal cells [14, 15], whereas cluster 6 expressed
genes associated with mitosis, indicating a progenitor popula-
tion. The remaining minor clusters 7 and 8 were comprised
largely of ECM components, signaling molecules and metabo-
lites, the majority of which have been proposed to play a role
in retinal homeostasis (for example [16—-19]).

Furthermore, clustering analyses were then performed on
each time point (Fig. 2). This was compared with the combined
data by superimposing the original clusters (identified in Fig. 1
and Supporting Information Fig. S3) to those identified at each
individual time point (Fig. 2). This analysis revealed changes
over the timeline of differentiation. For example, mitotic cells
and RGCs decreased over time, photoreceptors resolved into
cones and rods, a distinct RPE cluster formed and Mdller glia
cells increased toward day 200, recapitulating retinal develop-
ment where Miiller glia are the last retinal cell type to become
postmitotic [20-22]. To confirm this increase in complexity the
percentage of the cell types at each time point were compared.
Mitotic cells decreased from 7.7% at day 60 to 2.4% at day
200, RGCs decreased from 21% at day 60 to 6.6% at 200 and
Miller glia increased from 43.7% at day 60 to 53% at day 200.
This was corroborated by immunohistochemical analysis, which
indicated the decreased presence of mitotic cells and RGCs from

©2018 The Authors. STEM CELLS published by
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day 60 to day 200, stepwise photoreceptor differentiation
(shown by the presence of Recoverin photoreceptor precursors,
NRL rod precursors and RxRy cone precursors at days 60 and
90 and separation of rod and cone photoreceptors at day 200)
and increased Miiller glia presence from day 60 to 200, shown
by Vimentin immunostaining from day 60 to 200 and the
expression of CRALBP at day 200 (Fig. 3A, 3C). It is interesting
to note that although horizontal (PROX1), rod bipolar (PKC-),
and amacrine (AP2a)-like cells were detected by immunohisto-
chemical staining these were not depicted by scRNA-Seq analy-
sis. Therefore, to be able to resolve such clusters it may be
necessary to increase the cell numbers analyzed. Although the
decreased presence of mitotic cells during the differentiation
time course was expected, that of RGCs was not and could be
due to either culture conditions, which are not able to maintain
this cell type for prolonged periods, or programmed cell death
as seen during development [20, 23].

Interestingly, this analysis also depicted cell types with
transcriptional profiles shared by several clusters (Fig. 2). For
example, at day 60, RPE shared transcriptional similarity with
cluster 7 and ECM with cluster 8. At day 90, cell clusters with
transcriptional profiles shared by Miiller glia and photorecep-
tors, corroborating findings reported in adult murine retina
[24] but not transcriptionally documented in human retinal
development as yet, and Miiller glia and cluster 8 were identi-
fied. Over time, the shared transcriptome diminished and dis-
tinct clusters emerged, with the exception of Miiller glia cells,
which retained a shared transcriptional profile with clusters
7 and 8.

As the complexity of the organoids increased and distinct
cell types could be resolved over time additional pseudo-time
analysis was conducted. Monocle [25] was used to analyze the
highly variable genes from the mitotic, RPE, RGC, Miiller glia,
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cone, and the rod clusters (Fig. 4A). This analysis identified the
mitotic cluster as the proliferating population from which the
rest of the cells emerged. A Miiller glia subpopulation resides
next along this branch. This is potentially due to the expres-
sion of genes commonly expressed in retinal progenitor cells
(RPCs) within the Muller glia cluster (Supporting Information
Fig. S4), corroborating published data for murine Miller glia
cells [24,26]. Continuing down this branch, a few cone-like
photoreceptors begin to arise, here the pseudo-time trajectory
forked with an upper branch bearing the majority and the
remaining Miiller glia cells along with minor cluster 7, which
was characterized by genes that have been shown to be
involved in retinal homeostasis, in which Mdller glia play an
important role. The lower branch is initially populated with
RGCs and then terminates with two closely related clusters
containing the rod and cone photoreceptors. This pseudo-time
trajectory resembles the order of retinal cell development with
a progenitor population giving rise firstly to RGCs, followed by
cones, then rods and finally the majority of Miller glia, which
are situated on a separate branch, potentially indicating their
unique role in retinal development and homeostasis, and thus
their transcriptome. The RPE and ECM clusters reside outside
of this trajectory. RPE are known to differentiate relatively
early in development during optic cup formation [27] and thus
have a more distinct transcriptome. The genes from the ECM
cluster are not exclusive to the retina, being common ECM
components expressed throughout many tissue types and thus
by ontology are unlikely to be associated with the retina. This
is likely to explain why these two clusters are not associated
with the time line (Fig. 4A). The cell ordering plot (Fig. 4B) fur-
ther corroborates the order of cell type emergence within the
organoids with mitotic cells, some Miiller glia and cluster 8 pre-
sent initially at the first time point. Cone photoreceptors and
RGCs are next, arising at day 60, followed with diminishing RGC
birth and the majority of cones appearing on day 90, alongside

the emergence of rods and more Miiller glia. A large number
of Miiller glia cells (along with some rods) were present at day
200 as the later cell types to mature.

CONCLUSION

Our data demonstrate the feasibility and potential of scRNA-
Seq to dissect the inherent complexity of retinal organoids and
the orderly birth of key retinal cell types therein, which reca-
pitulates the order of retinal development.
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