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The topology of fullerenes
Peter Schwerdtfeger,1,2∗ Lukas N Wirz1 and James Avery3

Fullerenes are carbon molecules that form polyhedral cages. Their bond structures
are exactly the planar cubic graphs that have only pentagon and hexagon faces.
Strikingly, a number of chemical properties of a fullerene can be derived from its
graph structure. A rich mathematics of cubic planar graphs and fullerene graphs
has grown since they were studied by Goldberg, Coxeter, and others in the early
20th century, and many mathematical properties of fullerenes have found simple
and beautiful solutions. Yet many interesting chemical and mathematical problems
in the field remain open. In this paper, we present a general overview of recent
topological and graph theoretical developments in fullerene research over the
past two decades, describing both solved and open problems. © 2014 The Authors.
WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.
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INTRODUCTION

Buckminsterfullerene C60 - Ih is a convex and
‘spherical’ molecule (in the sense that the atoms

lie on the surface of a sphere) with a highly symmetric
icosahedral structure. It was originally conjectured
independently by Ōsawa in 19701,2 and Stankevich,
Bochvar, and Galpern in 1973,3,4 discovered by
mass spectrometry in 1985 by Kroto et al. through
laser evaporation of graphite,5–8 and synthesized
in larger amounts by Krätschmer et al.9 in 1990
(the first mass-spectroscopic studies on small car-
bon cluster were performed by Mattauch et al.10 in
1943). Fullerenes are the polyhedral analogs to the
two-dimensional graphene sheets.a They occur in
nature and have been detected in interstellar space,
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albeit in minute amounts.11–14 In general, (classical)
fullerenes are cage-like, hollow molecules of pseudo-
spherical symmetry consisting of pentagons and
hexagons only, resulting in a trivalent (and in the
most ideal case) convex polyhedron with exactly
three edges (bonds) joining every vertex occupied
by carbon, idealized as sp2 hybridized atoms.15 In
graph theoretical terms, fullerenes belong to the
class of cubic, planar, three-connected, and simple
graphs, consisting of 12 pentagons only (the 12
Pentagon Theorem) and F6 hexagons. This gives
the general formula of C20+2F6

(F6 ≥ 0 and F6 ≠ 1) for
carbon fullerenes, with the number of hexagonal faces
F6 = 20 for C60. The smallest possible fullerene is C20
(F6 = 0), a dodecahedron consisting of 12 connected
pentagons, and the only Platonic solid in the family
of fullerene polyhedra.16 The truncated icosahedron
C60 belongs to the class of Archimedean solids.17

C60 - Ih is the minimal arrangement such that no two
pentagons share an edge (isolated pentagons): The
edges of each pentagon join only hexagons, and the
edges of each hexagon alternately join pentagons and
hexagons. Thus, it is the smallest member in the class
of fullerenes fulfilling the so-called isolated pentagon
rule (IPR), which brings thermodynamic stability to a
fullerene cage.18
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FIGURE 1 | Number of distinct (non-isomorphic) fullerene isomers
CN (with and without fulfilling the IPR) with increasing number of
carbon atoms N up to N = 400 (double logarithmic scale). (Data taken
from the House of Graphs Ref 34)

There are infinitely many fullerenes, the num-
ber of isomers growing as 

(
N9

)
for N carbon

atoms as shown in Figure 1.19 The reason for the
N9 growth comes from algebraic geometry, and is
discussed below. These isomers come in many dif-
ferent shapes depending on the distribution of the
pentagons as shown in Figure 2.b As experimen-
tal techniques advance to synthesize new fullerene
isomers21 with many interesting chemical and phys-
ical applications,22–25 see for example the recent
bottom-up synthesis of C60 by Scott et al.26 and
Kabdulov et al.,27 one naturally wants to know more
about their thermodynamic stability and electronic
properties.28 As the isomer space rapidly grows into
the millions and beyond, this becomes a daunting task
for larger fullerenes. Even when the search is restricted
to fullerenes that have isolated pentagons, known to
yield the best stability, the number of candidates
for most thermodynamically stable isomers is huge,
many orders of magnitude too large for quantum
chemical methods to be a viable means of analyzing
stability. But, remarkably, the fullerene graphs con-
tain all the information we need, and we are able to
sort through the millions of isomers, finding a few
candidates for the most stable, by way of simple,
easily computed topological indicators,29,30 such as
the neighbor indices for pentagons or hexagons,31 or
the incremental assignment of heat of formations to
certain face patches.32,33

There has been an intense activity in the field
of topological and graph theoretical descriptions
of molecules such as fullerenes29,31,36–40 over the
past 20 years, to the extent that it has become a
major sub-discipline within mathematical chemistry.
It comes perhaps as a surprise that graph theory

applied to molecular structures has not yet made it
into main-stream university teaching. Furthermore,
since the publication of the standard reference work
in this area, An Atlas of Fullerenes by Fowler and
Manolopoulos,31 there has not been a comprehensive
review on this subject highlighting the many activi-
ties in recent times. In contrast, there are excellent
reviews and books available on the chemistry and
physics of fullerenes22,23,41–47 or on their electronic
structure calculations.28 In this overview we aim to
close this gap and report on the many new and exciting
developments in the topological and graph theoretical
treatment of fullerenes, which have taken place over
the past decade or so.c

TOPOLOGICAL PROPERTIES
OF FULLERENES

A Short Introduction to Graph Theory
and Embeddings
A graph is a pair G = ( , ), where  defines a set of
vertices, and  is a set of edges, each an unordered pair
connecting two vertices. If a graph can be drawn in the
two-dimensional plane without edge crossings, then it
is called planar, and in this case it can also be drawn
using only straight lines. A planar embedding is a
map  → ℝ2 assigning a 2D-coordinate to each vertex
such that straight-line drawings of the edges do not
cross. For planar graphs in general, planar embeddings
are not unique. But whenever at least three vertices
must be removed before the graph separates into
two disconnected components, the graph is called
three-connected, and there is essentially only one
wayd to embed it in the plane.48 Because of this, a
three-connected planar graph has a well-defined set of
faces,  . We can therefore represent a three-connected
planar graph as G = ( ,  , ) without ambiguity, and
will do so where convenient.

Whenever a graph is planar, it can also be embed-
ded onto a surface of a sphere without edge cross-
ings, and vice versa. Once again, this embedding is
unique (in the same sense as for a planar embed-
ding) if and only if the graph is three-connected,
and we obtain the same faces. In fact, the graphs
describing three-dimensional polyhedra are exactly
the three-connected planar graphs,49 and are therefore
called polyhedral graphs.

The number of neighbors to a vertex v, that is,
the number of edges incident to v, is called its degree,
abbreviated as deg(v). If every vertex of a graph G
has the same degree k, then G is called k-valent or
k-regular. The special case of three-valent graphs is
called cubic, and has a host of attractive mathematical
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FIGURE 2 | A selection of different 3D shapes for regular fullerenes (distribution of the pentagons DP are set in parentheses). ‘Spherically’ shaped
(icosahedral), for example, (a) C20-Ih, (b) C60-Ih, and (c) C960-Ih (DP = 12× 1); barrel shaped, for example, (d) C140-D3h (DP = 6× 2); trigonal
pyramidally shaped (tetrahedral structures), for example, (e) C1140-Td (DP = 4× 3); (f) trihedrally shaped C440-D3 (DP = 3× 4); (g) nano-cone or
menhir C524-C1 (DP = 5+ 7× 1); cylindrically shaped (nanotubes), for example, (h) C360-D5h, (i) C1152-D6d , (j) C840-D5d (DP = 2× 6). The fullerenes
shown in this figure and throughout the paper have been generated automatically using the Fullerene program.35

properties, not least of which is their deep connections
to algebraic geometry.19

Fullerenes have the neat property that the graphs
formed by their bond structure are both cubic, planar,
and three-connected, for which all faces are either
pentagons or hexagons. Because of this, the math-
ematics describing them is in many cases both rich,
simple, and elegant. We are able to derive many prop-
erties about their topologies, spatial shapes, surface,

as well as indicators of their chemical behaviors,
directly from their graphs.

Planar connected graphs fulfil Euler’s polyhe-
dron formula,

N − E + F = 2 (1)

with N = || being the number of vertices (called the
order of the graph), E= || the number of edges, and
F= | | the number of faces (for fullerenes these are
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(a) (b)

FIGURE 3 | Planar embeddings of fullerene graph and dual (blue color and dotted lines for the dual representation), and 3D embeddings of the
duals: (a) C20-Ih, for which the dual is the icosahedron; (b) C60-Ih, for which the dual is the pentakis-dodecahedron.

(a) (b) (c)

FIGURE 4 | Planar embeddings (no crossing edges) for three different fullerenes obtained from a perspective projection. (a) icosahedron C20-Ih;
(b) truncated icosahedron C60-Ih; (c) C540-Ih.

hexagons and pentagons). The hand-shaking lemma
in graph theory tells us that

N∑
i=1

deg
(
vi

)
= 2E (2)

Since for fullerenes deg(vi)=3 for all vertices, we
obtain50

E = 3
2

N, F = 1
2

N + 2 = 1
3

E + 2, and E = 3F − 6
(3)

Hence, for fullerenes and fulleroidse one has an
even number of vertices. The total number of faces is
F= F5 + F6, where F5 and F6 are the number of pen-
tagons and hexagons respectively. From this we derive
from Eq (3) E=3F5 + 3F6 − 6 and N= 2F5 + 2F6 −4.
On the other hand, each pentagon (hexagon) has five
(six) edges, which gives E= (5/2)F5 + 3F6. From these
equations together with Eq (1) we obtain F5 =12
for regular fullerenes (the ‘12 Pentagon Theorem’ for
fullerenes), which gives the number of hexagons as
F6 = (N− 20)/2 with N≥ 20, and the general formula
C20+2F6

for fullerenes. Hence, from the fact that we
only allow for cubic planar graphs consisting of pen-
tagons and hexagons, we restrict the number of pen-
tagons to exactly 12 (no more and no less!), and every

addition of a hexagon adds two new vertices. More-
over, N= 22 with just 1 hexagon and 12 pentagons
is not valid, but every number of hexagons two or
greater yields at least one fullerene.51 The most stable
C22 molecule is, however, a cage-like fulleroid with a
four-membered ring.52

In this article, we will often work with the dual
graph. The dual graph G* of a planar connected
graph G has a vertex corresponding to each face
of G, and an edge joining two neighboring faces
in G. By this process, the old vertices become the
new faces. The dual of a planar graph is itself a
planar graph, and for fullerenes it is a triangulation
with 12 vertices of degree 5 and the remaining of
degree 6. For planar graphs in general, the dual
is not unique, but as discussed above, it is unique
for three-connected graphs such as fullerenes, and
hence the dual operation is well defined.48 The dual
operation is an involution, that is, (G*)*=G, so we
can think of the dual as just another representation
of the same graph. Figure 3 shows the duals of two
representative fullerenes with their corresponding 2D
graph representation discussed in the next section.

A useful representation of a graph is the adja-
cency matrix Aij well known to chemists, as it is
widely used in Hückel theory of conjugated organic
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(a) (b)

FIGURE 5 | (a) Schlegel projection of C60-Ih. (b) Cone projection of disk-shaped C72-D6d .

molecules. The adjacency matrix is a symmetric
matrix defined by Aij =1 if the graph G contains an
edge vi − vj, and Aij = 0 otherwise. It is equivalent to
the edge-set representation, and is much easier to work
with in many settings. As the number of edges for
fullerenes is E=3N/2, the adjacency matrix is very
sparse. If two graphs G1 and G2 are isomorphic,
the corresponding adjacency matrices A1 and A2 are
related by vertex permutation, and thus share the same
set of eigenvalues and eigenvectors. Matrices play a
special role in chemical graph theory, and the reader
is referred to Ref 53 for more details.

Drawing Fullerene Graphs: Methods
for Planar Embedding
Planar embeddings can be drawn on paper and give
us a way to visualize the structures of planar graphs.
However, not all choices of embeddings are equally
informative. We want the drawings to be simple,
not too cluttered, and to expose as much as we can
of the graph’s structure and symmetry. In general
the full symmetry group can not be realized in two
dimensions, but we can find embeddings that show as
much of it as possible. Figure 4 shows planar drawings
of three icosahedral fullerenes, C20 - Ih, C60 - Ih, and
C540 - Ih, exposing 10-fold D5-symmetry out of the full
Ih group. In this section, we will discuss methods for
constructing good planar embeddings.

While a small graph can easily be drawn by
hand, larger graphs such as C540 shown in Figure 4(c)
require a computer algorithm and a drawing pro-
gram. The first method we will discuss is called the
Schlegel projection, and requires first an embedding
of the graph as a three-dimensional polyhedron. In
1886, Victor Schlegel showed that a planar graph can
be obtained from a three-dimensional polyhedron by
projection in the following way: A point −→x 0 is placed
slightly above one of the faces, and a plane P is cho-
sen to lie below the polyhedron. Lines are then drawn
from −→x 0 through each of the polyhedron’s vertices.
The intersection of each line −→x 0 −

−→x v with P defines
the 2D coordinate of the vertex v. If −→x 0 is chosen

sufficiently close to the face, and if the points of the
polyhedron lie on a sphere, the resulting 2D embed-
ding will be planar. While Schlegel only proved that
the projection produces a planar layout when the ver-
tices lie on a sphere, it still works in many cases where
this is not the case, and the method is widely used
to the extent that planar graph embeddings some-
times (incorrectly) are called Schlegel diagrams. How-
ever, Schlegel diagrams are specifically the embeddings
that result from the Schlegel projection. The Schlegel
projection is illustrated in Figure 5(a).

A problem with the Schlegel projection is that
it often fails, and produces crossing edges, when
used with many non-spherical polyhedra or when the
parameters are not well chosen. The cone-projection
method, shown in Figure 5(b), which projects the
vertices out on an enveloping cone of the fullerene
polyhedron and then down onto a plane, seems to be
more robust.35

Both the cone-projection and the Schlegel projec-
tion require first a polyhedral embedding of the graph,
and on top of that often necessitate bit of hand-tuning
to produce a planar embedding. The third method
we mention is called the Tutte embedding,54 and is
guaranteed to always yield a planar embedding for
three-connected planar graphs. In the Tutte embed-
ding, one fixes the coordinates of a single, outer face,
and solves a sparse linear system∑

j

Tij
−→x j =

−→y i (4)

such that in the result, every vertex is placed in
the barycenter of its neighbors. For fullerenes,
Tij = 𝛿ij −Aij/3 and −→y i = 0 for every i where vi is
not a fixed vertex, and for the vertices vi on the
outer face, Tij = 𝛿ij and −→y i is the fixed coordinate.
While the Tutte embedding is guaranteed to be planar,
the solution to the linear system results in expo-
nential crowding of the vertices when embedding
large graphs, making the result difficult to interpret.
Hence, it is useful to follow the Tutte embedding by
an optimization to make the face sizes more even.35
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FIGURE 6 | (a) Canonical face spiral for C60-Ih. (b) The first fullerene (C28-D2) with a failing face spiral.

We note that there are many different graph drawing
algorithms available, each with advantages and dis-
advantages, but none that are guaranteed to always
yield good results.54–57

The Large Isomer Space
How does the number of CN-isomers grow as we
increase the number of vertices N? Naively one might
assume a hypothetical sphere of ‘connected’ hexagons
(which is of course impossible because of Euler’s
theorem) and substitute 12 hexagons by pentagons
to obtain a set containing all possible fullerene iso-
mers fulfilling Euler’s theorem (just like playing Lotto),
we obtain an upper bound for the number of isomers
of the order 

(
N12

)
. This is, however, three orders

of magnitude too large, but the proof is nontrivial.
In 1998, William Thurston showed that all the trian-
gulations of the sphere with vertex degree at most 6
form a lattice of integer points in a complex hyperbolic
space C(1, 9) through a parameterization as described
in Ref 19. The triangulations with N vertices or less
correspond to the lattice points inside the intersection
between a certain cone and a ball of radius

√
N in this

space. Hence their number is roughly proportional to
N10, and the number of triangulations with exactly N
vertices is roughly proportional to

Δ
(
N10) = N10 − (N − 1)10 = 10N9 − 45N8

+ 120N7 + · · · (5)

or, in short, 
(
N9

)
. Because they are the largest

class of the finitely many triangulation classes with
vertex degree six or less, the fullerenes have the
same asymptotic count. Hence, the number of CN
isomers grows as 

(
N9

)
. We note in passing that the

connection of fullerenes to combinatorial manifolds
is a deep one and gives rise to many of the beautiful
mathematical properties exhibited by fullerenes.

The high order polynomial growth of fullerene
isomer counts makes it difficult to establish a com-
plete database for fullerene graphs up to high vertex
numbers.34 Moreover, the proportion of IPR isomers
to the total number of isomers grows with increasing
N, gradually approaching 1 with increasing N, as is
shown on Figure 4.

Face Spiral Representations of Fullerene
Graphs
One of the first methods for encoding fullerene
graphs was the face spiral algorithm by Manolopou-
los et al.,58 which unwinds all faces of a fullerene ‘like
an orange peel’ (the Manolopoulos face spiral algo-
rithm). More specifically, starting with a sequence of
three mutually adjacent faces, new faces are added to
the string such that the next face is adjacent to the
previous one and the one that was added to the string
earliest, and that has neighboring faces left which are
not part of the spiral string (yet). As the result, one
obtains a string of length F of 12 fives and F− 12 sixes,
corresponding to the sizes of faces.

There are 6N possible spiral starts resulting in up
to 6N spirals per fullerene graph. In most fullerenes,
some spirals cannot be completed because the two
rules for choosing the next face cannot be both ful-
filled. Since a fullerene spiral always consists of 12
fives and N/2−10 sixes, this spiral string can be abbre-
viated as a list of the 12 pentagon positions, called the
face spiral pentagon indices (FSPI) {Sn|n= 1, … , 12}.
The lexicographically smallest of all successful spi-
rals is the canonical spiral representation of the graph.

Volume 5, January/February 2015 © 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd. 101
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(a) (b)

FIGURE 7 | B3LYP optimized structures for the two smallest non-spiralable fullerenes (a) C380-T and (b) C384-D3 (see Ref 59 for details).

For example, for C60 we have the canonical FSPI of
{1, 7, 9, 11, 13, 15, 18, 20, 22, 24, 26, 32} as shown in
Figure 6.31

While it was initially conjectured that every
fullerene can be unwound into a face spiral58 (for good
reason: the first counterexample comes after over 1012

isomers) there is an exceedingly small proportion of
fullerene graphs59 (but infinitely many in total) that do
not admit a face spiral,60 that is, where all 6N spiral
starts fail. See Figure 6 for a case where a face spiral
fails. The smallest of these unspiralable fullerenes
is C380 - T.61 Manolopoulos et al.,60 Fowler et al.,62

Yoshida et al.,63 and Brinkmann et al.64 compiled lists
of non-spiral fullerenes with up to 1000 atoms and
selected point groups (all T+, all isolated pentagon
triple (IPT) fullerenes with D2 and T symmetry, all
D3+, and all truncated IPT fullerenes respectively).
Two of those are shown in Figure 7.

In order to encode any fullerene graph, it is
necessary to extend the face spiral algorithm to a gen-
eral version in which the spiral may ‘jump’ from one
face to a non-adjacent face. Both Brinkmann65 and
Fowler et al.66 published general face spiral algo-
rithms for cubic polyhedral graphs, including fullerene
graphs. Fowler’s algorithm extends the two above
mentioned rules such that the subgraph that has not
been added to the spiral yet never gets disconnected,
and as a result the spiral never gets stuck. Brinkmann’s
algorithm, in contrast, adds faces as defined by the
non-general version, but defines how to proceed if
all neighbors of the current face have been added
to the spiral already. Both algorithms yield the same
spiral string as the non-general algorithm if no jump
is required.

For the non-general as well as both general
algorithms for finding the canonical face spiral of a
graph, there is an inverse algorithm that efficiently
regenerates the graph from the (general) spiral string
representation. With the extension to general spirals,

all fullerene isomers with any vertex number can
be generated. In addition, all the information of the
fullerene graph is contained in a general face spiral
consisting of 12+ numbers (12 for most fullerenes).
This makes it rather convenient for database storage
as the face spiral uniquely defines the fullerene.

In a similar way to face-spirals we can intro-
duce vertex spirals (or Hamilton spirals) useful for
identifying locations of substituents (such as hydro-
gen) or reaction centers67 (for details see Ref 68).
For fullerenes with no vertex spirals the scheme can
be extended to general spirals with jumps similar to
general face spirals.

Generation of Fullerene Graphs
In order to explore chemical, physical, or graph
theoretical properties for a wide range of fullerenes,
it is important to have access to a list of (stored)
fullerene graphs. For this, one requires an exhaustive
and efficient generator for all fullerene isomers of
a given vertex number N. The general face spiral
algorithm is well suited for compactly storing and
recreating specific fullerene graphs. It also allows for
sorting all isomers of CN for a given vertex number N
according to their FSPIs including information about
jumps if required. It is, however, extremely inefficient
to generate all isomers CN directly through a face
spiral algorithm. In the non-general case one attempts
to create graphs from

(
F
12

)
spiral strings while the

number of non-isomorphic graphs only grows ∼N9.
A large and quickly growing portion of all potential
spiral strings are either non-canonical spirals, dupli-
cates or are not successful for coding a fullerene.
Including general spirals increases the overhead by
two orders of magnitude, as jumps could be inserted
at any step and with arbitrary lengths l<N.

A different approach to generating fullerene
graphs is by adding faces to an existing graph, while

102 © 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd. Volume 5, January/February 2015
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considering different sites for addition at each step.
Liu et al.69 introduced a method which grows a graph
starting with a single face and thus only reaches a
fullerene graph in the last step. Brinkmann et al.70 use
patches, rather than single faces, as building blocks.
These patches can be obtained by subdividing existing
fullerene graphs.

Further development in efficient graph gener-
ation came from transforming an existing fullerene
graph into a new, larger one by adding faces. Using
C24 as a ‘seed’, Brinkmann et al.71 were able to gen-
erate almost all fullerene graphs up to C200. However,
three graphs were not accessible by the applied set of
transformations. To cure this shortcoming, Hashem-
inezhad et al.72 defined a set of patch replacements
(or growth operations) which, starting from either
C20 or C28 - Td, yield every fullerene in a systematic
way. The set consists of one single operation that
elongates a nanotube with minimal caps, one class
of linear generalized Stone-Wales transformations73,74

that depend on one parameter, and one class of bent
generalized Stone-Wales transformations that depend
on two parameters. Brinkmann et al.75 used this set
of growth operations to define a fast and com-
plete algorithm that recursively generates all fullerene
isomers up to a given maximal N. The algorithm
prunes the recursion tree in such a way that the only
one representative of each isomorphism class is ever
considered. Without such a scheme, exhaustively gen-
erating all fullerene graphs would succumb to com-
binatorial explosion.76 The result is an incredibly
efficient algorithm which has been used to generate
an exhaustive database up to C400, which is avail-
able at the House-of-Graphs website.34 Sometimes one
is not interested in generating exhaustive isomer lists
(which are huge for large N), but rather to generate in
a directed fashion fullerenes that have specific proper-
ties. For this, one may start with one specific isomer
CN and derive others by certain transformations. This
will be discussed in the following section.

Transformation of Fullerene Graphs
Transformations of fullerene graphs can be divided
into local transformations that leave all but a cer-
tain region of the graph unchanged, and global
transformations such as the Goldberg-Coxeter
transformation.77,78 A planar graph can be trans-
formed locally by replacing one fullerene patch74,79–84

by either a different patch or the same patch in a differ-
ent orientation. A patch is a set of faces that is bounded
by a simple cycle,82,85 that is, a cycle that traverses no
vertex or edge twice. Some authors relax this condi-
tion and allow cycles that are non-selfintersecting, but
are permitted to traverse any edge at most twice. This

(a) (b)

(c) (d)

FIGURE 8 | (a) Endo-Kroto (EK) 2-vertex insertion. (b) Stone-Wales
(SW) transformation. (c) Example of an extended Stone-Wales
transformation. (d) A patch replacement which introduces one
heptagon.

definition includes patches that have bridges, and is
used in the complete characterization of fullerenes by
Hasheminezhad et al.72

Two patches can be exchanged if they share the
same boundary code. The boundary code of a patch is
the sequence of free valencies of the vertices that lie on
the boundary (in case of cubic graphs, a sequence of
zeros and ones). A few patch replacements are shown
in Figure 8.

Replacing patches of equal size can be under-
stood as a formal isomerization, while replacement
by larger or smaller patches, referred to as vertex
insertion or deletion, or growth operations, formally
derives a molecular graph of a different size. Two
fullerene graph patches with the same boundary code
contain the same number of pentagons, as can be
seen from Euler’s polyhedron formula. The most
prominent example for formal isomerizations is the
Stone-Wales (or pyracylene) transformation (SW),86

which can be generalized73,87 by allowing a vari-
able distance between the two pentagons. Astakhova
et al.88 extended this rearrangement mechanism even
further to higher numbers of pentagons. Brinkmann
et al.83 generated a catalog of isomerization pairs with
up to five pentagons.

Isomerization operations can be reformulated as
sequences of vertex-pair switches, called 2-switches.89

According to Berge’s switching theorem,90 the whole
isomer space of a given CN is accessible by repeated
application of 2-switches. However, intermediate
structures of this procedure might have faces differ-
ent from pentagons and hexagons, or result even in
non-planar graphs.
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FIGURE 9 | Illustration of GC-transform. (a) Original figure of a hexagonal sheet from Goldberg’s paper.77 (b) The GC-transform acting on a face
in the fullerene dual for various values of k and l.

Growth operations can be classified accord-
ing to the number of pentagons and the number
of vertices that are added. There are no growth
operations for fullerene graphs that involve no or
only one pentagon.81 The smallest example is the
Endo-Kroto transformation (EK),91 which involves
two pentagons and adds two vertices. Additional note-
worthy examples are the addition of four and six ver-
tices at a patch that contains three pentagons and has
C3 symmetry.92 Brinkmann et al.84 compiled an exten-
sive list of growth pairs. The three classes of patch
replacements defined by Hasheminezhad et al.72 form
the basis of the currently fastest fullerene graph gener-
ator, as discussed in a previous section.75

With respect to the polyhedral representa-
tion of a fullerene graph, growth operations can be
understood as the capping of a domain by additional
vertices. As a result the pentagons in that domain
move toward each other. Patches in which all pen-
tagons are fused cannot be capped. Conversely, the
inverse of a growth operation corresponds to the trun-
cation of a domain of high curvature: The distances
between the affected pentagons increase.

While patch replacements are useful from a
graph theoretical point of view to obtain new fullerene
isomers, the EK C2 insertion and the SW trans-
formation have also been suggested to resemble
viable reaction pathways.86,91,93–95 As Stone and
Wales pointed out in their initial article, a con-
certed mechanism for the SW transformation ([2+2])
is Woodward-Hoffmann forbidden in the electronic
ground state.86 Other mechanisms that involve the
breaking of one bond93,96,97 or the catalysis by
additional carbon atoms98 are therefore more likely.
For a discussion of different mechanisms see Ref 93.
For every suggested pathway, however, the activation

barrier is so high that SW transformations are only
feasible at very high temperatures.93,94 The SW trans-
formation is believed to be one of the main mech-
anisms by which fullerene cages equilibrate during
formation to form the most stable isomer.99,100 Start-
ing at C60 - Ih, 1709 out of the 1811 other isomers are
accessible by consecutive SW transformations.101

Endo and Kroto proposed a concerted mech-
anism for what has since been known as the EK
C2 addition.91 However, more recent experimen-
tal and theoretical investigations show, that the
concerted reaction leads to an unstable adduct and
is followed by C2 ejection.102 For a summary of
alternative mechanisms of the C2 addition to fullerene
cages see Ref 95.

Given any fullerene, it is possible to construct an
infinite series of larger ones with (essentially) the same
three-dimensional shape. This is possible through
the Goldberg-Coxeter transformation, named after
an infinite series of icosahedral-symmetry polyhedra
described by Goldberg in 1937.77 By superimposing a
hexagonal mesh on the surface of the dodecahedron,
as shown in Figure 9(a), a new polyhedron is obtained
with the same number of pentagons and an increased
number of hexagons. The number of vertices in
the new polyhedron is k2 + kl+ l2, where k and l
are integers describing the scale and orientation of
the mesh, as shown for the dual in Figure 9(b).
The construction used by Goldberg was discovered
independently, and applied to the shapes of vira, by
Caspar and Klug in the 1960s, and later popularized
by Coxeter.78

While originally only defined for C20, yielding
exactly all the fullerenes of icosahedral symmetry,
Dutour and Deza have shown that it is well defined
for all cubic planar graphs.103 However, it is not
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trivial to determine how to automatically perform
the general transform, the main difficulty lying in
how to ‘glue’ the graph back together when the
new edges cross the transformed triangles in complex
ways. The general construction by Dutour and Deza
is quite algebraically heavy handed, and is not easily
understood, nor lends itself easily to implementation.
In the case of fullerenes, however, it is quite easy to
give a procedural description of the transformation
in terms of the fullerene dual: Because a fullerene
dual is a triangulation of the sphere with no vertices
of degree more than 6, it can be unfolded onto the
plane of equilateral triangles, called the Eisenstein
plane. The unfolded surface forms a polygon in
the Eisenstein plane with every degree 5 vertex on
the polygon periphery, and with each edge on the
periphery appearing twice, once in each direction.

The vertices in the Eisenstein triangulation is a
sub-ring of the complex plane, and we can write(

a,b
)
= a + b𝜔 where 𝜔 = ei 2𝜋

6 (6)

Because it is a sub-ring, multiplication by Eisen-
stein integers (a, b) are exactly the operations that
bring (1, 0) into every other vertex point. Because
𝜔2 =𝜔−1, we get the multiplication rule(

a,b
)
·
(
c,d

)
= ac +

(
ad + bc

)
𝜔 + bd𝜔2

=
(
ac − bd,bc +

(
a + b

)
d
)

(7)

and the magnitude of (a, b) is (a+ b𝜔)(a+b𝜔− 1)=
a2 + ab+ b2. Hence, if T is an equilateral triangle with
unit area, the area of (k, l)T is k2 + kl+ l2. This is
no coincidence: multiplication in the Eisenstein ring
exactly corresponds to the Goldberg-Coxeter trans-
formation in the dual formulation. This yields a sim-
ple and practical formulation of the Goldberg-Coxeter
transform of any triangulation of the sphere with
deg(v)≤ 6:

GCk,l (G∗) = fold
((

k + l𝜔
)
· unfold (G∗)

)
(8)

The procedure is illustrated in Figure 10.
Details for how to efficiently perform the fold
and unfold operations are given in Avery (unpub-
lished manuscript). Note that two successive
GC-transformations on a graph G* can be expressed
as a single GC-transformation by multiplying
the two Eisenstein numbers together. Similarly, a
GC-transformation can be inverted by dividing
instead of multiplying. For any particular fullerene,
we can even use Euclid’s algorithm to find out whether
it is a GC-transform of a smaller fullerene, and to find
the smallest such ‘parent’ fullerene.59

Notice, that if one were to cut out the two
diagrams in Figure 10, gluing together the edges so
that the numbers on the vertices match, one obtains
the three dimensional structure of the given C32 and
C224 fullerenes. The reader is invited to do so.

There are two special cases of the Goldberg-
Coxeter transformation that warrant closer study: the
case l=0, named the halma transform (or k-inflation)
for the construction’s similarity to the game board of
halma, or ‘Chinese Checkers’; and the case k= l=1,
called the leapfrog transform. Both of these types
of Goldberg-Coxeter transformations are simple to
understand: every triangle is subdivided and recon-
nected the same way, as illustrated on Figure 11. While
the GC-transform in general can introduce, reverse, or
remove chirality (but otherwise preserves symmetry),
both the halma and leapfrog transformation always
preserve symmetry.

Geometry of Fullerenes
Many of the beautiful properties of fullerenes derive
from their relation to algebraic and differential geom-
etry. This relation is mostly out of scope for this
review, but in this section we will touch on the sub-
ject informally. The subject is treated in great depth
by Thurston19 and others.

An important quantity for understanding the
geometry and shapes of fullerenes is the Gaussian
curvature. The Gaussian curvature is the product of
the two principal curvatures, which for each point
on the surface are the maximal and minimal cur-
vatures in any direction through that point. By the
Bertrand-Diquet-Puiseux theorem, the Gaussian cur-
vature in a point is the same as the difference between
2𝜋 and the angle required to make a circle in a neigh-
borhood around this point. Figure 12 illustrates three
categories of surfaces with zero, positive, and nega-
tive Gaussian curvature respectively. If the Gaussian
curvature is zero in a point, the surface only bends in
one direction around that point. A surface that has
zero Gaussian curvature everywhere is characterized
by being ‘flat’ in the sense that it can be unwrapped
onto a plane without tearing. Positive Gaussian cur-
vature bends the same way in all directions. A posi-
tive curvature surface can be cut open and unwrapped
onto a plane. Finally, negative curvature around a
point constitutes a saddle point, yielding a wobbly
pringle-like surface. Negative curvature surfaces can-
not be unwrapped onto a plane, because there is no
room: around a negative curvature point, the angle of
a circle is greater than 2𝜋. If one were to make a cut in
a negative curvature surface, it could only be flattened
out by allowing parts of it to overlap itself.
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Dual Dual

Unfold Fold

Multiply

FIGURE 10 | The steps in the GC2,1 Goldberg-Coxeter transformation from C32-D3h(5) to C224-D3h. The transform and the diagrams of the
unfolded fullerenes were automatically generated using the program Fullerene.35

The Gaussian curvature only depends on the
topology of the surface, and is independent of
how it is isometrically embedded in space. In the
same way, the surface metric (or Riemann met-
ric), which determines the geodesics and distances
between points along the surface, can be derived
directly from the graph (Avery et al., unpublished
manuscript), and is also independent of the spatial
embedding. However, while we do not require a 3D
embedding to analyze these surface properties, they
themselves do determine the possible ways that the
surface can embed isometrically into space, and what
is its ‘natural’ three-dimensional shape.

Fullerenes are all closed surfaces with
non-negative Gaussian curvature everywhere. Sur-
prisingly, this is simply due to them having faces no
larger than hexagons! In fact, the slightly larger class
of three-connected cubic planar graphs with largest

face size 6, and their dual triangulations, are in a sense
all the positive curvature genus 0 surfaces.f

It is most easy to understand the geometry of
fullerenes when considering their duals. These are
equilateral triangulations of a closed surface. The
equilateral triangle plane, also called the Eisenstein
plane, is the dual of a hexagonal mesh. Hexagon
planes (like graphene) and their dual degree-six trian-
gulations are flat in the sense that they have Gaussian
curvature 0 everywhere: any surface of equilateral tri-
angles with vertex degree only six can be unwrapped
into the plane without stretching or tearing. What hap-
pens now if we set the degree to 5 of a single vertex in
the plane? To do this, we must cut out an infinite trian-
gular wedge of angle 2𝜋/6. Gluing together the edges
forms an infinite cone with Gaussian curvature zero
everywhere except the degree 5 vertex at the cone’s
apex, which introduces the positive curvature 2𝜋/6.
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(a)

(b)

k = 1 k = 2 k = 3

FIGURE 11 | Subdivision of a triangle in the dual graph; (a) for the
leapfrog transformation (k = l = 1), and (b) for the lowest few halmas
(l = 0).

Every time we introduce a vertex of degree 5 (or a
pentagon in the hexagonal plane), it introduces a sur-
face cut that is glued together to locally introduce the
positive Gaussian curvature 2𝜋/6 at the vertex. After
12 pentagons we reach 4𝜋, the Gaussian curvature of
the sphere, closing the surface.g Unfolding again along
the 12 cuts would result in a polygon similar to the
diagrams shown in Figure 10. Had we instead intro-
duced, for example, degree 4 vertices, each would con-
tribute with curvature 2𝜋/3, requiring only 6 to close
the surface. The positions at which we placed the 12
pentagons determine where and how strongly the sur-
face bends, and through that the natural shape of the
fullerene, giving rise to the many interesting polyhe-
dral shapes shown in Figure 2.

Because fullerenes always have exactly 12
curvature-2𝜋/6 bends, with the remaining surface
of Gaussian curvature zero, they adopt polyhedral
shapes rather than being spherical in nature (the
latter defined as atoms lying on a sphere), and the
most symmetric shapes that they can achieve have
icosahedral symmetry. The non-spherical nature of
fullerenes was pointed out already by Bakowies and
Thiel in 1995.104,105

(a) (b) (c)

FIGURE 12 | Examples of surfaces with zero (a), positive (b), and negative (c) Gaussian curvature around a point.

The curvature of cubic graph surfaces also pro-
vides an intuitive understanding of why fullerenes,
having only hexagon and pentagon faces, would be
more prevalent in nature than other polyhedral carbon
structures: smaller face sizes introduce much sharper
bends, reducing stability. Heptagons by themselves
introduce no sharper bends than pentagons, but each
heptagon necessitates an extra pentagon to balance
out the negative Gaussian curvature and reach a closed
surface, increasing the total number of bends by two.
However, with the right distribution of heptagons and
pentagons, it is possible to construct quite smoothly
curving near-spherical fulleroid surfaces that could
potentially be stable in nature. We discuss fulleroids,
a generalization of fullerenes that allow arbitrary face
sizes, in the final section.

Generating Accurate 3D Geometries
The Cartesian coordinates for the ideal molecular
geometry of small highly symmetric fullerenes such
as C20 - Ih or C60 - Ih can be calculated directly using
basic geometry.106 This is not the case for fullerenes
in general: They come in many different shapes, most
of which do not have a simple mathematical formula.
However, we do know that the ideal geometry (in
which the faces of the dual polyhedron are equilateral
triangles) can be derived directly from the fullerene
graph. This is because of their special properties
discussed above. However, while we know that a
fullerene graph determines the ideal 3D structure as
a conformal, isometric embedding of the surface into
space, it is not yet known how to compute it directly.
However, we can use numerical optimization meth-
ods to obtain good 3D structures—both efficiently
and with results that are very close to the physical
molecular geometry.

Generating Initial Structures
Before optimizing a fullerene structure by for example
a force-field method, we need a reasonable initial
structure. Specifically, we need an embedding of the
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graph as a polyhedron (i.e., no crossing edges) such
that its faces are the same ones as in the final
polyhedron, and such that the magnitude of the force
experienced by the vertices does not vary too greatly,
causing slow convergence or numerical instability.
We here outline two methods for obtaining initial
geometries that are suitable for input to the fullerene
force-field optimization.

The Fowler-Manolopoulos 3D embedding algo-
rithm (also called Adjacency Matrix Eigenvector
or AME algorithm) diagonalizes the N×N adja-
cency matrix Aij of the fullerene graph to obtain
eigenvectors −→x i (i = 1, … ,N), of which three ‘P-type
eigenvectors’ with one nodal plane are chosen to
construct the Cartesian coordinates (termed topolog-
ical coordinates by Manolopoulus and Fowler) for
the initial structure.31,107 This often yields suitable
coordinates because fullerenes can be modeled as
spherical aromatic systems fulfilling approximately
the Laplace differential equation with real spherical
harmonics Ylm(𝜃,𝜑) as eigenfunctions, of which the
three Ylm (l=1) are associated with the coordinates
(xi, yi, zi).

31,108 Cartesian coordinates constructed
in this way already reflect the space symmetry of
the fullerene. The P-type eigenvectors can easily be
found for near-spherical fullerenes like C20 or C60 - Ih,
because the sequence of eigenvalues mimics the spher-
ical harmonics. However, for distorted fullerenes,
or for very large fullerenes where the spectrum
of the adjacency matrix becomes very dense with
quasi-degeneracies, it becomes difficult to find the
appropriate eigenvectors, and the assumption that the
eigenvectors resemble spherical harmonics becomes
decreasingly valid. For example, for large fullerene
nano-tubes aligned around the z-axis, such as the
one shown in Figure 2, the eigenvalues belonging to
the Px- and Py-type eigenvectors do not lie close to
the Pz eigenvalue. Hence, one must search for the
appropriate set of eigenvectors, and identifying them
is not always easy.109–111 Second, the bond lengths
tend to vary substantially in the constructed fullerene,
leading to unreasonable large bond distances once the
minimum bond distance is set to ≈1.4 Å, and a scaling
procedure for the eigenvectors may only solve part of
this problem.31 Finally, because it is often necessary to
search for the right eigenvectors and hence calculate
a large number of them, the algorithm scales up to

(
N3

)
, which quickly becomes a heavy operation as

N grows.
We have found it useful to sacrifice some accu-

racy in the initial geometry for a method that is
more stable, and which scales approximately as  (N).
The fullerene force-field optimization is insensitive
enough to the starting geometry that the difference

is not noticeable. The method starts with any pla-
nar embedding of the fullerene graph. We choose the
Tutte-embedding, which is guaranteed to be planar,
and can be computed in near-linear time by solving
two sparse linear systems of equations.54 The planar
embedding is then mapped onto the surface of a sphere
(or e.g., ellipsoid, if the fullerene is a priori known
to be elongated) in the following way: For every ver-
tex v, let the topological distance from the outer face
(the ‘depth’ of the vertex) be dv, and its coordinate in
the Tutte-embedding be −→x v. Let D be the maximum
depth, and −→x c be the barycenter in the embedding. We
assign one angle 𝜙(v)= (dv +1/2)𝜋/D+1, placing ver-
tex layers equidistantly along the 𝜙-angle according to
their depth. The second angle 𝜃(v) is the angle of −→x v
around −→x c. Then assigning the angles v → (𝜃(v),𝜙(v))
yields an embedding on the sphere with no crossings,
since the Tutte-layout is guaranteed to be planar, but
which avoids the exponential crowding of the pla-
nar Tutte-embedding, such that the vertices are dis-
tributed in a reasonable manner across the surface of
the sphere.h It remains, however, a challenge to embed
the fullerene graph on a more realistic surface.

Fullerene Force-Field
This section describes how to obtain good results
for the molecular geometry numerically by way of
specially tailored force-field optimization methods.
This yields geometries that are very close to the ones
obtained by long and computationally heavy quantum
chemical calculations, as we shall see.

It is common for molecular force-field optimiza-
tions to distinguish between single and double bonds,
even introducing different types of single and dou-
ble bonds depending on atoms and groups in close
proximity. For each bond, that is, edge in the graph,
one sums over all the Kekulé structures and assigns
fractional double bond character to each edge. This
strategy is not practical for fullerenes, even for small
cages like C60,112,113 due to exponential growth in
perfect matchings and hence Kekulé structures, as
discussed below. Force fields for fullerenes should
therefore be designed in a way that avoids explicit
treatment of double bonds. As a good approximation
it is assumed that the properties of bonds, angles, and
dihedral angles in a fullerene are determined by the
size of their neighboring faces alone. The force fields
discussed below are specifically designed for fullerenes
based on this assumption.

The first force field tailored to fullerenes by Wu
et al.114 was designed for C60 - Ih and uses harmonic
force field terms. It distinguishes between two bond
types: bonds adjacent to two hexagons, and bonds
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TABLE 1 The 28 Possible Point Groups for Fullerenes Sorted According to Their Order || of the Group 31

Order Point Groups Order Point Groups Order Point Groups

120 Ih 60 I 24 Td , Th, D6h, D6d

20 D5h, D5d 12 T, D6, D3h, D3d 10 D5

8 D2h, D2d 6 D3, S6, C3h, C3v 4 D2, S4, C2h, C2v

3 C3 2 C2, Cs, Ci 1 C1

adjacent to a pentagon and a hexagon, which are
optimized for bond lengths r0 with values of 1.54
Å and 1.41 Å, respectively. Angles are either part of
a pentagon (𝜃0 =3/5 𝜋) or a hexagon (𝜃0 =2/3 𝜋).
The force constants k1 through k4 are given (in 105

dyn/cm) as 11.0, 10.0, 1.0, and 1.0. No further
parameters are taken into account.

In the following years a number of exten-
sions and modifications to the Wu force field were
published, taking into account an increased num-
ber of parameters. These extensions include improved
force constants,115 torsions,116 angles and distances to
second and third neighbors,117 mixed terms between
distances and angles,118,119 the volume of the tetrahe-
dron defined by an atom and its three neighbors,118 a
complete force field for C60 - Ih,120 and a strategy for
defining complete force fields for any deltahedron or
trivalent polyhedron using mixed terms of distances
and angles.121 Except for the force field by Ceulemans
et al.,121 all above mentioned force fields have been
exclusively designed for and applied to C60 - Ih.

The program Fullerene35 includes a
22-parameter force field with explicit dihedral angles.
It takes into account three types of distances (bonds
that are part of 0, 1, or 2 pentagons), two angles
(part of a pentagon or a hexagon) and four types of
improper dihedral angles, defined between a vertex
and its three neighbors (where the starting vertex is
part of 0, 1, 2, or 3 pentagons). It is applicable to
all fullerenes and yields structures that are in very
good agreement with DFT optimized structures. For
example, for C380 - T, the rms error between the
B3LYP/SVP and the force field optimized structure is
only 0.038 Å. For many purposes, the force-field opti-
mized molecular geometry, which is computed in mil-
liseconds, is good enough to be used instead of a more
computer time intensive quantum chemical optimiza-
tion (although semiempirical methods including den-
sity functional based tight-binding are also very com-
puter time efficient and have yielded good results122).

Fullerene Symmetry
There are two symmetry groups associated with a
fullerene: the ideal or topological symmetry group of

the fullerene graph, and the real or physical symme-
try group of the molecule in 3D space. The physi-
cal symmetry group is a subgroup of the ideal one,
due to (first or second order) Jahn-Teller distortions,
variation of bond-lengths, or other effects from exter-
nal perturbations. But because the shape is often only
mildly altered from the ideal shape, the ideal symme-
try group carries useful information about the physical
system.

A surprising theorem by Mani123 shows that any
three-connected cubic planar graph can be embedded
in space as a convex polyhedron, the point group of
which realizes the full symmetry group of the graph.
That is: every graph automorphism of a fullerene is
also a rotation or reflection of its ideal polyhedral
shape. In addition, it can be shown124 that the point
group for a fullerene must be one of the 28 point
groups listed in Table 1. The largest group is the
icosahedral group Ih of order 120, and each of the 27
remaining attainable point groups are subgroups of Ih.

Can we automatically determine the symme-
try group for the fullerene directly from the graph,
without referring to spatial coordinates? (The lat-
ter requires first finding a maximally symmetric 3D
embedding) For general graphs, this is a difficult
problem. However, in the case of cubic polyhe-
dral graphs, for which general face spirals deter-
mine isomorphism, it is both simple and efficient
to do so.

Before moving on, we take note of an ambigu-
ity in terminology. The terms symmetry group and
automorphism group often refer simply to the group
formed by operations that leave the system invariant.
In the group theoretical sense, a group is fully defined
by its multiplication table. Point groups, however,
are not just groups, but are isometries of space and
carry additional information about how they trans-
form space. For example, the point groups D6, C6v,
D3d, and D3h are all the exact same group, but differ
as point groups. It is unfortunate for this reason that
‘point groups’ are called ‘groups’. To make the dis-
tinction explicit, we will use the term abstract group
for the symmetry group in the group theoretical sense,
and either point group or symmetry group for the
isometries.
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Assume that we are given the fullerene graph
dual G*, constructed from a generalized spiral
S= (d1, d2, … , dF), and wish to compute the auto-
morphism group  of G*. Since G* is constructed
from S, the entries in S are the degrees of vertex num-
ber 1, 2, … , F in G*. For every vertex v of degree d1,
we have 2d1 different spiral starts: d1 for clockwise
and d1 for counter-clockwise traversal. If a spiral start
(f 1, f 2, f 3) unwinds G* to the input spiral S, there is an
automorphism of G* that maps (1, 2, 3) → (f 1, f 2, f 3).
These are all the automorphisms, and the number of
starts that unwind to S is the order || of the automor-
phism group. This construction lets us easily obtain
the actual group: The spiral start determines the
entire spiral, and by simply writing down the vertex
names in G* while unwinding the spiral, we obtain a
permutation representation of the group element

𝜋F (g) =
(

1 2 3 · · · F
f1 f2 f3 · · · fF

)
(9)

This is a faithful (but not irreducible) represen-
tation of the group, and if we wish, we can easily build
the multiplication table by composing all pairs of the
permutations. Similarly, we can calculate characters,
irreducible representations, and all other properties,
and we can identify the group. There are a number
of ways to make this efficient. In Wirz et al. (unpub-
lished manuscript), we present a general, but efficient,
 (N)-algorithm that works for all cubic polyhedral
graphs, including all fullerenes and fulleroids.

The permutation representation 𝜋F allows us
to not only find the abstract symmetry group, but
contains enough information to identify the point
group, that is, the isometries of the three-dimensional
fullerene polyhedron. Fowler and Manolopoulos pub-
lished a program for identifying the point group of
any spiralable fullerene in Ref 31, based on site
symmetries and counting group orbits. The symme-
try points of interest in a fullerene are the vertices,
midpoints of edges, the barycenter of the polygons
and the whole cage, the latter having the full sym-
metry of the point group. They have certain site
symmetries according to the rotational axes or mir-
ror planes going through these symmetry points,31

which are collected in Table 2. The full isometry
group , which correspond to the rotations, reflec-
tions, roto-inversions, and inversions that leave the
ideal polyhedron invariant, also act as permutations of
the symmetry points,107,125,126 the action always being
a subgroup of . The permutations of the symmetry
points in fact completely determine the point group
symmetry, and we can find the full point group of the
graph G (or, equivalently, its dual G*) as follows:

TABLE 2 The Site Symmetries of the Local Symmetry Points in a
Fullerene31

Symmetry Points Site Symmetries (Order)

Vertices C3v (6), C3(3), Cs(2), C1(1)

Edge centers C2v (4), C2(2), Cs(2), C1(1)

Pentagon centers C5v (10), C5(5), Cs(2), C1(1)

Hexagon centers C6v (12), C6(6), C3v (6), C3(3),
C2v (4), C2(2), Cs(2), C1(1)

Cage center Full point group

The order of the site-symmetry group is given in parentheses (the maximum
value of any site symmetry group order is 12).

In step 1, one computes the face permutation
representation 𝜋F of the abstract group, as described
above. From this one derives vertex and edge permu-
tation representations 𝜋V and 𝜋E by acting with every
group operation on the dual graph.

In step 2 one computes the vertex, edge, and face
group orbits by acting with the permutation represen-
tations on every vertex, edge, and face.127 Each orbit
belongs to a certain site-symmetry group as shown in
Table 2. The site-symmetry groups are determined by
the orbit sizes. For example, the site-symmetry group
of the face f i has order |fi

| = ||∕|fi|. By counting
the number of sites belonging to each site-symmetry
group, we obtain a signature that uniquely identifies
the point group:

mF

(
k
)
=
|||||
{

f ∈ 
||||k = ||||f ||

}||||| ,
mE

(
k
)
=
|||||
{

e ∈ 
||||k = |||e|

}||||| , and

mV

(
k
)
=
|||||
{

v ∈ 
||||k = |||v|

}||||| (10)

The information can be condensed to a
site-symmetry count for each site-group order:

mS

(
k
)
= mF

(
k
)
+ mE

(
k
)
+ mV

(
k
)

(11)

In the final step, the point group is determined
by the site-symmetry counts by the decision tree
structure shown in Figure 13. The method can be
extended to any fullerene and fulleroid by using
general spirals. However, for every possible point
group, the site-symmetry signature must be worked
out and added to the decision tree.

Once the point group has been determined,
the number of infra-red and Raman active lines, as
well as the 13C NMR pattern can be derived.31,107

Moreover, point groups lacking an inversion center

110 © 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd. Volume 5, January/February 2015



WIREs Computational Molecular Science Topology of fullerenes

Order

1

C1

2

mS (2)

0
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2

C2

> 2

Cs

3

C3

4

mS (4)

0

mS (2)

1

S4

3

D 2

> 3

C2h

2

C2v

6

mS (6)

0

mS (2)

0

S6

2

D 3

> 2

C3h

2

C3v

8

mS (4)

1

D 2d

3
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mS (6)
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mS (4)
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mS (4)
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D 6h

60

I

120

I h

FIGURE 13 | The decision tree for determining the symmetry point group for any fullerene from the group order and orbit counts.

are further divided into polar and chiral point groups.
A chiral point group is one without any roto-inversion
symmetry elements, and a polar point group allows
for the fullerene to have a dipole moment. A point
group with an inversion center or a mirror plane
perpendicular to the axis of rotation cannot be
polar. The nine chiral point groups for fullerenes are
I, T, D6, D5, D3, D2, C3, C2, and C1.31 The polar
fullerenes belong to either of the point groups
C3v, C3, C2v, C2, Cs or C1.31 For larger fullerenes, the
fraction of low-symmetry to high-symmetry isomers
grows rapidly, and the C1 point group increasingly
dominates. This can be intuitively understood com-
binatorially from distributing pentagons on a sphere.
Already at C100, more than 99% of the isomers
are C1.

The separation of spiral starts into equivalence
classes by their spirals yields an interesting relation:

|| = 6N
Ns

S

(12)

where Ns
S

is the number of symmetry distinct (general)
spirals. For Ih symmetry we have |Ih|= 120, which
gives N = 20Ns

S
. Hence, Ih-fullerenes can only occur

when N is a multiple of 20. In a similar way, for I
symmetry we have N = 10Ns

S
, and for Td, Th, D6h, or

D6d we obtain N = 4Ns
S
. This explains why some of

these high symmetry groups are not found in certain
isomer lists.

In the case of icosahedral symmetry, we have a
full characterization of when they occur: As described
by Dutour and Deza,103 every fullerene of Ih or
I symmetry is a Goldberg-Coxeter transform of
C20.77 This means that they occur exactly when
N=20(k2 + kl+ l2) for integers k and l. It is also

possible to determine when these are of Ih and when
they are of I symmetry. Halma and leapfrog trans-
formations, which correspond to Goldberg-Coxeter
transforms of l= 0 and k= l, respectively, both pre-
serve symmetry.128 Hence, there is a fullerene with
Ih symmetry at N=20j2 and N=20(3j2) for every
j∈ℕ, corresponding to a single Halma or leapfrog
transformation on C20. Consecutive application of
the two shows that isomers with Ih symmetry are
found for every N= 20(3ij2) (j∈ℕ and i=0, 1). More-
over, general Goldberg-Coxeter (k, l) transforms with
k≠ l and l≠ 0 (k> 0) break horizontal mirror plane
symmetry.

Shapes: Volume and Surface Area,
Sphericity, and Convexity
For ideal C60 - Ih, where all edges are of equal length,
the geometric volume V, and surface area A can be
obtained through simple algebraic and geometric con-
siderations. The volume and surface are of a regular
20-sided polyhedron (icosahedron, see Figure 3) made
out of equilateral triangles with edge length a is,

Vico = 5
12

(
3 +

√
5
)

a3 and Aico = 5
√

3a2 (13)

Cutting out 12 pentagonal pyramids at length
a/3 gives the ideal truncated icosahedron C60 - Ih with

VC60
= 1

4

(
53 + 43

√
5
)

r3
e

and AC60
= 3r2

e

(√
52 + 10

√
5 + 10

√
3
)
(14)
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where re = a/3 is the length of the edge (C–C bond
length). This gives the ratios Vico∕VC60

≅ 1.065 and
Aico∕AC60

≅ 1.073 between the two volumes and sur-
face areas. C60 has, however, two different bond
lengths as the crystal structure shows,129 r5 =1.455 Å
(edge at pentagon-hexagon fusion) and r6 = 1.391 Å
(edge at hexagon-hexagon fusion). A smaller bond dis-
tance in the hexagon implies that more of the original
icosahedron is cut off,

VC60
=

5
(

3 +
√

5
)

12

(
2r5 + r6

)3 −

(
5 +

√
5
)

2
r3
5 and

AC60
= 3r2

5

√
52 + 10

√
5 + 5

√
3
(
r2
6 + r2

5 + 4r5r6

)
(15)

For r5 = r6 we obtain Eq (14). If r6 =0 (r5 = a/2)
the hexagons become equilateral triangles and for
r5 = 0 we just get a hollow icosahedral C12 cluster. For
C20 (equal edge lengths) the vertices lie in the center
of each face of an icosahedron, and the volume and
surface area are easily obtained,

VC20
=

(
15 + 7

√
5
)

4
r3
e and AC20

= 3r2
e

√
52 + 10

√
5

(16)

How can we get the volume V and surface area
A for any fullerene isomer? As fullerene cages are
not guaranteed to have planar faces, their volume or
surface area are only approximately defined. There
are, however, a number of definitions according to
which we can express both quantities. We could
triangulate all faces by adding a barycenter

−→
b j to each

face with lines to each vertex of that face. We call
the polyhedron obtained in this way a triangulated
face polyhedron, TFP. For a fullerene, the graph
representing the TFP is identical to the dual structure
of its leap-frog transform. The total surface area A
is obtained by summing over all areas Ai of the
triangles obtained, which works even for faces where
the vertices do not lie on a plane. Using Gauss’
theorem (divergence theorem), the volume V is found
by summing over the face normals,

V = 1
3

∑
i

Ai

(−→
p i ·

−→n i

)
(17)

where −→
p i is any point on face i, and Ai is the area of

the face.
The different volumes and surfaces areas can

be used for calculating some important measures for
fullerenes, such as the sphericity S (how spherical a

fullerene is) and convexity C (how convex a fullerene
is). The surface of a triangulated fullerene may not
be convex. We can measure the non-convexity by
comparing to the convex hull of the fullerene cage,
which is the smallest convex polyhedron that contains
all the points. The convex hull (CH) is uniquely
defined, and there are several algorithms available,
such as the incremental 3D convex hull algorithm.130

A measure for convexity C is obtained from the
proportion of ‘empty space’ between the non-convex
polyhedron and the convex hull by comparing the
volumes or surface areas, that is, CA =A/ACH and
CV =V/VCH.

The simplest measure of sphericity is the isoperi-
metric quotient qIPQ,131 defined for a polyhedron as

qIPQ = 36𝜋V2

A3
with qIPQ ∈

[
0,1

]
and DIPQ =

(
1 − qIPQ

)
(18)

where qIPQ = 1 for an ideal sphere and DIPQ is a
measure of the deviation from an ideal spherical shape.
DIPQ is shown for several fullerenes in Figure 14.

We usually regard C20 - Ih and C60 - Ih as almost
spherical because all vertices lie on a (covering) sphere.
We may therefore analyze whether or not the vertices
of a given fullerene lie on a sphere. For this, we define
the minimum covering sphere as a sphere of mini-
mum radius that encloses all vertices in the polyhedral
embedding (J. J. Sylvester, 1857).132,133 Mathemati-
cally, this translates into finding the solution to the
problem134,135

RMCS = min−→c MCS

max
i

‖‖‖−→v i −
−→c MCS

‖‖‖ , (19)

where || · || denotes the Euclidian norm, −→v i is the
location of the vertex vi in 3D space, and −→c MCS is
the center of the MCS with radius R and is usually
close to the barycenter of the fullerene. The MCS
is uniquely defined134,135 and can be obtained using
an efficient algorithm, such as the one proposed by
Yıldırım.136 The convex hull of a 3D embedding of
a graph G is contained entirely within the MCS. For
fullerenes with an ellipsoidal shape like C72 - D6d, or
with a cylindrical shape such as a nanotube137 (see
Figure 2), it is more appropriate to use a minimum
covering ellipsoid or cylinder instead of a sphere. The
ellipsoidal problem has been addressed recently, and is
known as the minimum volume axis-aligned ellipsoid
problem (MVAE).138–141

We can now define a number of useful mea-
sures for sphericity. The MCS distortion (normalized
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FIGURE 14 | Various deformation
parameters D (in percent) for a series of
fullerenes selected according to stability. For
larger fullerenes, Goldberg-Coxeter transformed
structures of C20 were chosen. Geometries were
obtained from DFT (up to C540) or force field
optimizations. IPQ: isoperimetric quotient; MCS:
Minimum covering sphere; MDS: Minimum
distance sphere; DTP: Diaz-Tendero parameter;
FAP: Fowler asymmetry parameter; TEP: (1− 𝜌)
from the topological efficiency parameter 𝜌.
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to the smallest C–C distance in the fullerene) is
given by,

DMCS = 1
Nrmin

N∑
i=1

(
RMCS − ||−→p i −

−→c MCS||) (20)

The MCS definition for the distortion is biased
to the case of few atoms sticking out on a sphere and
another measure may therefore be more appropriate.
We define the minimum distance sphere as

DMDS = min
cMDS∈CH(S)

1
Nrmin

∑
i

|||RMDS −
‖‖‖−→p i −

−→c MDS
‖‖‖|||
(21)

with
RMDS = 1

N

∑
i

‖‖‖−→p i −
−→c MDS

‖‖‖ (22)

A similar definition that uses the mean deviation
from the average distance taken from the barycentric
point has been introduced by Nasu et al.142

Some other useful sphericity parameters are the
Diaz-Tendero (DTP) parameter,143,144

qDTP =
√(

a − b
)2 + (a − c)2 +

(
b − c

)2∕a (23)

where a≥ b≥ c are the rotational constants, and the
Fowler asymmetry parameter (FAP),

𝜆FAP =
N∑

i=1

(
Ri − Rav

)2

R2
av

(24)

where Ri is the radial distance of atom i from the
barycenter, and Rav is the average distance.145 If all
atoms lie on a sphere, we have 𝜆FAP =0.

Figure 14 shows a comparison of sphericity
parameters for a number of stable fullerenes. As C20
is slightly deformed due to Jahn-Teller distortion, the
vertices do not lie exactly on a sphere anymore, and
DMDS ≠0. In contrast, the purely topological efficiency
parameter (1− 𝜌) (see discussion in the topological
indicator section) is exactly zero for C20 (and for C60,
C80, and C240). For C60, all vertices lie on a sphere
and all deformation parameters are zero, except for
the IPQ, which except for its simple definition is per-
haps not the best measure for sphericity. All deforma-
tion parameters reveal the highly deformed fullerenes
(spikes in Figure 14).

Toward the Solid State: Hilbert’s Problem
and Space Fillings
Solid C60 - Ih packs in a rotationally disordered face
centered cubic (fcc) structure with a lattice constant
of afcc = 14.17±0.01 Å,129,146 which according to Fis-
cher et al. implies a close packing of spheres of a
diameter of 10.02 Å.146 C60 undergoes a phase tran-
sition below 255 K to a simple cubic (sc) struc-
ture, from which one can infer a lattice parameter of
asc = 14.04±0.01 Å.147,148 The only other solid state
fullerene obtained by experiment is that of C70 - D5h,
which adopts a closed packed structure of either
hcp or fcc symmetry138,149 with a fcc lattice constant
of afcc =14.96 Å. In the solid state, the interactions
between the fullerenes are of Van der Waals type. Note
that the polarizability and therefore the Van der Waals
coefficients grow linearly with increasing number of
carbon atoms in the fullerene cage,150 which should
converge toward the graphene limit for the per-atom
value. Experimentally, the solid state behavior of C60
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has been studied in great detail. One interesting fact is
that the bulk moduli of C60 (B=6.8 GPa for the sim-
ple cubic phase and 8.8 GPa for the fcc phase) and C70
(11 GPa for the rhombohedral phase) are quite small
as applied pressure will just squeeze out the compress-
ible Van der Waals space.151–153 These bulk moduli are
only twice as large compared to the rare gas solids,154

and much smaller than that of diamond (442 GPa155).
However, once the Van der Waals space is squeezed
out and the fullerene cages touch, the bulk modu-
lus increases substantially, as the fullerene cage is not
easily compressible, similar to the high in-plane stiff-
ness of graphite or graphene.156 We mention that it
requires high pressures above 20 GPa to turn C70 into
graphite (using step-like shock-wave compression).157

For overviews on solid-state properties of fullerenes,
see Zettl and Cumings153 or Fischer et al.146

From the experimental data of C60 - Ih, we can
adjust the Van der Waals radius of the C60 cage such
that the experimental lattice constant is obtained, that
is, we use a hard sphere model for periodic packing
(fcc is the closest packing available for hard spheres
as proven by computer by Hales in 2000158,159). We
can do this by using the MCS introduced in Eq (19),
but we have to add the carbon Van der Waals radius
(rVdW(C)=1.415 Å) to the MCS radius,

RVdW

(
CN

)
= RMCS

(
CN

)
+ RVdW (C) (25)

Figure 15 shows lattice constants for a number
of fullerenes using this hard sphere model, which
can be taken as an upper bound to experimental
lattice constants. For the other experimentally known
fullerene crystal structure, C70, the fcc lattice constant
afcc of 14.96 Å is in reasonable agreement with the
hard-sphere value of 15.78 Å, considering the fact that
the IPR C70 isomer is slightly prolate and distorted.
The dependence of the afcc lattice constant on the
vertex number can be expressed as afcc = c

√
N +(

4RVdW(C)
)
∕
√

2, where the shift follows from the
geometry of the fcc cell and the

√
N-term represents

the dependence of the fullerene radius on N. In the
hard sphere model we have afcc ∼R, and the cage
radius of the fullerene is R∼A1/2 ∼N1/2 (A being the
surface area of the MCS).

For distorted fullerenes, the packing problem
becomes far more complicated. For example, we
could add the Van der Waals radius to every carbon
atom and take the convex hull around this Van der
Waals layer. We are then faced with close packing of
complicated polyhedral structures, which is a difficult,
unsolved problem. However, there exist algorithms for
packing arbitrary polyhedra in finite spaces,160,161 and
it is possible that one could approximate properties

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500

a
fc

c
 [
Å

]

N

Hard sphere model

Experimental

FIGURE 15 | fcc lattice constant afcc for a hard sphere model as a
function of the number of carbon atoms N.

of the (periodic) close packing solution by making
the finite cell large enough. For some fullerenes,
ellipsoidal, or cylindrical covers are more appropriate
as already mentioned.141,162 The close packing of
ellipsoids was recently investigated by Donev et al,
who showed that the maximum packing density can
exceed that of a close sphere packing.163 Nevertheless,
the question still remains how fullerenes of a certain
topology pack in 3D space. This is related to one of
Hilbert’s fundamental problems: How can one arrange
most densely in space an infinite number of equal
solids of given form, e.g., spheres, with given radii,
that is, how can one so fit them together that the
ratio of the filled to the unfilled space may be as
great a possible? A more rigorous mathematical proof
(beside Hales’ complete computer algorithm158,159) for
fcc packing of hard spheres as the most dense packing
is still missing, and packing any other deformed
spheres remains an open area of research. One possible
approximation is to expand the shape of a fullerene
in terms of multipole deformations and study the 3D
packing of such smooth topologies.

Topological and Chemical Indicators
Chemists can deduct many useful properties of a
chemical system just by looking at its structure. For
fullerenes, the distribution of the 12 pentagons on a
surface, for example, a sphere, can tell us qualitatively
how stable the fullerene is or how it would pack in
the solid state. Moreover, the symmetry of the under-
lying structure determines many useful spectroscopic
properties. It is perhaps a realistic goal to connect
the graph theoretical properties of a fullerene directly
with its physical properties by mapping the fullerene
graph G into a number describing that property. In
more general terms, we define a topological indicator
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as a map 𝜏I from the graph G into a finite series of
numbers,

𝜏I ∶ G →
{

x1, … ,xn

}
(26)

where the numbers xi are called topological indices
and can be chosen to be integers, rationals, or reals.
A topological index is called a chemical index if it is
related to a chemical (or physical) property. Topolog-
ical indicators may be placed in the same category as
crude chemical bonding models, except that they can
be strictly defined in graph theoretical terms and some-
times have interesting mathematical properties. There
is no restriction that the mapping between fullerene
graphs and any topological indicator be one-to-one,
and indeed, most of the commonly used topologi-
cal indicators are the same for many different iso-
mers. Of course, any chemical or physical property is
ruled by its underlying electronic structure governed
by the Schrödinger equation. However, solving the
electronic structure problem for any large fullerene
is a daunting task and therefore, topological indices
that are easily obtained can be very useful as we
shall see.

To give some (trivial) examples, we can list all
the possible point groups for fullerenes and define
xi =0 for the ideal point group not matched by the
fullerene graph, and xi = 1 if the point group is. The
order of the ideal point group || as shown in Table 1
is also a topological index. Another example for a
topological index is the 12 face spiral pentagon indices
as described above.

The first topological index of chemical relevance
was introduced by Wiener in 1947.164 He defined a
so-called path number (Wiener index) as the sum of
the entries in the topological distance matrix dij, con-
sisting of the length of the shortest path between every
pair of vertices in the chemical graph representing the
non-hydrogen atoms in the molecule,

W (G) = 1
2

∑
i,j∈

dij (27)

where dii = 0. The Wiener index provided a good mea-
sure of compactness for acyclic alkanes and gave a
reasonable correlation to boiling points.164 The first
application of the Wiener index to fullerenes came
from Ori and co-workers, who obtained W =8340
for C60 - Ih.165 For fullerenes, low Wiener indices pro-
vide a measure of high compactness of the cage.
This can be seen from the scaling law, which has
been found to behave like 

(
N5∕2

)
for ‘spherical’

fullerenes166 and 
(
N3

)
for fullerene nanotubes. For

carbon nanotubes, analytical formulae in terms of
polynomials in the vertex number are available, for

example, for the smallest D5h/D5d nanotubes we have
W(k)= 1/3(100k3 +1175k− 2010) with N= 10k and
k≥ 5,167 and for the smallest D6h/D6d nanotubes we
have W(k)=12(4k3 + 69k− 136) with N= 12k and
k≥ 7.168 It is conjectured that the Wiener index grows
like (N2+ 1/d), where d describes the dimensional-
ity of the system (the Wiener dimensionality).166 The
almost cubic growth with increasing number of ver-
tices can make the Wiener index unwieldy for larger
fullerenes. Therefore, Ori and coworkers defined a
topological efficiency index 𝜌, derived from the Wiener
index169,170

𝜌 = 2
W (G)
NWmin

with Wmin = min
i

{∑
j∈

d (i, j)

}
(28)

which has the advantage that, unlike the Wiener index,
it does not grow to large numbers. Small values of
𝜌≥ 1 indicate topologically efficient structures, for
example, both C20 - Ih and C60 - Ih have 𝜌=1.168 It
can be seen as a measure of sphericity that does not
involve 3D Cartesian coordinates, as shown nicely
in Figure 14. Vukičević et al. showed that among
the 4478 isomers of C66, the joint information of
the Wiener index and the topological efficiency index
correctly identifies the C66 - C2v(11) as the most stable
molecule169 (as detected experimentally in endohedral
Sc2@C66

171).
Many different topological indices have been

introduced and studied since, mainly for the struc-
tural and statistical analysis of molecules, polyhe-
dra, and graphs in general, often yielding interest-
ing mathematical properties (for a list of topological
indices see for example Ref 172). The distance matrix
dij gives rise to a number of very useful topological
indices including the topological radius R and diame-
ter D,173 Hosoya polynomials174 and related Wiener
indices, the Szeged index Sz,

175 and the Balaban index
J,29,176 to name but a few (for fullerenes one has
W ∼ Sz and W ∼− J).29,177 There are also a number of
topological indices connected to the adjacency matrix
(or Hückel matrix), for example Hückel orbital ener-
gies and related properties (occupation numbers, band
gap,31 spectral moments178 etc.),31 and the Estrada
index.179,180 For a more detailed discussion of topo-
logical indices see Refs 29, 89, 173, and 181.

Some of these topological indices can directly
be related to the stability of the fullerene cage. For
example, the Fowler-Manolopoulos pentagon indices
{pn|n=0, … , 5} define the number of pentagons
attached to n other pentagons (n is called the neighbor
index),31 that is, for IPR fullerenes we have p0 =12
and pn = 0 for n≥1. For any fullerene, we of course
must have p1 + · · · +p5 = 12. Fowler-Manolopoulos
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hexagon indices are similarly defined and useful
for IPR fullerenes, that is, {hi|i= 0, … , 6}, where hn
defines the number of hexagons with neighbor index
n. In an IPR fullerene every hexagon is adjacent
to a minimum of three others and we can restrict
the list of hexagon neighbor indices for example to
(h3, h4, h5, h6).31

We may contract the neighbor indices to one
useful topological index describing the stability of
fullerenes.31 The single pentagon signature P1 is
defined as

P1 = 1
2

5∑
k=1

kpk (29)

max(P1)=30 (for C20 only), and for IPR fullerenes
such as C60 we have P1 =0. For IPR fullerenes
a more useful single topological index is defined
through the hexagon signatures. The standard devi-
ation 𝜎h of the hexagon neighbor index distribution is
defined as

𝜎h =
√⟨

k2
⟩
−
⟨

k
⟩2

(30)

where

⟨
kn⟩ =

Hn

H0
with Hn =

6∑
k=0

knhk ∈ ℕ

and H0 =
6∑

k=0

hk = N
2

− 10 (31)

We call the topological index Hn the n-th
moment hexagon signature. For general fullerene iso-
mers, low P1 values and high Hi values correlate
with high thermodynamic stability.31 It turns out,
however, that H1 stays constant for a given ver-
tex count in IPR fullerenes, as this index is related
to certain face patterns as we shall see. Fowler
et al. advocated the use of the index 𝜎h instead, as
low values of 𝜎h are better predictors for stabil-
ity, and the strain is minimized when all hexagon
neighbor indices are as similar as possible.31 For
example, for C60 we have {hi}= {0, 0, 0, 20, 0, 0, 0}
giving H1 = 60, H2 =180, and 𝜎h =0. Fowler et al.
devised the following scheme for estimating the inter-
nal order among fullerenes sorted by stability:173 First
order the isomers according to lowest P1-value (each
pentagon-pentagon fusion carries a penalty of about
20–25 kcal/mol). If multiple IPR fullerenes are present,
that is, P1 =0, we order these first by largest H2-value,
and finally by lowest Wiener index W (which indicates
high compactness of the fullerene cage). The result is
an efficient but effective screening method to find the
most stable fullerene isomers.

55 56 66

o555 c555 l565

b565 c556 o556

l566

l666 b566 b656

c656 b666 c666

FIGURE 16 | The 15 basic shapes for the two- and three-ring (face)
adjacencies on the surface of a fullerene; (l) denotes linear, (b) bent, (o)
open, and (c) closed ring patterns (see Ref 183).

Ju et al. presented a relationship between
the Fowler-Manolopoulos hexagon indices and a
particular hexagon structure count to provide a
graphical interpretation.182 The complete list of
different pentagon and hexagon combinations up
to three connected faces are shown in Figure 16.
Note that for connecting two or three faces we
have

n55 + n56 + n66 = E = 3N
2

and

n555 + n556 + n566 + n666 = 11
2

N − 30 (32)

where the notation is described in Figure 16. For
example n556 is the sum of all occurring ring patterns
containing the combination of two pentagons and one
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hexagon. Ju et al. showed that for the second moment
hexagon signature one gets182

HIPR
2 = 2n66 + 6nc666 + 2

(
nl666 + nb666

)
= 2

(
nl666 + nb666

)
+ 9N − 480 (33)

and
HIPR

1 = 2n66 = 3 (N − 40) (34)

Hence for IPR fullerenes, 𝜎h and H2 are related
through the simple equation

𝜎IPR
h

= (N − 20)−1
(

2 (N − 20)H2 − 36 (N − 40)2
)1∕2

(35)

and one requires only H2 to discuss the stability of
IPR fullerenes. Stevanović extended these relations to
general fullerenes (IPR or not),184

H1 = 3 (N − 20) − n56 (36)

and

H2 = 18 (N − 20) −
(
6n56 + 2nc666 + nl666 + nb666

)
(37)

This not only illustrates nicely the current devel-
opment in the area of topological indices, it also
suggests that the stability of fullerenes can be approx-
imated by counting different face patterns.183

Indeed, Cioslowski et al.’s incremental scheme
for the heat of formation ΔHo

f
for IPR fullerenes33

uses 25 linearly independent face patterns (structural
motifs) of up to 13 connected hexagons and pentagons
to calculate the energy EFP, including an additional
curvature term EC,

ΔHf = EFP + EC =
25∑
i=1

mi𝜀i

− 8050.751 (N − 30.050)−1 [
kcal∕mol

]
(38)

where mi stands for the total count of a specific face
pattern (FP) that appears in the fullerene, 𝜀i is the FP
energy contribution, and the second term in Eq (38) is
the curvature term (C), which is repulsive for C20 and
approaches zero for N→∞. For example, for C60 - Ih
we just have one pattern in Cioslowski et al.’s scheme
consisting of a hexagon surrounded by 3 pentagons
and 3 hexagons. There are 20 of these in C60, and
with 𝜀= 44.281 kcal/mol, we obtain ΔHf = 616.814
kcal/mol for C60.33 This compares rather well with

the estimated NIST listed heat of formation for C60
(612± 25 kcal/mol), although this value should prob-
ably be corrected downwards to a value of 602.7
kcal/mol as recently pointed out by Karton et al. using
high-level theoretical procedures.185 The rms error
for the standard enthalpies of formation for the 115
IPR isomers chosen was 4.0 kcal/mol compared to
B3LYP/6-31G* calculations.

Alcami et al. devised a similar scheme for general
fullerenes.32 By analyzing the most stable structures
from B3LYP-DFT calculations of C20 to C72, and using
only connections between four faces with varying
number of pentagons with a total of 9 different motifs,
an expression similar to Cioslowski et al. was used
for EFP, but without the curvature term EC. This
scheme gives ΔHf = 654.0 kcal/mol for C60 - Ih. For all
fullerenes studied the rms error is 15.4 kcal/mol for the
enthalpy of formation compared to DFT calculations,
or 0.31 kcal/mol per carbon atom.

The question is: How well are topological
indices suited to describe fullerene stability? Table 3
shows a comparison of stabilities for all C34 isomers
obtained from DFT geometry optimizations (using
the PBE functional186 and a def2-SVP basis set for
carbon187) in comparison with several topological
indicators.35 According to the pentagon signature,
isomer C34 - C2(5) has the lowest P1 value, but with a
very small HOMO-LUMO gap obtained from Hückel
theory. This is indeed the case as the DFT results show.
Alcami et al.’s stability indicator correctly predicts
the most stable (P1 = 14) and the least stable isomer
(P1 = 17). For the four isomers with pentagon sig-
nature P1 = 15, the two results (ΔEDFT and ΔEA) do
not agree in their sequence (note that Alcami et al.’s
scheme was not designed to distinguish between
different isomers of a fixed vertex count). The differ-
ent fullerene isomers are all very similar in surface
area and volume. Concerning the HOMO-LUMO
gap, the most stable isomer does not correspond to
the one with the largest HOMO/LUMO gap. More-
over, these values are very sensitive to the method
applied, and a better measure for the gap given by
the singlet-triplet separation. The fullerenes with
the smallest HOMO-LUMO gaps (isomers 2 and 6)
prefer in fact the triplet ground state. The Hückel
HOMO/LUMO gap on the other hand is only good
for a qualitative discussion. We note that the two
different fullerene isomers 3 and 5 have identical
Wiener indices, and the isomer 6 with the smallest
Wiener index is not the most stable isomer.

The first halma transform of C20 is C80 and
therefore of Ih symmetry. There are seven IPR isomers
out of a total of 31,924 isomers as possible candidates
for the energetically most stable one. Table 4 shows
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TABLE 3 Stability and Topological Indicators for the Six Isomers of C34

LI PG P1 ΔEDFT ΔEA Δ𝜀H
HL Δ𝜀DFT

HL ΔEDFT
ST A V W NHC NPM

1 C2 17 74.93 13.5 0.069 0.424 0.0267 81.41 60.30 1978 28 212

2 Cs 15 28.10 4.2 0.120 0.150 −0.153 81.27 61.70 1975 58 219

2(T) Cs 15 24.55 4.2 — — — 81.32 61.69 1975 58 219

3 Cs 15 31.48 4.0 0.368 0.406 0.0945 81.42 61.80 1973 52 196

4 C2 15 15.19 5.5 0.343 0.619 0.2229 81.32 62.06 1976 33 229

5 C2 14 0 0 0.006 0.480 0.1333 81.28 62.27 1973 42 204

6 C3v 15 33.70 7.8 0 0.225 −0.094 81.42 61.79 1971 66 195

6(T) C3v 15 31.54 7.8 — — — 81.40 61.75 1971 66 195

LI is the numbering scheme according to the lexicographically ordered face spiral pentagon indices, PG the ideal point group, P1 the pentagon signature, energy
differences (in kcal/mol) ΔEDFT the DFT(PBE) energy difference to the most stable isomer (kcal/mol), ΔEA the Alcami energy difference to the most stable isomer
(kcal/mol), energy gaps (in eV) Δ𝜀H

HL the Hückel HOMO-LUMO gap, Δ𝜀DFT
HL the PBE HOMO-LUMO gap, ΔEDFT

ST the singlet-triplet gap (in eV), A the surface

area (Å2), V the volume (Å3), W the Wiener index (see Ref 188), NHC the number of Hamiltonian cycles, and NPM the number of perfect matchings. The symbol
(T) for isomers 2 and 6 in the first column indicates that the triplet electronic state is taken instead of the singlet state.

TABLE 4 Stability and Topological Indicators for the Seven IPR Isomers of C80

LI PG H2 ΔEDFT ΔEA ΔEC ΔEHRE Δ𝜀H
HL Δ𝜀DFT

HL ΔEDFT
ST A V W NHC NPM

1 D5d 500 0 0 4.34 2.12 0.220 0.355 0.168 203.70 255.16 17340 10450 270153

2 D2 496 2.63 3.0 0.75 0.0 0.528 0.460 0.293 203.85 257.72 17352 10642 237585

3 C2v 488 1.81 10.5 0.04 14.7 0.102 0.009 0.091 203.92 260.80 17412 9918 201623

4 D3 492 7.03 7.5 7.17 6.70 0.408 0.098 −0.036 203.87 258.71 17368 9906 222588

4(T) D3 492 6.21 7.5 7.17 — — — — 203.85 258.40 17368 9906 222588

5 C2v 484 6.33 16.5 2.92 24.7 0.298 0.038 −0.090 203.99 262.48 17454 9004 182555

5(T) C2v 484 4.25 16.5 2.92 — — — — 203.98 262.41 17454 9004 182555

6 D5h 480 6.81 22.5 0 37.7 0 0.081 −0.002 204.01 263.50 17500 10970 169375

6(T) D5h 480 6.38 22.5 0 — — — — 204.00 263.49 17500 10970 169375

7 Ih 480 17.49 30.0 14.2 63.4 0 0.115 −0.003 204.02 263.61 17600 10500 140625

7(T) Ih 480 17.43 30.0 14.2 — — — — 204.02 263.63 17600 10500 140625

LI is the numbering scheme according to the lexicographically ordered IPR face spiral pentagon indices, PG the ideal point group, H2 the second moment
hexagon signature, energy differences (in kcal/mol) ΔEDFT the DFT(PBE) energy difference to the most stable isomer, ΔEA the Alcami energy difference to the
most stable isomer, ΔEC the Cioslowski energy difference to the most stable isomer, ΔEHRE the Hückel resonance energy (taking the resonance value as 𝛽 = –60
kcal/mol), energy gaps (in eV) Δ𝜀H

HL the Hückel HOMO-LUMO gap, Δ𝜀DFT
HL the PBE HOMO-LUMO gap, ΔEDFT

ST the singlet-triplet gap (in eV), A the surface

area (Å2), V the volume (Å3), W the Wiener index, NHC the number of Hamiltonian cycles, and NPM the number of perfect matchings. The symbol (T) indicates
that the triplet electronic state is taken instead of the singlet state.

the properties of all IPR isomers of C80. With larger
fullerenes the band gap becomes very small (graphene
is a semi-metal or zero-gap semiconductor189), and
one has to check for states of higher spin multiplicity.
For C80, Hückel theory indicates an open-shell case
for the isomers 6 and 7. In fact, the results show
that four of the isomers have a triplet ground state,
with the singlet and triplet states for C80 - Ih being
quasi-degenerate. The DFT calculations further show
that the most stable fullerene is not the high symmetry
C80 - Ih isomer, but the first one in the IPR isomer list,
which is of D5d symmetry and has the largest H2 value
(previously, isomer 2 has been predicted to be the most
stable isomer190). The results show that the first three
isomers are very close in energy and it requires perhaps
a more sophisticated electron correlation treatment

to sort out the sequence in stability. Isomer 1 also
has the highest count in perfect matchings among
all IPR isomers (although the non-IPR C60 - D3d(4)
nanotube has a much higher perfect matching count
of NPM =524, 250). The volumes and surface areas
are all very similar with the highest symmetry isomer
C80 - Ih being largest.

The results shown here clearly demonstrate that
the topological indicators help enormously to sort out
the most stable isomers. The situation is often quite
complicated as seen from the DFT calculations here,
or for example from the work of other authors who
compared stabilities within a list of isomers.191–193 In
the next section we introduce topological indicators
that are connected to 𝜋-electron resonance structures
(Kekulé structures) in fullerenes.
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Kekulé Structures and Perfect Matchings,
Clar and Fries Structures, and the Pauling
Bond Order
Every chemist learns how to draw double bonds into
an aromatic system called a Kekulé (or resonance)
structure, sometimes also called a benzenoid graph.194

For benzene there are only two possible Kekulé struc-
tures with three double bonds as we all know, but
for C60 there are as many as 12,500 Kekulé struc-
tures with 30 double bonds (a fullerene has exactly
nDB =N/2 double bonds), of which only 158 are
symmetry distinct, that is, non-isomorphic.195–197 A
Kekulé structure is the same as a perfect matching in
the chemical graph G = ( , ), where the edges of the
matching correspond to double bonds. We write  (G)
for the set of all perfect matchings of the graph, and
the number of different Kekulé structures K = | (G) |
is called the Kekulé number. In graph theory, a perfect
matching is a selection of edges such that every ver-
tex of the graph G is part of exactly one edge in the
matching. The edges of the matching correspond to
the double bonds.

Chemists know from basic Hückel theory
that for two different benzenoid graphs B1 and B2,
K(B1)>K(B2) implies that B1 is more stable than B2
because of resonance stabilization. Schmalz et al. cal-
culated the Kekulé number for several small fullerenes
up to C84.50 Their work showed that for C60, the
least stable isomer C60-D5h(1) has K= 16,501, while
for the most stable isomer C60-Ih(1812) we have
K=12,500.50 In fact, Austin et al. showed that 20
isomers of C60 have a higher Kekulé numbers than
C60-Ih.198 The Kekulé number is therefore not a good
indicator for fullerene stability,198 but useful for ratio-
nalizing the different bond lengths in fullerenes as
we shall see.

All cubic graphs have exponentially many per-
fect matchings and hence exponentially many Kekulé
structures.199 While the theoretical lower bounds
proved in Refs 113, 199 have small exponents, the
actual exponential behavior kicks in rapidly, as seen
in Figure 17: The mean number of perfect match-
ings for a CN isomer is approximately 20 ·2(N− 20)/4.
In general, calculating the number of perfect match-
ings for graphs is intractable,i but for planar graphs
(such as fullerenes) the Kekulé number can be com-
puted in 

(
N3

)
time using the Pfaffian matrix (the

Fisher-Kasteleyn-Temperley algorithm).200

Pauling, Brockway, and Beach introduced bond
orders derived from Kekulé structures in order to
rationalize the differences in the C–C bond lengths
encountered for polycyclic aromatic compounds.201

The Pauling bond order (PBO) Pij of an edge vi − vj
is defined as the sum over all appearances of double
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FIGURE 17 | Minimum, median, and maximum perfect matching
count for all isomers of CN up to C120. (a) When looking at the plot for
all N, we notice three distinct series depending on the value of N mod 6.
(b) For each of the three series, both the maximum and minimum counts
follow a simple exponential function (shown as dashed lines). Here, the
‘peak series’ at N mod 6= 2 is shown. (c) The bounds for the IPR
isomers (solid curves) are shown together with the bound for all
isomers (dashed curves) for the series N mod 6= 0. The other two series
behave similarly.

bonds in perfects matchings

Pij =
1
K

∑
M∈(G)

𝛽ij (39)

where 𝛽 ij =1 if the edge vi − vj has a double bond in
the perfect matching M, otherwise 𝛽 ij =0. This gives
0≤Pij ≤ 1, with 0 being a pure C–C single bond and 1
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FIGURE 18 | Atomic force microscopy (AFM) image for C60 by Gross
and co-workers204 at a tip height of z = 3.3 Å showing the different
bond orders of individual carbon-carbon bonds in a hexagon. (Copyright
© 2012, American Association for the Advancement of Science)

a pure C=C double bond. In C60-Ih there are two
different type of bonds and therefore two different
PBOs, depending if the edge shares two hexagons
(Phh =11/25= 0.44) or a hexagon and a pentagon
(Php =7/25= 0.28).202 Note that the Hückel bond
orders derived from the eigenvectors of the adjacency
matrix are generally larger with Phh = 0.6010 and
Php =0.4758 for C60-Ih.203

Narita et al. derived a linear relationship
between the PBO and the bond distance in a fullerene
obtained from X-ray diffraction,202

rij[Å] = 1.554 − 0.399Pij (40)

Figure 18 shows an AFM picture of one of the
symmetry equivalent hexagons in C60 clearly showing
the two different types of bonds. The measured bond
lengths are rhh =1.38(2) Å and rhp =1.454(12) Å,204

in excellent agreement with the values obtained from
Eq (40) (rhh = 1.378 Å and rhp = 1.442 Å).

Kekulé structures containing benzenoid moieties
are of special interest. These are the Fries and Clar
structures. Fries structures are Kekulé structures with
maximum number of benzenoid hexagons. The Fries
number Fries(G) of a benzenoid graph is the maximum
number of benzenoid hexagons over all of its Kekulé
structures, and a Fries structure is a perfect match-
ing that realizes this maximum (there could be many).
Similarly, the Clar number Clar(G) is the largest num-
ber of independent sets of benzenoid faces (separated
from each other) over all Kekulé structures, and a Clar
structure is a perfect matching that realizes this (there
could be many). It is clear that a Clar structure local-
izes benzenoid structures in fullerenes. For C60-Ih we
have Fries(G)= 20 and Clar(G)= 8, and an example
for a Fries and Clar structure of C60-Ih is shown in
Figure 19. One might naively assume that a set of Clar
structures form a subset of Fries structures, but this is
generally not the case for fullerenes.205

FIGURE 19 | One of the Fries structures of C60, and superimposed
the structure with highest Clar number (Clar(C60)= 8). Double bonds
are shown in red and isolated aromatic hexagons are shaded in.

We expect maximum stability for fullerenes
with the highest Clar number. For example, C60-Ih is
unique among all other isomers in that it has a Fries
structure where all hexagons contain three double
bonds and all pentagons none. This is also seen as
a reason for the unique stability of C60. However,
finding the Clar number is not a trivial problem as it is
computationally NP-hard.206 Ye and Zhang recently
showed that for C60 there are exactly 18 fullerenes
with maximal Clar number of 8.207 Some of them
contain as many as 6 fused pentagons. Hence the
Clar number alone is not a good measure for stability.
However, out of the 18 fullerenes with Clar number
8, C60 has the largest Kekulé count.208 Fowler showed
that leapfrog transforms of fullerenes not only are
closed shell, but also have the maximum proportion
of benzenoid hexagons.209

Figure 17(c) shows that the expected number
of perfect matchings is no different for IPR fullerenes
than it is for all fullerenes, except for small fullerenes
for which it is larger than average. However, the
maximum number is always significantly lower for
IPR fullerenes. One could assume that the larger the
Kekulé number is the more Clar sextets can be found
and the more stable the fullerene is. While this has
not been explored in detail, Table 4 shows that for
C80 the most stable D5h isomer has the lowest perfect
matching count. There are, however, some good lower
and upper bounds of these topological indices known.
Došlić showed that the number of Kekulé structures
grows exponentially with a lower bound of 2N/8.210
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This is not a very tight bound, however, as for C60
it predicts at least 181 Kekulé structures, and there
are as many as 12,500. The upper bound for Fries
numbers is well known, Fries(G)≤N/3, which is
seen to be the graphenic limit. Fries structures with a
maximum N/3 Fries number are called complete Fries
structures211 or perfect Clar structures. This happens
exactly for Clar structures that use every vertex. In
that case, the Clar and the Fries structure is the same,
and corresponds to a ‘soccer ball coloring’ of the
faces. An interesting result comes from Pisanski who
proved in a paper with Fowler that the fullerenes with
maximum Fries number N/3 are exactly the class of
leapfrog fullerenes.212 Given a leapfrog, we can find a
perfect Clar structure, and given a perfect Clar struc-
ture, we can derive an inverse leapfrog transformation.
This gives an easy way to test whether a particular
isomer admits a perfect Clar structure: simply test
whether the inverse leapfrog operation is successful.
An upper bound for Clar numbers has been obtained
by Zhang and Ye, Clar(G)≤ (N/6− 2).213 Both IPR
fullerenes, C60-Ih, and C70-D5h with Clar(C70)=9
achieve this upper bound. Such fullerenes are called
extremal fullerenes.213

Finally we mention that the Kekulé struc-
tures can be used to determine the resonance
stability of fullerenes. To start with a very simple
model, Randić et al. took the Kekulé structures
of fullerenes ranging from C20 to C72, and calcu-
lated the 𝜋-content P𝜋 of hexagons and pentagons,
which is obtained by summing all the Pauling bond
orders in a specific ring.197 For C60-Ih this gives
Ph
𝜋
= 3Php + 3Phh = 54∕25 = 2.16 for a hexagon, and

Pp
𝜋 = 5Php = 35∕25 = 1.40. High hexagon 𝜋-count

together with low pentagon 𝜋-count gives stabil-
ity to a fullerene. High hexagon 𝜋-count increases
the aromaticity in the system (for more details see
Ref 197). Klein et al. applied Herndon’s resonance
theory214,215 using counts of 2m-resonance cycles
to obtain the resonance energy.195 They correctly
pointed out that the reduced p𝜋-orbital overlap in
strongly curved fullerenes will reduce the resonance
energy and has to be taken into account.195 Here
we should mention again that obtaining all Kekulé
structures for a fullerene is an exponential problem,
and it is more advantageous to apply methods that
scale polynomially in time, such as Hückel or more
sophisticated (semi-empirical) theories.

Hamiltonian Cycles, IUPAC Rules,
and Naming Fullerene
For naming an alkene, the IUPAC rules state that
one has to find the longest continuing carbon chain

containing as many double bonds as possible. For a
cyclic system one chooses the longest cyclic chain, and
if there are multiple longest cycles, one must choose
the one that maximizes the number of double bonds
along the chain. This is related to finding a Hamilton
cycle, which is a closed path in a graph that visits every
vertex exactly once. If at least one such cycle exists,
we say that the graph is Hamiltonian. In this case, the
Hamilton cycles are the longest carbon chains, and the
optimal one must be chosen among these.

It is an open problem whether every fullerene
has a Hamilton cycle.j In practice, however, we find
that fullerenes are not only Hamiltonian, but admit
exponentially many Hamilton cycles. The mean num-
ber of Hamilton cycles taken over all CN-isomers
grows approximately as 8 ·2(N− 20)/5.8 for N mod 4=0
and as 12 ·2(N− 20)/6 for N mod 4= 2 (Schwerdtfeger
et al., unpublished manuscript). Because of this, nam-
ing fullerenes according to the IUPAC alkene rules is a
computationally heavy task: we must search through
all the exponentially many Hamiltonian cycles (main
rings) to find the one in which the secondary bridges
are labeled in the lexicographically smallest way. This
is computationally feasible only for small fullerenes
such as the ones shown in Figure 20.

In addition to being infeasible to calculate, as
N grows, the name resulting for a fullerene from
the IUPAC alkene rules rapidly becomes long and
unmanageable. Even for a relatively small fullerene
such as C60-Ih, the namek is already unreadable, and
the name length keeps growing with the fullerene
size.216 The IUPAC alkene name for fullerenes is now
seen mostly as a curiosity—and a good example of
how a well meant rule has is limits.

IUPAC employs an alternative naming scheme
for fullerenes: CN-PG[5, 6]fullerene, where PG stands
for the (ideal) point group, and [5, 6] denotes a polyhe-
dral cage with only pentagon and hexagon faces. For
example, the IPR C60 fullerene has the official IUPAC
name C60-Ih[5, 6]fullerene. While computing the name
of a fullerene according to this scheme is easy and effi-
cient, and contrary to the alkene naming scheme is
short and easy to understand, we find that this scheme
is not much better than the IUPAC alkene nomen-
clature. On the one hand it is unnecessarily long:
‘fullerene’ implies ‘[5, 6]’, and vice versa. On the other
hand, it does not uniquely specify a fullerene, since
many isomers share the same vertex count and symme-
try. For example, while C120-Td[5, 6]fullerene happens
to be unique, C120-C2[5, 6]fullerene refers to 10,787
different fullerene isomers, and C120-C1[5, 6]fullerene
refers to no less than 1,660,007 different molecules.
We therefore advocate the use of one of the follow-
ing two names to uniquely specify fullerenes, based
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(a) (b)

FIGURE 20 | One of the Hamiltonian cycles out of the many for (a) C60-Ih (NHC = 1090), and (b) the C60-D5h carbon nanotube (NHC = 3040).

on the (generalized) canonical face spiral pentagon
indices (FSPI), see the chapter on face spirals above.
Both schemes uniquely and compactly identify a
specific fullerene molecule.

1. For moderate values of N, we can specify the
fullerene by its canonical index, which is the
lexicographic number of its FSPI among the
isomers. For example, the IPR C60 molecule can
be written as C60-Ih(1812) or C60-Ih(IPR−1), as
it is the last fullerene of the 1812 C60 isomers in
the lexicographically ordered FSPI list.

2. For large CN, for which it is not feasible to
compile databases for all isomers, we annotate
instead with the FSPI. For the vast majority of
fullerenes, this is a list of 12 small integers. For
the extremely rare cases where jumps are nec-
essary (there are only two non-spiral fullerenes
out of the 2.6×1012 fullerenes up to C400), two
extra integers are required per jump. No cur-
rently known case requires more than one jump.
With this scheme, C60-Ih(IPR−1) is written
C60-Ih{1, 7, 9, 11, 13, 15, 18, 20, 22, 24, 26, 32},
and the unspiralable C380 is written
C380-T{110, 2; 45, 70, 71, 82, 83, 110, 119, 120,
144, 184, 185, 192}. In the latter example, the
two numbers before the semicolon denote
a cyclic shift of length 2 before adding face
number 110.59

The canonical FSPI notation is especially advan-
tageous for more reasons than being compact and
complete without needing to refer to a precomputed
database. The procedure to construct a fullerene
graph from the FSPI (the ‘windup’ operation) is

geometrically intuitive—visualized like peeling an
orange—and the algorithm is so simple that it can be
performed with pen and paper. Thus, one can even
reconstruct fullerenes of moderate sizes from the FSPI
by hand, without the help of a computer.

The algorithm for the windup operation is
 (N), and the inverse operation, unwind, takes  (N)
expected time to find a single generalized spiral, and

(
N2

)
to find the canonical one.59 The canonical FSPI

constitutes a canonical labeling of fullerene graphs
up to isomorphism. Hence one can check whether
two fullerene graphs are isomorphic simply by testing
whether they have the same canonical FSPI, and the
canonical FSPI gives us a unique graph representative
of each isomorphism class via the windup procedure.
As discussed later, the FSPI representation makes it
easy to directly compute the ideal symmetry group
of the fullerene. Because the generalized face spiral
algorithm is complete for all connected planar cubic
graphs, a compressed form of the face spiral similar
to the FSPI can be used in general for fulleroids, to be
introduced in the last chapter.

Thermodynamic Stability and the Graphene
Limit
The spherical shape of C60-Ih with no adjacent pen-
tagons is seen as the main reason for its unusual
stability,217 which underlines the importance of
Kroto’s isolated pentagon rule (IPR).18 For example,
Nagase and co-workers investigated the stability
of potential candidates for the lowest energy struc-
ture of C74, with the sole IPR D3h isomer being
16 kcal/mol lower in energy than the C2 isomer
containing two fused pentagons.218 It is therefore
convenient to compare the stability of a fullerene to
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C60-Ih (relative fullerene stability, RFS) by using the
isodesmic reaction C60/60→CN/N,

ΔERFS (N) = 1
N

E
[
CN

]
− 1

60
E
[
C60 − Ih

]
(41)

where E[CN] is the total energy for a CN fullerene.
For N→∞ we obtain the graphene limit, which can
be estimated to be approximately ΔERFS(∞)=−9
kcal/mol.

As E∼N, E/N approaches a constant value
for infinite systems, for example, the graphene limit
if the pentagons are as separated as possible from
each other, so that the polyhedral surface is mainly
constituted of flat graphene sheets. Alternatively, for
nanotube fullerenes with pentagon caps, the infinite
particle limit is just the corresponding infinite nan-
otube. For the graphene limit, the next dominant term
in a 1/N expansion will be the surface tension or cur-
vature term, which is ∼N−1 as for example used by
Cioslowski et al.,33 see Eq (38) (although a N−1/2 law
has been also suggested before59). Indeed, as Figure 21
shows, the stability follows approximately a linear
behavior in our 1/N fit (we set ΔERFS = 0 for N=60),

ΔERFS (N) = 527.4N−1 − 8.79
(
kcal∕mol

)
(42)

that is fullerenes become more energetically stable
with increasing vertex number N. It was already
shown experimentally that C70 is more electronically
stable than C60.219 Alcami et al.’s scheme predicts
the correct graphene limit (N→∞), and Cioslowski’s
scheme performs well for medium sized IPR fullerenes,
but has an incorrect convergence behavior toward the
graphene limit.32,33 C20 is the smallest member of the
fullerene family, and as seen from Figure 21 also the
least electronically stable one. It has been detected in

2000 by Prinzbach16 (see also Ref 220), and a current
review on the state of affair concerning C20 is given by
Fei et al.221

It becomes more and more difficult to extract the
most stable isomers from the huge isomer space as the
size of the fullerene increases. Besides using topologi-
cal indicators, Hückel theory can be used to determine
the resonance stability of a fullerene. It requires diag-
onalization of the adjacency matrix Aij (the Hückel
matrix is defined as Hij = 𝛼𝛿ij + 𝛽Aij, where 𝛼 is the
Coulomb and 𝛽 the resonance integral, and 𝛿ij is
the unit matrix), and the occupied Hückel orbitals
determine the Hückel resonance stability (HRS) of a
fullerene (in units of 𝛽),

ΔEHRS (N) = E𝜋 − N

with E𝜋 =
occ∑
i=1

ni𝜀i

(
𝜀i ∈

[
−3,+3

])
(43)

where ni = 0, 1, 2 are the occupation numbers, 𝜀i
the orbital energy for Hückel orbital i, and the last
term comes from subtracting the non-resonant ethene
value (single double bond). This gives EHRS =33.161𝛽
for C60. Per 𝜋-electron this gives a resonance energy
of 0.5527𝛽 much higher compared to benzene with
exactly 𝛽/3. This should indicate that C60 is more
aromatic than benzene, which has been a matter
of some debate in the past (see the review by Bühl
and Hirsch223). The problem is that the 𝜋-overlap in
non-planar systems is not ideal and there is substantial
mixing (hybridization) with the p𝜎 orbitals of carbon,
thus questioning the 𝜎-𝜋-separability in Hückel theory.
Hence there should be a correction accounting for the
curvature at each carbon atom. Such curvature cor-
rections, for example through using the 𝜋-orbital axis
vector method (POAV), have been considered before

FIGURE 21 | The stability of fullerenes CN in
comparison to C60 obtained from density functional
calculations up to the graphene limit (N →∞). Topological
stability indices from resonance energies222 (TRE using
𝛽 =− 216 kcal/mol) or ring patterns by Alcami32 and
Cioslowski33 are also shown. The graphene limit is
estimated from the heat of formation of C60.185
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with some success,224,225 and the different approaches
are discussed in detail by Bakowies and Thiel.226

For example, Haddon et al. showed that C240 is
significantly more stable than C60,225 which is indeed
the case as Figure 21 shows. Clearly, as the fullerene
system becomes larger, the curvature term becomes
smaller. Moreover, for similar shaped fullerenes the
Hückel resonance energy might still be a good approx-
imation. Indeed, as Table 4 for C80 shows, the first
two isomers are the most stable ones predicted by the
simple Hückel resonance energy term in agreement
with DFT calculations, and isomer 7 is the least stable
one. The Hückel method only requires a diagonal-
ization of the adjacency matrix, and for obtaining
bond orders and resonance energies it is compu-
tationally more efficient than sorting out Kekulé
structures.

We mention that the Hückel spectrum {𝜀i}
for fullerenes shows some interesting mathematical
properties.227,228 The largest eigenvalue (which trans-
lates into the lowest occupied level as the reso-
nance integral 𝛽 is negative) in a fullerene is always
𝜀max =+3. The smallest eigenvalue (highest unoccu-
pied level) is largest for C20 with 𝜀min = −

√
5, and for

the IPR isomers C60 we have 𝜀min = −
(

1 +
√

5
)2

∕4.
As a geometric consequence, the famous golden ratio(

1 +
√

5
)
∕2 appears here as it does in the volume

and surface area calculations discussed above. We also
mention that in general, different graphs can have the
same Hückel spectrum,229 and this is the case also for
fullerenes: the eigenvalues do not uniquely determine
the fullerene graph.108

It is well known that the Hückel scheme for
canonical resonance structures is of rather limited
use, and Aihara230 and Gutman et al.231 therefore
introduced a different reference system by defining the
topological resonance energy (TRE) for a graph G as

ΔETRE (G) = E𝜋 (G) − EMP (G) (44)

where the reference energy EMP(G) is the sum of all
roots given by the matching polynomial, which for a
fullerene is

PMP (G) =
N∕2∑
k=0

(−1)k c
(
G,k

)
xN−2k (

cMP (G,k
)
∈ ℤ

)
(45)

Here the polynomial coefficients c(G, k) define
the number of ways of choosing k non-adjacent
edges from the graph G. Balasubramanian gave
polynomial coefficients c(G, k) for a number of
fullerenes up to C50,232 Babić determined the

coefficients for C70,216 and Salvador for C60 and
C70 to C100.233 The first few polynomial coeffi-
cients are known as they are independent of the
isomers for a specific vertex count, that is, c(G, 0)=1,
c(G, 1)=− 3N/2, c(G, 2)= 3N(3N−10)/8, c(G, 3)=
− (9N3 − 90N2 +232N)/16.232 The last coefficient
c(G, N/2) is just the number of perfect matchings
in the graph. The computation of these coefficients
soon becomes computationally intractable.233 Babić
et al. found, however, a good correlation between
EMP and E𝜋 values for fullerenes, and the E𝜋 value
suffices to calculate the topological resonance energy
approximately as (in units of 𝛽),222

ΔETRE = 1.024296E𝜋 − 1.512148N (46)

In order to give reasonable results for the
isodesmic reaction energy (Eq 41), a rather low value
of 𝛽 =− 216 kcal/mol has to be applied. This scaled
TRE plot is shown in Figure 21, which is in reason-
able agreement with the results obtained from DFT
calculations.

The five or six Pauling bond orders in a pen-
tagon or hexagon respectively can be added to
give the Pauling ring bond order.234 For C60-Ih
this gives 1.40 (5×11/25) for a pentagon and
2.16 (3×11/25+ 3× 7/25) for a hexagon com-
pared to 3.00 for benzene. According to Randić this
suggests only moderate aromaticity for C60-Ih.234 We
are not going into the controversy of aromaticity of
fullerenes,235 but refer to a recent paper by Schleyer
and co-workers,236 who find that both C20-Ih and
C60-Ih are not spherically 𝜋 aromatic237 but spheri-
cally 𝜋 anti-aromatic, which for C60 explains the large
heat of formation. In this respect it is interesting that
Schleyer and co-workers conclude that fullerenes are
not highly stable molecules,236 which perhaps is in line
with the data shown in Figure 21 showing no ‘magic’
stability for C60 compared to the other fullerenes. We
finally mention that fullerene cage abundance is not
only guided by thermodynamics, but mostly by kinetic
stability. For example, the relative isomer abundance
of fullerenes and carbon nanotubes correlates well
with kinetic stability.238

Electronic Aspects to Structure and Stability
So far we have discussed topological aspects to
determine the structure and stability of fullerenes
and basic Hückel theory gives us a first insight
into the electronic structure.239 For example, Fowler
and co-workers have shown that leapfrog fullerenes
adopt a closed-shell structure,212,240,241 and have
equal numbers of positive and negative eigenvalues.242
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For a more detailed discussion on this subject see
Ref 243. However, as we have already seen, more
detailed quantum chemical calculations are required
to describe the bonding in fullerenes accurately (see
also the work by Thiel and co-workers244–246). For
example, the IPR isomer C80-C2v(5) shown in Table 4
prefers a triplet ground state (at the DFT-PBE level of
theory) contrary to Hückel theory, which predicts a
singlet state. This is perhaps not surprising as already
Hückel theory predicts a small HOMO/LUMO gap.
As the band gap closes further with an increasing
number of vertices (see for example the recent paper
by Noël et al.247), we cannot expect anymore to pre-
dict the correct spin ground state from simple topo-
logical arguments. Moreover, the system becomes
more multi-reference in nature, making even a quan-
tum theoretical treatment difficult. As an example,
C50-D5h(271) was investigated by Lu et al. who
showed that two singlet states with different HOMO
symmetries are quasi-degenerate.248

In addition, some fullerenes may undergo first-
or second-order Jahn-Teller (JT) distortions (which
could, however, be very small and almost undetectable
for larger fullerenes), that is, they can distort to sub-
groups of the ideal point group symmetry given by
the fullerene topology.249,250 For example, C20 is well
known to distort away from the ideal Ih symmetry,
which has led to much discussion and debate over the
correct electronic ground state.251 The JT distortion in
C20 is a consequence of two electrons being distributed
over four energetically degenerate gu-orbitals, result-
ing in a rather complicated topology of the JT energy
hypersurface.248,250,252–254 JT distortions for highly
symmetric open- or closed-shell fullerenes may require
a multi-reference treatment. It is therefore often dif-
ficult to predict the correct electronic ground state
and corresponding physical point group symmetry of
a fullerene.

The Gas Phase Formation of Fullerenes
Since the discovery of fullerenes almost 30 years ago,
there has been considerable activity, both from the
experimental and theoretical side, to gain a detailed
understanding of fullerene formation in the gas phase.
However, the formation mechanism and especially the
high yield of C60-Ih and C70-D5h remains elusive and
somewhat controversial.

Fullerenes can be produced by (a) evaporat-
ing a carbon target (graphite, amorphous carbon,
fullerenes), optionally with addition of metal oxides
with a laser,5 (b) an electric arc between carbon
electrodes,9 or (c) by partial combustion of carbon rich
organic compounds.255 Each of these methods can be

adjusted by several experimental parameters (gas pres-
sure, carrier gas, rod feeding rate, amount of oxygen,
etc., and therefore indirectly the carbon vapor con-
centration, expansion rate, annealing time, etc.). Fur-
thermore, fullerenes are found in space,14 at meteor
impact sites, after lightnings and bush-fires, and
soot from household candles.99 These conditions are
similar in that carbon vapor is formed at very high
temperatures with a deficit of possible reactants like
oxygen or hydrogen. The distribution of yielded
fullerene cage sizes depends on the production method
and the above-mentioned experimental parameters;
however, C60-Ih and C70-D5h are always among the
most abundant species.

A large number of formation mechanisms have
been proposed.99 First, inspired by their resemblance
to graphene sheets or nanotubes, it was suggested
that graphene curls or nanotubes break apart to form
fullerene cages, followed by various bottom-up strate-
gies that suggest the successive addition of faces (party
line256,257, pentagon road257) or polyyne rings (ring
stacking258,259) before the cage is closed, the folding
of chains to form a cage (ring fusion zipper260), or
the growth of already existing cages (fullerene road261,
closed network growth98), and many others. The cur-
rently most widely accepted mechanism comes from
Irle, Zheng, Wang, and Morokuma, and is called the
‘shrinking hot giant road’.99 It is based on the concept
of self organizing structures under non-equilibrium
conditions, backed by extensive QM/MD simulations.

This mechanism can be divided into five phases:
First, linear polyyne chains and cycles form. In the
second stage (nucleation), entangled carbon chains
rehybridize and form faces. It is to be noted, that
pentagons and hexagons are close in energy at the
given temperatures,99 however, smaller and larger
faces are formed as well. Third, more carbon dimers
attach to the side chains of an existing nucleus
(growth), allowing for the formation of additional
faces. Fourth, after the formation of sufficiently many
faces of sizes <6, the cage may close spontaneously
(cage closure), leaving a carbon cage with face sizes
not restricted to 5 and 6 and with polyyne side chains
attached to it. The final step is the ejection of carbon
dimers off side chains and the cage in combination
with rapid isomerization of the cage structure result-
ing in a fullerene without side chains and faces of sizes
5 and 6 only. Fullerenes can not only shrink but also
grow in steps of C2,95,98,262 and the existence of C2
and C3 fragments is backed by spectroscopy.263 The
addition and ejection of small carbon fragments (espe-
cially C2) to and from forming fullerene cages is a
fast equilibrium. While the non-cage carbon concen-
tration is high addition prevails; as the carbon vapor
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expands ejection begins to dominate.95 The first four
steps are exothermic, while the last step is endothermic
but increases the overall entropy.

As shown in Figure 21, large fullerenes are more
electronically stable than small ones, with graphene
having a lower energy than any fullerene. In an equi-
librium one would therefore anticipate the forma-
tion of graphene—the formation of strained cages and
especially the high yield of C60-Ih and C70-D5h require
further explanation. The experimental conditions of
the cooling and expanding carbon vapor are, how-
ever, far from an equilibrium, and the whole formation
must be understood as a process of self-organization
that is governed by kinetics more so than thermody-
namics. Once fullerenes have formed they are subject
to restricted equilibration only. Curl et al. have shown
numerically that exchange of carbon dimers between
existing cages is sufficient to explain the high yield of
C60-Ih and C70-D5h as well as a broad distribution
of larger cages.264 They show, that the driving forces
for the C2 exchange are the energy difference between
CN and CN± 2 and the high stability of C60-Ih and
C70-D5h relative to their isomers rather than entropy;
even at 4000 K entropic effects are not strong enough
to explain the existence of small cages.264

The experimental observation of endohedral
metallofullerenes supports a top-down formation
mechanism in two ways: As any enclosed fragments
need to enter the cage before it is closed, fullerenes
containing fragments that use up most of the space
available in the carbon cage must either be formed
top down or their existence implies the breaking
and reformation of carbon bonds to open and close
the cage after it was formed. Secondly, enclosed
metal fragments may stabilize otherwise unstable
fullerenes: Zhang et al.265 report the finding of
non-IPR M2C2@C84(51383), which they interpret to
be a missing link in the top-down road, and which
would have ejected further C2 fragments without the
stabilizing metal carbide.

How Much Space Is Inside a Fullerene?
Endohedral Fullerenes and Buckyonions
We consider only topological aspects here as there
are several reviews on the chemistry of endohedral
fullerenes available.22,266,267 We only note that endo-
hedral enclosure can change the stability between
different isomers.268 For example, Tb3N@C84 has
been isolated and shows one fused pentagon pair.269

Rodríguez-Fortea et al. argued that if the enclosed
metal atom or cluster donates electrons to the
fullerene cage, the negative charge resides mostly
at the pentagons.270 As this creates a Coulomb repul-
sion between the pentagons, one can introduce the

inverse pentagon separation index (IPSI),

IPSI =
12∑
i=1

12∑
j>i

R−1
ij (47)

with Rij being the Euclidian distance between the
pentagons (although the topological distance might
be used instead). Small IPSI-values are preferred270 as
these correspond to a small Coulomb repulsion.

It is clear that the cavity in the fullerene
cage should be large enough to encapsulate atoms,
molecules, or even smaller fullerenes.22,271–282 The
size of the cavity can be estimated from fitting shapes
such as spheres or ellipsoids inside a fullerene cage as
discussed above.

Conversely to the minimum covering sphere
problem (MCS), we wish to find the largest sphere
that is fully contained within the polyhedron. This
is called the maximal inscribed sphere (MIS), or
simply inscribed sphere, and its radius for a given
polyhedron P is

RMIS = max
−→c MIS

min−→x∈P
||−→x − −→c MIS|| (48)

where −→c MIS is constrained to the points interior to P.
In the case of convex polyhedra, the MIS is unique,
and can be computed directly by finding the Cheby-
shev centre of the polyhedron.283 The inscribed radius
is then determined by a linear programming prob-
lem. However, in the non-convex case, the MIS is no
longer unique: Consider two overlapping circles in 2D
space with the points lying on these circles. We now
have two equivalent possibilities for placing our inner
circle. The same argument holds for peanut-shaped
fulleroids, which are introduced in the last chapter.
Hence, in the non-convex case, we only search for one
of the possibly many largest spheres contained entirely
inside the polyhedron, giving us a numerical optimiza-
tion problem.

Once the MIS has been obtained, we can
estimate whether an atom or molecule fits inside
the fullerene without coming close to the repul-
sive wall of the fullerene cage. For example, the
space available inside C60-Ih is roughly RMIS(C60)
−RVdW(C)≈ 3.550−1.415Å= 2.135Å. If we com-
pare this to the Van der Waals radii for the rare gas
atoms, which are 1.40 Å for He, 1.54 Å for Ne, 1.88 Å
for Ar, 2.02 Å for Kr, and 2.16 Å for Xe,284 we see
that they all fit into C60-Ih as experimentally
already verified285–291 (even for the borderline case
of Xe as theoretical investigations show292–294).
Even molecules like water fit into C60.295,296

If we take C20 as a endohedral host molecule
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we arrive at a different picture as RMIS(C20)
−RVdW(C)= 2.040−1.415Å=0.635Å, and even
He does not fit anymore into the C20 cage.297,298 We
note the important role of dispersion interactions
in endohedral fullerenes.299 Further, C60 is a very
stiff molecule,300 and the cage cannot so easily be
expanded by endohedral atoms or molecules. In other
words, the endohedral system can become repul-
sive very soon if the size of the endohedral atom or
molecule becomes too large.301

As a further example we consider hyper-
fullerenes (also called buckyonions),271,272,274,302

that is, fullerenes which contain smaller fullerenes
inside their cage. They have already been detected and
studied by theoretical methods.271,272,274,277–280 In a
similar way to the rare gas estimates, we can derive
approximately the following (conservative) condition
for a non-repulsive enclosing hyperfullerene,

ΔRN,M = RMIS

(
CN>M

)
− RMCS

(
CM

)
− 2RVdW (C) > 0

(49)

This only holds for ideal spherical sys-
tems, but can be seen as a lower limit for
the guest CM fullerene. For C20@C60 we get
ΔR60,20 = (3.553−2.084− 2×1.415) Å=− 1.361 Å
and it is therefore predicted to be thermodynami-
cally very unstable. Indeed, DFT(B3LYP) calculations
predict C20 @ C60 →C20 +C60 −1230 kcal/mol (−15
kcal/mol per carbon atom), the high energy required
to expand the C60 cage. In fact, analyzing C20@C60
we find that the carbon atoms of C20 close bonds
with the carbon of the C60 cage, that is, the structure
should be considered as a carbon cluster rather than
a hyperfullerene. Moreover, the volume of C20@C60
increases by 22% compared to C60. In contrast,
C60 fits nicely into C240, and C240 just into C540 in
agreement with the analysis of Bates and Scuseria (see
Figure 22).303 Here we get ΔR240,60 =0.583Å and
ΔR540,240 = 0.066Å.

The buckyonions, which have been considered in
the past, are all Goldberg-Coxeter transforms of C20
and have the most spherical appearance as they are
of icosahedral symmetry. It has been suggested that
the rather high sphericity observed for buckyonions
in experiments in contrast to the faceted polyhedral
structure predicted (see Figure 22) is due to C2 removal
in a [c5666] fragment consisting of 1 pentagon and 3
hexagons (notation of Figure 16 is used here) intro-
ducing one heptagon and an additional pentagon, that
is, [l575].303 As heptagons introduce local negative
Gaussian curvature (see discussion below), the frag-
ment flattens out and the buckyonion becomes more
spherical in shape.303

FIGURE 22 | The buckyonion structure C60@C240@C540.

For the buckonions one can establish a simple
relationship between the number of vertices N>M of
the buckyonions CM@CN. As R ∼

√
N (R being the

radius of the cage), an analysis of GCk,l-transforms of

fullerenes up to k=6 shows that RMIS ≈ 0.424
√

MÅ.
This gives a very simple estimate from Eq (49) for such
fullerenes, √

N ≳ 6.68 +
√

M (N > M) (50)

and we see that this is fulfilled for the cases
already discussed, and for the largest buckyonion
C60@C240@C540@C960@C1500 considered by Bates
and Scuseria.303 In fact, Casella et al. recently showed
by using dispersion corrected DFT that the formation
of C60@C180 from the two fullerenes is endother-
mic while C60@C240 is exothermic, and in the latter
case only because dispersion interactions have been
accounted for.304 We finally note that (possibly dam-
aged) buckyonions are the main product in most gas
phase fullerene generation procedures.262

Weird Fulleroidal Shapes: Generalizing
Fullerene Structures
Finally, what happens if we relax the rules a little bit,
and allow for other types of three-valent (sp2) carbon
frameworks? There are many generalizations that lead
to structures of beautiful shapes that have both elegant
mathematical theory and physical realizations: allow-
ing for polygons with faces different from pentagons
and hexagons; for surfaces other than a sphere (genus
0), such as a torus (genus 1), a Klein bottle or a double
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torus (genus 2); negatively curved Mackay-Terrones or
Vanderbilt-Tersoff surfaces; etc.121,242,305–309

We will discuss mainly two types of carbon
frameworks: fulleroids, which are fullerene-like
structures, and Schwarzites, which are periodic
negative-curvature surfaces. Different authors employ
a wide range of working definitions for fulleroids.
We advocate the following definition, generalizing
fullerenes: A fulleroid graph is a three-connected
trivalent polyhedral graph. The definition is identical
to that of fullerenes, except that there is no restriction
on face sizes. Hence, a fullerene is a fulleroid with only
pentagon and hexagon faces. We further generalize to
genus-n fulleroids, abbreviated Gn-fulleroids, defined
as the three-connected trivalent genus-n graphs.

What kind of fulleroids are allowed? Can we tile
a sphere or a torus with heptagons only (the answer
is no), or with only pentagons and heptagons? (the
answer is yes, with the right number.) And how can we
construct such fulleroids?310 In order to answer these
questions, we need to generalize Euler’s equation to
the Euler-Poincaré polyhedral formula for orientablel

surfaces,
N − E + F = 2 (1 − g) = 𝜒 (51)

where g is the genus of the graph,m and the corre-
sponding value 𝜒 is called the Euler characteristic.39

The Klein bottle is a non-orientable surface (like the
Möbius strip), and the corresponding (non-orientable)
genus is g′ =2 with an Euler characteristic of 𝜒 =0
(here we take 𝜒 =2− g′ instead).

What happens when we allow vertex degrees
r>3? Consider a possibly irregular genus-n graph
with N vertices. Let Nr be the number of vertices with
degree r, and Fn be the number of n-gonal faces. Then
we trivially have

F =
∑

n

Fn, N =
∑

r

Nr, and 2E =
∑

n

nFn =
∑

r

rNr

(52)

Combining this with the Euler-Poincaré polyhe-
dral formula, we obtain

2
∑
r≥3

(3 − r)Nr +
∑
n≥3

(6 − n)Fn = 12 (1 − g) = 6𝜒

(53)

If we only allow for three-valent graphs
(fulleroids), the first term on the left hand side of
Eq (53) conveniently vanishes (hence their special
place in graph theory). This gives,311

3F3 + 2F4 + F5 +
∑
n≥7

(6 − n)Fn = 12 (1 − g) = 6𝜒

(54)

From this equation we make a number of obser-
vations. a) We can play with as many hexagons as we
want to build fullerenes or fulleroids, but the num-
ber of n-gons with n≠ 6 is limited by Eq (54) or
(53). b) While both equations allow for a large vari-
ety of face combinations, certain combinations are
not allowed. The hand-shaking lemma (last formula
in Eq (52)) allows only for an even number of ver-
tices. We already know that there exist no polyhe-
dral structures of the type C22[5,6]. To give another
example, for CN[5,7] polyhedra with pentagons and
heptagons only (no hexagons) one requires at least
two heptagons since, analogous to C22, the combina-
tion of 13 pentagons and one heptagon is not valid
despite being allowed by Euler’s formula. Because of
this, the smallest [5,7]-fulleroid is C28-D7d with 14
pentagons and 2 heptagons, as shown in Figure 23.n

Structures containing only one heptagon are not for-
bidden, however, but requires introducing hexagons
to form CN[5,6,7]-structures. These can be obtained
by replacing a [c5666] fragment by [l575],303 and
can even be energetically favorable. For example,
Fowler and co-workers showed that C62 consisting of
one heptagon, 13 pentagon, and 19 hexagon faces is
of lower energy than all the 2385 regular fullerene

FIGURE 23 | C28[5,7]-D7d , the smallest
fulleroid with heptagon extension, compared
to the most stable (by ΔE= −102 kcal/mol)
C28-Td [5,6] fullerene isomer.

(a) (b)
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isomers of C62.312 c) For cubic planar graphs with
only one type of face we get F3 = 4 (tetrahedron),
F4 = 6 (cube), and F5 = 12 (dodecahedron), which are
the three three-valent polyhedra of the five Platonic
Solids, the other two, the octahedron and icosahedron,
require r= 4 and r= 5, respectively, in Eq (53); d) If
we allow for two different n-gons, we arrive at the 13
Archimedean solids including our famous buckyball
C60-Ih. e) Of course, we can tile a surface with tri-
angles and the duals of fulleroids are prime examples,
but in order to do this beside the tetrahedron, we must
allow for different valencies of the vertices. f) We can
tile a toroid (g=1) with hexagons only, consistent with
Eq (54), see Figure 24. The torus is the only closed,
orientable surface that can be tiled exclusively with
hexagons. However, the plane, which is not closed,
can be tiled with hexagons as well (graphene), as can
the Klein-bottle (which is not orientable). Introducing
pentagons into a toroid requires higher n-gons such as
heptagons, since its total Gaussian curvature must be
2𝜋(2− 2 ·1)= 0. The Euler-Poincaré’s formula allows
to introduce pentagons into toroids if we introduce
an equal number of heptagons, for example, we can
tile a torus exclusively with pentagons and heptagons.
Such ‘defects’ are well known in carbon nanotubes,313

which can be realized as infinite toroids with g=1
and 𝜒 = 0. Tiling in a pattern with alternating pen-
tagons and heptagons yields a toroidal arrangement of
azulenes, called azuloids.314

A few examples should be mentioned here.
The smaller fullerenes (N<60) are not very sta-
ble compared to C60 because of the energy penalty
one has to pay for fusing pentagons. As a result,
structures deviating from the classical fullerenes can
be more stable energetically or lie close by. For
example, for C26, An et al. found six low lying iso-
mers with the lowest structure being the fullerene
C26-D3h[5,6], but only 3 kcal/mol lower in energy
than the C26-Cs[4,5,6], a fulleroid that contains
one square.315 Some combinations with heptagons

are, however, disfavored energetically. For example,
a Stone-Wales transformationo of four connected
hexagons to two pentagons and two heptagons in
C540-D2h costs 260 kcal/mol.317

Turning to toroidal fulleroids (also called
toroids) with g=1 and 𝜒 = 0, there are different
techniques to construct such structures using either
combinatorial or geometric approaches.318–320 Like
in the nano-tubes, the hexagons can be oriented in
different ways around the torus ring. For example,
Figure 24(a) shows hexagons with 1/3 of the edges
aligned tangential to the toroidal direction. We could
also chose the hexagons to be aligned with 1/3 of
the edges perpendicular to the toroidal direction
(Figure 24(b)), and similar to nanotubes there are
also chiral alignments depending on the chirality
vector. Kirby and Pisanski showed how 2D graph
drawings of toroids can be obtained.314 Borštnik and
Lukman321 as well as Diudea and Kirby322 considered
the structure and stability of such toroids using simple
molecular mechanics. Faghani analyzed the symmetry
of toroidal fulleroids.126 Kang analyzed the band
gap in such toroids by graph theoretical means.323

Deza et al. pointed out that leapfrog toroids and
Klein-bottles have equal numbers of positive and
negative eigenvalues, but with 4 and 2 eigenvalues
being zero respectively.242 Interestingly, the leapfrog
transformation performed on toroids (such as the one
shown in Figure 24) results in an open shell toroid.324

As discussed earlier, the positive curvature in
fullerenes originate from the pentagons, because sheets
of hexagons like to be planar. Introducing heptagons
or even octagons into a fullerene requires additional
faces of size less than 6 to outweigh them, and results
in a highly non-convex structure with often strong
negative local Gaussian curvature,325 introducing a
saddle-type topology to the structure. Two examples
of such fulleroids are shown in Figure 25. In this figure,
every patch consisting of a pentagon surrounded by
hexagons is replaced by six pentagons surrounded by

(a) (b)

FIGURE 24 | Torus consisting of hexagons only with 1/3 of the edges tangential (a) and perpendicular (b) to the toroidal direction.
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(a) (b)

(c)

FIGURE 25 | Spiky fulleroids with negative curvature containing heptagons derived from fullerenes through patch replacement. (a) C260-I[5, 7]
fulleroid derived from C140-I. (b) C300-D6h[5, 6, 7] derived from C180-D6h. (c) C310-D5h[5, 6, 7] derived from C190-D5h.

(a) (b)

FIGURE 26 | Peanut shaped fulleroids. (a) C120-D5d [5, 6, 7] with 10 heptagons and 22 pentagons. (b) C168-D3d [5, 6, 7] with 18 heptagons and 30
pentagons.

five heptagons, for three different fullerenes, yield-
ing characteristic ‘spiky’ fulleroids. In Figure 26, hep-
tagons are introduced in a fashion that leads to peanut
shaped fulleroids,326 and in fact, many types of inter-
esting shapes can be constructed.

More interesting fulleroid shapes can be found
in a recent paper by Diudea et al.327 Negatively
curved fulleroids of higher genus (so-called perfo-
rated fullerenes) have been explored by Terrones and
Terrones,328 who studied their electronic structures.329

Under specific conditions fullerenes can be combined

by coalescence, forming larger carbon structures such
as deformed nano-tubes or nano-peapods.330 For an
overview of such carbon nano-peapods see Ref 331.

Structures of negatively curved graphitic carbon,
which can be periodically extended to a lattice, have
been proposed in 1991 by Mckay and Terrones,305

and subsequently explored by experiment.332–335

These so-called ‘spongy’ carbon frameworks or
Schwarzites are named in honor of the mathematician
Hermann Schwarz (1843–1921), who investi-
gated minimal surfaces with zero mean Gaussian
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FIGURE 27 | Periodic P-type (a) and
D-type (b) Schwarzite surfaces.

(a) (b)

FIGURE 28 | Comparison between a
small portion of a TEM image of a P-type
Schwarzite and the surface described by Eq
(55) projected onto a plane normal to the
z-direction (see Ref 333 for details).
(Copyright © 2013 AIP Publishing LLC)

(a) (b)

curvature.336 Schwarzites are structures containing
(beside hexagons) heptagons and/or octagons and are
of genus g≥3. These Schwarzites can be periodically
continued through so-called junctions as shown in
Figure 27 for the case g= 3 (Figure 27(a)). The two
structures in Figure 27 are termed P-type and D-type,
and can be approximately represented by the sim-
ple formulae derived from the Weierstrass-Enneper
parameterization for minimal surfaces,337

cos (x) + cos (y) + cos (z) = 0 (P − type) (55)

sin (x) sin (y) sin (z) + sin (x) cos (y) cos (z)

+ cos (x) sin (y) cos (z)

+ cos (x) cos (y) sin (z) = 0 (D − type) (56)

Relevant reviews on such minimal surface car-
bon networks have been given by Terrones and
Mackay311 and by Terrones and Terrones.338

Lenosky et al. have performed local density
functional calculations for two different g= 3 periodic
Schwarzite structures with 216 atoms and a tessella-
tion of hexagons and 24 heptagons within the unit

cell.339 The vertices on such surfaces can be obtained
through the Weierstrass representation.340,341 These
calculations reveal a higher thermodynamic stability
compared to C60, but not surprisingly lower com-
pared to the graphene sheet (or graphite). D-type
Schwarzites have the structure of a ‘diamond shaped’
lattice so that the unit cell can be split into two
identical elements having 12 heptagons each, whereas
P-type Schwarzites have the structure of a simple cubic
lattice (see Figure 27). In principle, Schwarzites can
be associated to any kind of lattice, either periodic or
amorphous, the latter are realized in so-called random
Schwarzites observed experimentally.332–335 Such
random Schwarzites show rather nice transmission
electron microscope (TEM) images (Figure 28) rather
different to periodic Schwarzites. A recent comprehen-
sive review over experimental and theoretical studies
on Schwarzites has been given by Benedek et al.335

Finally, we consider non-cubic (n-valent) polyhe-
dral structures. In chemistry this is realized by using
elements from the periodic table which can share
more (or less) than three bonds with its neighbors.
Prime examples are all-boron ‘fullerenes’,342 gaudiene
C72-Oh (with two- and three-valent carbon as analogs
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(a) (b)

FIGURE 29 | All boron fullerene B40 (adapted from Ref 350). (a) 3D structure; (b) 2D graph.

to graphyne),343,344 and golden ‘fullerenes’345–348 (we
shall call these structures polyhedral molecules rather
than fullerenes). For example, Au32 and Au72 are a
triangulated surfaces of icosahedral symmetry.346–348

It is well known that small gold clusters adopt 2D
structures with the most coordinated gold atom hav-
ing a valency of six.349 Extended to infinity, this gives
the dual structure of a graphene sheet, that is a tri-
angulation of the plane with vertices of degree six (see
Figure 9). In complete analogy to the fullerenes, golden
‘fullerenes’ are the duals of fullerene structures, for
example, Au32-Ih is the dual of C60-Ih, Au42-I is the
dual of C80-I, and Au72-I is the dual of C140-I (the
Goldberg-Coxeter transform of C20 with k=2 and
l=1). We may ask how many possible isomers are
there for Au72? Since the mapping from the fullerene
isomer space into the dual space is bijective, there
are as many isomers for Au72 as there are for C140,
and there are 7,341,204 of these. The stability of
these structures have not been explored yet! A smaller
dual-type golden fullerene structure, Au−

16, has been
observed spectroscopically by Bulusu et al.345 Here the
fullerene analog is C28, where we have only two iso-
mers, of Td and D2 symmetry. Only the Au−

16-Td struc-
ture has been investigated presently.

As a second example, the all-boron B40 fullerene
has been identified by photoelectron spectroscopy
only very recently by Wang and co-workers (as the
anionic species B−

40),350 consisting of 4 heptagons, 2
hexagons, and 48 triangles (see Figure 29). In this
intriguing new polyhedral structure the vertices are of
degrees 4 and 5. To be more precise, we have F3 =48,
F6 = 2, F7 = 4, N4 =16, N5 = 24 for B40, which
gives according to Eq (52) E=92 for the number
of edges.

CONCLUSIONS
To review the many developments in the topology
and graph theory of fullerenes or fulleroids would
be a monumental task. We have only outlined a few
important concepts in order to give the reader a
good introduction into this exciting field. There is
certainly the need of a more comprehensive review
or book. Nevertheless, we hope to have shown that
the interplay between mathematics and structural
chemistry is both interesting, rich and well alive. As
more sophisticated method in the synthesis of carbon
and other materials become available, we hope that
some of the exotic, but very beautiful, structures
become accessible with many useful applications in
chemistry and materials science.

NOTES
a If we grow Goldberg-Coxeter transforms of C20 to
infinity we obtain spherical graphene sheets connected
by 12 pentagons. For definitions see below.
b An interesting side aspect is that fullerene-like shapes
are realized also in viral shapes.20

c Most of the useful graph theoretical and topological
aspects discussed here are implemented into a Fortran/
C++ program called Fullerene, an open-source code
freely available at the Massey University website.35

d The embedding is unique in the following sense: All
the planar embeddings of a three-connected graph are
topologically equivalent, which means that they can be
continuously deformed into each other without cross-
ing any edges. Consequently, every planar embedding
of such a graph defines the same set of faces. The
converse it true as well: only three-connected graphs
have this property.
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e Fulleroids are cubic graph fullerene-like structures
where we allow also for other polygons than pen-
tagons or hexagons.
f In the mathematical sense that they are dense in
this set, i.e. any smooth non-negative curvature genus
0 surface is the limit of a sequence of genus 0
triangulations with vertex degree six and less.
g The interested reader is directed to the Gauss-Bonnet
theorem, which generalizes Euler’s theorem to arbi-
trary Riemann surfaces. In the discrete case they are
the same, except that Gauss-Bonnet is stated in terms
of the Gaussian curvature. From this identification, we
can see that every n-gon, or vertex of degree n in the
dual, contributes the angle 2𝜋(6− n)/6 to the Gaussian
curvature, which must sum to 2𝜋(2−2g), where g is
the surface’s genus.
h When there are multiple exponentially crowded
centers, the Tutte-embedding is still guaranteed planar,
but the mapping to the sphere can have crossings. In
practice, however, it turns out to not matter.
i Counting perfect matchings for general graphs is
#P-complete. #P is the complexity class of counting
solutions for decision problems in NP. While only
exponential algorithms exist both for NP-complete
and #P-complete problems, in practice #P-complete
problems are dramatically harder than NP-complete.
j It is known that not all connected cubic planar
graphs are Hamiltonian, and that it is an NP-complete
problem to determine whether any one cubic planar

graph admits a Hamilton cycle. However, it is a long
standing but yet unproven conjecture that fullerene
graphs, a small subset of the cubic planar graphs, are
all Hamiltonian. It has been verified by Brinkmann,
Goedgebeur, and McKay for all 2.4×1011 fullerene
isomers up to C316.75 In Schwerdtfeger et al. (unpub-
lished manuscript), we investigate in detail the Hamil-
tonian cycle counts admitted by fullerene graphs.
k hentriacontacyclo[29.29.0.02,14.03,12.04,59.05,10.06,58

.07,55.08,53.09,21.011,20.013,18.015,30.016,28.017,25.019,24

.022,52.023,50.026,49.027,47.029,45.032,44.033,60.034,57

.035,43.036,56.037,41.038,54.039,51.040,48.042,46]hexa-
conta− 1, 3, (10), 6, 8, 11, 13(18), 14, 16, 19, 21, 23,
25, 27, 29(45), 30, 32(44), 33, 35(43), 36, 38(54), 39
(51), 40(48), 41, 46, 49, 52, 55, 57, 59−triacontaene.
l Orientability is a property of a surface in Euclidean
space describing whether it is possible to make a
consistent choice of a surface normal vector at every
point.

m The genus of a connected and orientable surface
is the maximum number of possible cuttings along
non-intersecting closed simple curves such that the
surface is still connected.
n Fulleroids may in general have point group symme-
tries not admissible to the regular fullerenes.
o There are many other operations which can be
performed on polyhedra resulting in transformed
fullerenes or fulleroids, see the review by Vizitiu and
Diudea.316
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124. Deza M, Dutour-Sikirić M, Fowler PW. The symme-
tries of cubic polyhedral graphs with face size no larger
than 6. MATCH Commun Math Comput Chem 2009,
61:589–602.

125. Balasubramanian K. Applications of combinatorics
and graph theory to spectroscopy and quantum chem-
istry. Chem Rev 1985, 85:599–618. doi: 10.1021/
cr00070a005.

126. Faghani M. Symmetry of a toroidal fullerene.
Optoelectron Adv Mater Rapid Commun 2010,
4:1844–1846.

127. Fujita S. Application of coset representations to
the construction of symmetry adapted functions.
Theoret Chim Acta 1990, 78:45–63. doi: 10.1007/
BF01112352.

128. King RB, Diudea MV. The chirality of icosahedral
fullerenes: a comparison of the tripling (leapfrog), qua-
drupling (chamfering), and septupling (capra) trans-
formations. J Math Chem 2006, 39:597–604. doi:
10.1007/s10910-005-9048-7.

129. David WIF, Ibberson RM, Matthewman JC, Prassides
K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton
DRM. Crystal structure and bonding of ordered C60.
Nature 1991, 353:147–149. doi: 10.1038/353147a0.

130. Devadoss SL, O’Rourke J. Discrete and Computa-
tional Geometry. Princeton, NJ: Princeton University
Press; 2011.

131. Pisanski T, Kaufman M, Bokal D, Kirby EC, Graovac
A. Isoperimetric quotient for fullerenes and other

Volume 5, January/February 2015 © 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd. 137



Focus Article wires.wiley.com/wcms

polyhedral cages. J Chem Inf Comput Sci 1997,
37:1028–1032. doi: 10.1021/ci970228e.

132. Sylvester JJ. A question in the geometry of situation.
Q J Pure Appl Math 1857, 1:79.

133. Elzinga DJ, Hearn DW. The minimum covering sphere
problem. Manag Sci 1972, 19:96–104.

134. Hopp TH, Reeve CP. An algorithm for computing
the minimum covering sphere in any dimension. In:
COMMERCE UDO ed. NIST IR5381, Gaithersburg,
MD: NIST; 1996, 1–8.

135. Nielsen F, Nock R. Approximating smallest enclosing
balls. In: Laganá A, Gavrilova M, Kumar V, Mun
Y, Tan C, Gervasi O, eds. Computational Science
and Its Applications – ICCSA 2004. Lecture Notes
in Computer Science, vol. 3045. Berlin Heidelberg:
Springer; 2004, 147–157.

136. Yıldırım E. Two algorithms for the minimum enclosing
ball problem. SIAM J Optimiz 2008, 19:1368–1391.
doi: 10.1137/070690419.

137. Fowler P. Cylindrical fullerenes: the smallest nan-
otubes? J Phys Chem Solids 1993, 54:1825–1833. doi:
10.1016/0022-3697(93)90295-3.

138. Kumar P, Y𝚤ld𝚤r𝚤m E. Minimum-volume enclosing
ellipsoids and core sets. J Optim Theory Appl 2005,
126:1–21. doi: 10.1007/s10957-005-2653-6.

139. Kumar P, Y𝚤ld𝚤r𝚤m E. Computing minimum-volume
enclosing axis-aligned ellipsoids. J Optim Theory
Appl 2008, 136:211–228. doi: 10.1007/s10957-007-
9295-9.

140. Sun P, Freund RM. Computation of minimum-volume
covering ellipsoids. Oper Res 2004, 52:690–706. doi:
10.1287/opre.1040.0115.

141. Todd MJ, Y𝚤ld𝚤r𝚤m E. On Khachiyan’s algorithm for
the computation of minimum-volume enclosing ellip-
soids. Discrete Appl Math 2007, 155:1731–1744. doi:
10.1016/j.dam.2007.02.013.

142. Nasu K, Taketsugu T, Nakano T, Nagashima U,
Hosoya H. Stability of small fullerenes Cn (n =
36, 40 and 60): a topological and molecular orbital
approach. Theoret Chim Acta 1995, 90:75–86. doi:
10.1007/BF01113841.

143. Díaz-Tendero S, Martín F, Alcamí M. Structure and
electronic properties of fullerenes C52

q+: is C52
2+ an

exception to the pentagon adjacency penalty rule?
ChemPhysChem 2005, 6:92–100. doi: 10.1002/cphc.
200400273.

144. Díaz-Tendero S, Alcamí M, Martín F. Fullerene C50:
sphericity takes over, not strain. Chem Phys Lett 2005,
407:153–158. doi: 10.1016/j.cplett.2005.03.065.

145. Fowler PW, Heine T, Zerbetto F. Competition
between even and odd fullerenes: C118, C119, and C120.
J Phys Chem A 2000, 104:9625–9629. doi: 10.1021/
jp0019815.

146. Fischer JE, Heiney PA, Smith AB. Solid-state chemistry
of fullerene-based materials. Acc Chem Res 1992,
25:112–118. doi: 10.1021/ar00015a003.

147. Heiney PA, Fischer JE, McGhie AR, Romanow WJ,
Denenstein AM, McCauley JP Jr, Smith AB, Cox DE.
Orientational ordering transition in solid C60. Phys
Rev Lett 1991, 66:2911–2914. doi: 10.1103/Phys-
RevLett.66.2911.

148. Liu S, Lu YJ, Kappes MM, Ibers JA. The structure of
the C60 molecule: X-ray crystal structure determina-
tion of a twin at 110 K. Science 1991, 254:408–410.
doi: 10.1126/science.254.5030.408.

149. Vaughan GBM, Heiney PA, Fischer JE, Luzzi DE,
Ricketts-Foot DA, McGhie AR, Hui YW, Smith AL,
Cox DE, Romanow WJ, et al. Orientational disor-
der in solvent-free solid C70. Science 1991, 254:
1350–1353. doi: 10.1126/science.254.5036.1350.

150. Kauczor J, Norman P, Saidi WA. Non-additivity of
polarizabilities and van der Waals C6 coefficients
of fullerenes. J Chem Phys 2013, 138:114107. doi:
10.1063/1.4795158.

151. Lundin A, Sundqvist B, Skoglund P, Fransson A,
Pettersson S. Compressibility, specific heat capacity,
and Grüneisen parameter for C60/C70. Solid State
Commun 1992, 84:879–883. doi: 10.1016/0038-
1098(92)90451-E.

152. Kawamura H, Akahama Y, Kobayashi M, Shinohara
H, Sato H, Saito Y, Kikegawa T, Shimomura O,
Aoki K. Solid C70 high pressure and high tempera-
ture. J Phys Chem Solids 1993, 54:1675–1678. doi:
10.1016/0022-3697(93)90281-U.

153. Zettl A, Cumings J. Elastic properties of fullerenes. In:
Levy M, Bass H, Stern R, eds. Handbook of Elastic
Properties of Solids, Liquids, and Gases. Lecture Notes
in Computer Science, vol. 2. San Diego, CA: Academic
Press; 2001, 163–170.

154. Schwerdtfeger P, Gaston N, Krawczyk RP, Tonner R,
Moyano GE. Extension of the Lennard-Jones poten-
tial: theoretical investigations into rare-gas clusters
and crystal lattices of He, Ne, Ar, and Kr using
many-body interaction expansions. Phys Rev B 2006,
73:064112. doi: 10.1103/PhysRevB.73.064112.

155. Cohen ML. Calculation of bulk moduli of dia-
mond and zinc-blende solids. Phys Rev B 1985,
32:7988–7991. doi: 10.1103/PhysRevB.32.7988.

156. Faccio R, Denis PA, Pardo H, Goyenola C, Mom-
brú AW. Mechanical properties of graphene nanorib-
bons. J Phys Condens Mat 2009, 21:285304. doi:
10.1088/0953-8984/21/28/285304.

157. Milyavskiy VV, Borodina TI, Sokolov SN. Phase tran-
sitions of C70 fullerite with hexagonal closed-packed
structure under shock-wave loading. Fuller Nan-
otub Carbon Nanostruct 2008, 16:494–498. doi:
10.1080/15363830802282433.

158. Hales TC. A computer verification of the Kepler con-
jecture. In: Proceedings of the International Congress
of Mathematicians, vol. III. Beijing: Higher Ed. Press;
2002, 795–804.

138 © 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd. Volume 5, January/February 2015



WIREs Computational Molecular Science Topology of fullerenes

159. Hales TC. A proof of the Kepler conjecture.
Ann Math 2005:1065–1185. doi: 10.4007/annals.
2005.162.1065.

160. Stoyan Y, Gil N, Scheithauer G, Pankratov A, Mag-
dalina I. Packing of convex polytopes into a paral-
lelepiped. Tech. Rep. MATH-NM-04-2004, Technis-
che Universität Dresden, 2003.

161. Stoyan Y, Gil N, Pankratov A. Packing of non-
convex polytopes into a parallelepiped. Tech. Rep.
MATH-NM-06-2004, Technische Universität Dres-
den, 2004.

162. Y𝚤ld𝚤r𝚤m E. On the minimum volume covering ellipsoid
of ellipsoids. SIAM J Optimiz 2006, 17:621–641. doi:
10.1137/050622560.

163. Donev A, Stillinger FH, Chaikin PM, Torquato S.
Unusually dense crystal packings of ellipsoids. Phys
Rev Lett 2004, 92:255506. doi: 10.1103/PhysRevLett.
92.255506.

164. Wiener H. Structural determination of paraffin boil-
ing points. J Am Chem Soc 1947, 69:17–20. doi:
10.1021/ja01193a005.

165. Ori O, D’Mello M. A topological study of the structure
of the C76 fullerene. Chem Phys Lett 1992, 197:49–54.
doi: 10.1016/0009-2614(92)86020-I.

166. Ori O, Cataldo F, Vukičević D, Graovac A. Wiener
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210. Došlić T. Leapfrog fullerenes have many per-
fect matchings. J Math Chem 2008, 44:1–4. doi:
10.1007/s10910-007-9287-x.

211. Hartung E. Fullerenes with complete Clar struc-
ture. Discrete Appl Math 2013, 161:2952–2957. doi:
10.1016/j.dam.2013.06.009.

212. Fowler PW, Austin SJ, Dunning OJ, Dias JR. Sym-
metry properties of the leapfrog transformation for
fullerenes and benzenoids. Chem Phys Lett 1994,
224:123–130. doi: 10.1016/0009-2614(94)00525-7.

213. Zhang H, Ye D. An upper bound for the Clar number
of fullerene graphs. J Math Chem 2007, 41:123–133.
doi: 10.1007/s10910-006-9061-5.

214. Herndon WC. Resonance energies of aromatic
hydrocarbons. Quantitative test of resonance the-
ory. J Am Chem Soc 1973, 95:2404–2406. doi:
10.1021/ja00788a073.

215. Herndon WC, Ellzey JM. Lawrence. Resonance
theory. V. Resonance energies of benzenoid and
nonbenzenoid pi systems. J Am Chem Soc 1974,
96:6631–6642. doi: 10.1021/ja00828a015.
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