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Summary:  Agreement and correlation are widely-used concepts that assess the association between 
variables. Although similar and related, they represent completely different notions of association. 
Assessing agreement between variables assumes that the variables measure the same construct, while 
correlation of variables can be assessed for variables that measure completely different constructs. This 
conceptual difference requires the use of different statistical methods, and when assessing agreement 
or correlation, the statistical method may vary depending on the distribution of the data and the interest 
of the investigator. For example, the Pearson correlation, a popular measure of correlation between 
continuous variables, is only informative when applied to variables that have linear relationships; it may be 
non-informative or even misleading when applied to variables that are not linearly related. Likewise, the 
intraclass correlation, a popular measure of agreement between continuous variables, may not provide 
sufficient information for investigators if the nature of poor agreement is of interest. This report reviews the 
concepts of agreement and correlation and discusses differences in the application of several commonly 
used measures. 
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1. Introduction
Agreement and correlation are widely used concepts 
in the medical literature. Both are used to indicate the 
strength of association between variables of interest, 
but they are conceptually distinct and, thus, require the 
use of different statistics. 

Correlation focuses on the association of changes 
in two outcomes, outcomes that often measure quite 
different constructs such as cancer and depression. 
The Pearson correlation is the most popular measure 

of the association between two continuous outcomes, 
but it is only useful when measuring linear relationships 
between variables. If the relationship is non-linear, the 
Pearson correlation generally does not provide a good 
indication of association between the variables. Another 
problem is that using the standard interpretation 
of Pearson correlation coefficients can, in some 
circumstances, lead to incorrect conclusions.

Agreement, also known as reproducibility, is a 
concept closely related to, but fundamentally different 
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from, correlation. Like correlation, agreement also 
assesses the relationships between outcomes of 
interest, but, as the name indicates, the emphasis is 
on the degree of concordance in the opinions between 
two or more individuals or in the results between 
two or more assessments of the variable of interest. 
An example of agreement in mental health research 
is the consensus between multiple clinicians about 
the psychiatric diagnoses of a group of patients. In 
biomedical sciences agreement can also include 
measures of the reproducibility (i.e., reliability) of 
a laboratory test result when repeated in the same 
center or when conducted in multiple centers under 
the same conditions. It is not sensible to speak of 
agreement (reproducibility) between variables that 
measure different constructs; so when measuring 
the association between different variables – such as 
weight and height – one can assess correlation but not 
agreement. For continuous outcomes, the intraclass 
correlation (ICC) is a popular measure of agreement. 
Like the Pearson correlation, the ICC is an estimate of 
the magnitude of the relationship between variables (in 
this case, between multiple assessments of the same 
variable). However, the ICC also takes into account rater 
bias, the element that distinguishes agreement from 
correlation; that is, good agreement (reproducibility) 
not only requires good correlation, it also requires small 
rater bias.

In this report, we provide an overview of popular 
measures and statistical methods for assessing the two 
different notations of association between variables. We 
also clarify the key differences between the measures 
and between the methods used to assess the measures. 
We focus on continuous outcomes and assume all 
variables are continuous unless stated otherwise. 

2. Correlation measures

2.1 Pearson correlation
Consider a sample of n subjects and a bivariate 
continuous outcome, (ui, vi), from each subject within 
the sample (1≤ i≤n). The Pearson correlation is the most 
popular statistic for measuring the association between 
the two variables ui and vi:[1]
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where u.(v.) denotes the sample mean of ui (v i)  The 
Pearson correlation p⌒   ranges between -1 and 1,  with 
1(-1) indicating perfect positive (negative) correlation 
and 0 indicating no association between the variables. 

As popular as it is, the Pearson correlation is only 
appropriate for measuring correlation between ui and 
vi  when the two variables follow a linear relationship. 

If the bivariate outcome (ui, v i) follows a non-linear 
relationship, p⌒   is not an informative measure and is 
difficult to interpret. 

To see this, let μu(μv) and σ2
u            (σ2

v ) denote the 
(population) mean and (population) variance of 
the variable u i ( v i) .  The Pearson corre lat ion is 
an estimate of the following product moment 
correlation:
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Unlike p⌒  ,  which measures correlation between 
ui and vi  based on the sample, the product-moment 
correlation p is the population-level correlation, which 
cannot be calculated but is estimated by p⌒   . Thus, p⌒   may 
also be referred to as the ‘sample product-moment 
correlation’. 

If  u i and v i  have a linear relationship, then 
ui=avi+b+ε i, where a and b are some constants, and 
ε i denotes random errors with mean 0 and variance 
σ2

ε  . By centering ui (v i) at its mean, we have: ui - μu= 
a(v-μv)+ε i. It follows that σ2

u   =a2σ2
v   +σ2

ε  . If ui and vi are 
perfectly correlated, that is, σ2

ε  =0, it follows from 
Equation (2) that p=1 or (-1), depending on whether a is 
positive or negative. Also, if ui and vi are uncorrelated, 
or independent, that is, a=0, then p=0 and vice versa.

If ui and v i  have a non-linear relationship, the 
product moment correlation generally does not 
provide an informative measure of correlation. The 
example below shows that the Pearson correlation in 
this case can be quite misleading. 

Example 1. Suppose that ui and v i  are perfectly 
correlated and follow the non-linear relationship, 
ui=v9

i  . Further, assume that vi follows a standard normal 
distribution N(0,1) with mean 0 and variance 1. Then, 
the product-moment correlation is: 

.
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The poor association between ui and vi  as indicated 
by the product-moment correlation contradicts the 
conceptual perfect correlation between the two 
variables. Thus, the product-moment and its sample 
counterpart, the Pearson correlation, generally do not 
apply to non-linear relationships. 

2.2 Spearman's Rho
Spearman's rho is also a popular measure of association. 
Unlike the Pearson correlation, it also applies to 
non-linear relationship, thereby addressing the 
aforementioned limitation associated with the Pearson 
correlation.

Let qi (r i) denote the rankings of ui (v i),(1 ≤ i ≤ n ). 
Spearman's rho is defined as: 
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By comparing (1) and (4), it is clear that ρ⌒   is really the 
Pearson correlation when applied to the rankings (qi , ri)
of the original variables (ui,vi). Since the rankings only 
concern the ordering of the observations, relationships 
among the rankings are always linear, regardless of 
whether the original variables are linearly related. Thus, 
Spearman's rho not only has the same interpretation as 
the Pearson correlation, but also applies to non-linear 
relationships. 

The Spearman ρ⌒  ranges between -1 and 1, with 1 
and -1   indicating perfect positive (negative) correlation; 
when  ρ⌒       =0 there is no association between the variables 
ui and vi. If  ρ⌒    =1 then qi = ri, in which case,

ui<u j, v i<vj or ui>u j, v i>vj for all 1≤ i< j≤n.      (5)

If  ρ⌒   =-1, then qi=n-ri+1, in which case,
ui<u j, v i>vj or ui>u j, v i<vj for all 1≤ i< j≤n.      (6)

Any two pairs of bivariate outcomes (ui,vi) and (uj,vj) 
that satisfy (5) or (6) are said to be concordant or 
discordant; that is, ui and v i  are either both larger 
or both smaller than uj and vj. Thus, perfect positive 
(negative) correlation by Spearman' rho corresponds to 
perfect concordance (discordance); that is, concordant 
(discordant) pairs (ui,vi) and (uj,vj) for all 1≤ i< j≤n.

Example 2. Table 1 shows 12 observations of the 
bivariate outcome (ui,v i) as described in Example 1, 
and the ranks associated with these observations. Note 
that ui and vi are perfectly related, so their rankings are 
identical; that is, qi = ri.

In this example the Pearson correlation p⌒  =0.531, 
while Spearman’s  ρ⌒   =1. Thus, only the Spearman rho 
captures the perfect non-linear relationship between ui 
and vi.

Note that the Pearson correlation p⌒  =0.531 has 
a higher upward bias than the product-moment 
correlation p=0.161; this occurs due to the small sample 
size, n=12. As sample size increases, p⌒   becomes closer 
to p, a property known as ‘consistency’ in statistics. 
For example, we also simulated (ui,vi) with n=1000 and 
obtained p⌒    =0.173, much closer to p. 

Like the Pearson correlation, the Spearman's rho 
in (4) is a statistic based on a sample. This sample 

Spearman rho is an estimate of the following population 
Spearman rho:

ρ=12E[I(u j<ui)I(vk<v i)]-3, for all 1≤ i< j<k≤n.        (7)

In Equation (7), E[ I(u j<ui) I(v k<v i)]  stands for the 
mathematical expectation of I(u j<ui) I(v k<v i)  and 
I(u j<ui) (similarly I(vk<v i)) denotes an indicator with 
I(u j<ui)=1(0) if u j<ui. It can be shown that  ρ⌒   =1(-1) if 
(ui,vi) are perfectly concordant (discordant) and vice 
versa.

Note that the sample Spearman's rho in (4) is 
referred to as Spearman's rho in the literature. Unlike 
the Pearson correlation, there is no formal name for the 
population Spearman's rho in (7). In general, the lack 
of a formal name for the population version does not 
cause confusion, since it is usually clear which one is 
used within the context of a discussion. Like all statistics, 
the population version of a statistic is called a parameter 
in statistical lingo. The statistic and parameter serve 
different purposes. For example, only the parameter can 
be used in stating statistical hypotheses, such as the null 
hypothesis, H:ρ=0, for testing whether the population 
Spearman's rho is 0. Reported values of Spearman's rho 
by studies are always the sample Spearman rho. 

2.3 Kendall's Tau
Another alternative for non-linear association is 
Kendall's tau.[2] Like Spearman's rho, Kendall's tau also 
exploits the concept of concordance and discordance 
to derive a measure for bivariate outcomes. Unlike 
Spearman's rho, it uses the notion of concordant 
and discordant pairs directly in the definition of this 
correlation measure. 

Specifically, Kendall's τ (sample version) is defined as:

number of discordant pairs.n =

( 1)n n n= -

n

number of concordant pairs,n =

,
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In the above, 2 ( 1)n n= -t
1n  is the total number 

of concordant and discordant pairs in the sample. If 
nc=nt(nd=nt), then τ⌒  =1(-1) and vice versa. Also, if 
there is no association between ui and vi, then nc 
and nd should be close to each other and τ⌒  should be 
close to 0 (not exactly 0 due to sampling variability). 

Table 1. A sample of 12 bivariate outcomes (ui,vi) simulated with ui = v9
i                and vi from standard normal N (0,1). 

ui 0.26 1.49 1.39 0.65 -0.49 -1.38 1.168 0.87 -0.96 2.15 -0.03 -1.08
vi 0 38.1 19.4 0.02 -0.002 -18.5 4.06 0.29 -0.68 971.6 0 -2.10

qi ( ri) 6 11 10 7 4 1 9 8 3 12 5 2
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Thus, like Spearman's rho, τ⌒  =1(-1) corresponds to 
perfect concordance (discordance). A value of τ⌒   close 
to 0 indicates weaker or no association between the 
variables ui and vi. 

Like the Pearson and Spearman correlation, the 
sample Kendall's τ⌒  in (8) estimates the following 
population parameter: 

τ=2E[I(ui<u j)I(v i<vj)]-1, for all 1≤ i< j≤n.        
Like its sample counterpart, τ also ranges between -1 
and 1. If (5) holds true for all pairs (ui,vi) and (uj,vj), 
then  E[I(ui<uj)I(vi<vj)]=1 and τ=1. Likewise, if (6) holds 
true for all pairs, then E[I(ui<uj)I(vi<vj)]=0 and τ⌒  =-1. 
Thus,τ = 1 (-1) corresponds to perfect concordance 
(discordance). Finally, if ui and vi are independent, then 

=vu I1 1u 2vE I 1
i j i j @h h^ ^6 and τ=0. Thus,τ=0 indicates 

no association between ui and vi, and vice versa. 

Example 3. Consider the data in Example 2. The sample 
Kendall’s tau τ⌒  =-1. Thus, like Spearman’s rho, Kendall’s 
tau also provides a sensible measure of association for 
non-linearly related variables. 

3. Agreement and measures of agreement
Agreement, or reproducibility, is another widely used 
concept for assessing the relationship among outcomes. 
As indicated in the Introduction, unlike variables 
considered in correlation analysis, variables considered 
for agreement must measure the same construct. 
Conversely, measures of correlation considered in 
Section 2 generally do not apply to agreement. 

Example 4. Consider two judges who rate each subject 
from a study of 5 subjects sampled from a population of 
interest using a scale from 1 to 10. Let ui and vi denote 
the two judges' ratings on the ith subject (1< i<5). 
Suppose that the judges' ratings from the subjects are 
as follows: 

 (ui,vi) : (1,6), (2,7), (3,8), (4,9), (5,10).
Since ui and v i  are linearly related, the Pearson 
correlation can be applied, yielding p⌒  =1, indicating 
perfect correlation. However, the data clearly do not 
indicate perfect agreement; in fact, the two judges 
hardly agree with one another. 

The poor agreement in this hypothetical example is 
due to bias in judges' ratings. The mean ratings for the 
two judges are 3 (for ui) and 8 (for vi). Thus, despite the 
perfect correlation between the ratings, the two judges 
do not have good agreement because of bias in their 
ratings of the subjects; either ui has downward or vi has 
upward bias (or both).

The issue of bias does not apply to correlation 
because the variables considered for correlation generally 
measure different constructs and, thus, typically have 
different means. For the Pearson correlation, the sample 
means u. and v. are removed from the calculations of 
the correlation in (1), thus, the Pearson correlation is 

independent of differences between the (sample) means 
of the variables being correlated. 

3.1 Intraclass correlation
Intraclass correlation (ICC) is a popular measure of 
agreement for continuous outcomes. Like the Pearson 
correlation, the ICC requires a linear relationship 
between the variables. However, it differs from the 
Pearson correlation in one key respect; the ICC also takes 
into account differences in the means of the measures 
being considered. In addition, the ICC can be applied to 
situations where there are three or more separate raters.

Consider a study with n subjects and assume each 
subject is rated by a different group of K judges. Let 
yik denote the rating of the ith subject by the kth judge 
(1 ≤ i ≤ n , 1 ≤ k ≤ K ). The ICC is defined based on the 
following linear mixed-effects model:[3-5]

yik=μ+β i+ ε ik , 1≤k≤K, 1≤ i≤n,
βi ~N (0, σ2

β   ), εik ~N (0, σ2
   ).

In the above model, the fixed effect μ is the (population) 
mean rating of the study population over all possible  
K judges from the population of judges; that is, the 
random effect or latent variable. βi represents the 
difference between the mean rating of the ith subject 
and the mean rating of the study population μ. Thus, 
the sum u+βi represents the mean rating of the ith 
subject. The intraclass correlation (ICC) is defined as 
the variance ratio, pICC = ,2 2

2

+v v

v

b

b , of the variance σ2
β   of the 

mean rating of the subjects (u+βi) to the total variance 
consisting of σ2

β    plus the variance σ2
    of the judges. 

If there are only two judges (K=2), then under 
the linear mixed-effects model in (9) the product-
moment correlation between yi1 and yi2 is the same as 

the ICC; that is, ( , )yCorr y 2 2

2

ii1 2 =
+v v

v

b

b . Moreover, yi1 and 
yi2 have the same mean (μ) and variance (σ2

  ). Thus, in 
this special case, the ICC is the same as the product-
moment correlation (pICC= p). Note that this result is 
not a contradiction to the data in Example 4, since ui 
and vi do not have the same mean and thus the linear 
mixed-effects model in (9) does not apply to the data 
and the ICC no longer serves its intended purpose in 
this case. However, since differences in means between 
judges’ ratings decrease the ICC, this agreement index 
may still be applied in this situation to indicate poorer 
agreement. Follow-up analyses are necessary to 
determine whether poor agreement is due to bias or 
large variability or both between the judges.  

Example 5. Consider again Example 4 and let yi1=ui 
and y i1=v i. By fitting the model in (9) to the data, 
we obtain estimates   σ⌒   2

β     = 0 and    σ⌒   2
    =9.167. Thus, the 

(sample) ICC based on the data is p⌒   ICC
 =0, which is quite 

different from the Pearson correlation. Although the 
judges' ratings are perfectly correlated, agreement 
between the judges is extremely poor.

(9)
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Note that p⌒  ICC is not a valid measure of agreement 
between yi1 and yi2 for the data in Example 5, since 
the assumption of a common mean between yi1 and 
yi2 is not met by the data. However, it is precisely this 
assumption that makes p⌒  ICC totally different from the 
Pearson correlation p⌒      =(1). We may revise the model in (9) 
to account for the bias in the judges' ratings to consider:

yik=μk+βi+εik , 1≤k≤K, 1≤ i≤n,
βi ~N (0, σ2

β   ), εik ~N (0, σ2
   ),

where the added fixed-effect μk accounts for the 
difference between the two judges. By fitting the above 
model, we obtain estimates    σ⌒   2

β      =1.256,    σ⌒    2
     =0, μ⌒     

1=3 and 
μ⌒   2

 =5. Once accounting for bias, the two judges have 
perfect agreement. The model in (10) also provides 
mean ratings  μ⌒     

K for the judges. The positive estimate   σ⌒   2
β      

describes the variability among the subjects. Although 
the correct model for the data, the ICC calculated from 
the model in (10) no longer has the interpretation as a 

measure of agreement. In fact, 1=
+v v

v

b

b

2 2

2!! ! , the same 
as the Pearson correlation p⌒     =1 as we have calculated in 
Example 4.

Note since pICC≥0 we can either reverse code some 
of the judges' ratings or use a different index, such as 
the concordance correlation, discussed below. 

3.2 Concordance correlation
The concordance correlation (CCC) is another measure 
of agreement which, unlike the ICC, does not assume a 
common mean for judges' ratings at the outset, so it can 
be used to assess both the level of agreement and the 
level of disagreement. However, a major limitation of 
the CCC is that it only applies to two judges at a time.

Consider a study with n subjects and assume 
each subject is rated by a different group of two 
judges. Let   y ik again denote the rating of the ith 
subject by the kth judge (1≤ i≤n , 1≤k≤2). Let μk=E(yik) 
and σ   2

k     =Var(yik), denoting the mean and variance of yik, 
and σ12=Cov(yi1, yi2), denoting the covariance between 
yi1 and yi2. The CCC is defined as:[6]

2
.

( )
2

(11)P
1
2

2
2

1
2

12
ccc = + + -v v n n

v

Unlike the ICC, no statistical model is assumed in the 
definition of pCCC. Further, the two judges can come 
from two different populations of judges with different 
means and variances. 

The CCC pCCC has a nice decomposition, pCCC=pCb, 
where p is the product-moment correlation in (2) and Cb 
is called the bias correction factor given by:

2
. (12)C ( )b

2

1

1

2

1

1 2
2

2

=
+ +

-
v
v

v v
n nv
v

It can be shown that pCCC=1(-1) if and only if p=1(-1), 
μ1=μ2 and σ   2

1   =
 σ    2

2  .[6] Thus, pCCC=1(-1) if and only if yi1 = 

(10)

yi2(yi1=-yi2), that is, when there is perfect agreement 
(disagreement). The bias correction factor Cb(0≤Cb≤1) in 
(12) assesses the level of bias, with smaller Cb indicating 
larger bias. Thus, unlike the ICC, poor agreement can 
result from low correlation (small p) or large bias 
(small Cb).

Example 6. Consider again Example 5. The (sample) 
mean and variance of yi1, and the (sample) correlation 
between yi1 and yi2 are given by:  μ⌒    1=3, μ⌒   2

 =8,  σ⌒  2
1   =2.5, 

σ⌒   22   =2.5 and  σ⌒   1  2 =1. Thus, it follows from (11) that 

 
0.0533

2
1 21 2vv n n( )

2
.p 2 2

12
ccc =

+ + -
=

v! ! ! !
!!

 
. We can also                                                           

obtain p⌒  CCC by using the decomposition result, which in 
our case yields p⌒     =1, C⌒

     b=0.0533 and  p⌒     CCC
 = p⌒   C⌒

 
    b=0.0533.

Note that unlike correlation the issue of linear 
versus non-linear association does not arise when 
assessing agreement. This is because good agreement 
requires an approximate linear relationship between the 
outcomes. For example, in the case of two raters, good 
agreement requires that yi1 and yi2 are close to each 
other, such as yi1 = yi2 in the case of perfect agreement. 

4. Discussion
We discussed the concepts of agreement and correlation 
and described various measures that can be used to 
assess the relationships among variables of interest. We 
focused on the measures and methods for continuous 
outcomes. For non-continuous outcomes, different 
methods must be applied. For example, for categorical 
outcomes a different version of Kendall's tau, known as 
Kendall's tau b can be used for assessing correlation and 
Kappa can be used for assessing agreement.[7] 

Funding
The work was supported in part by a grant (GM108337) 
from the National Institutes of Health and the National 
Science Foundation (Tang and Tu) and a pilot grant 
(UR-CTSI GR500208) from the Clinical and Translational 
Sciences Institute at the University of Rochester 
Medical Center (Feng and Tu).

Conflict of interest statement
The authors report no conflict of interest.

Authors’ contributions
All authors worked together on this manuscript. In 
particular, JYL, WT and XMT made major contributions 
to the section on correlation, GQC, YL and CYF made 
major contributions to the section on agreement, and 
JYL and XMT drafted and finalized the manuscript. All 
authors read and approved the final manuscript.

Shanghai Archives of Psychiatry, 2016, Vol. 28, No. 2 • 119 •



概述：一致性 (agreement) 和相关性 (correlation) 是两
个广泛使用的概念，用来评估变量之间的关联。虽然
二者相似且相关，但是它们代表关联完全不同的概念。
评估变量之间的一致性假设变量测量的是相同的结构，
而在变量测量完全不同的结构时也可以评估它们之间
的相关性。这种概念上的差异就要求使用不同的统计
方法，并且当评估一致性或相关性时，统计方法根据
数据的分布和研究者的兴趣可能会有所不同。例如，
Pearson 相关性，作为评估连续变量之间相关性的一种
普遍测量方法，只有用于符合线性关系的变量时才能
提供有用的信息；当用于不符合线性关系的变量时就

无法提供准确信息甚至会产生误导。同样地，内部相
关性，作为一种评估连续变量之间一致性的常用方法，
如果一致性不好的实质正好是研究兴趣所在，那么该
测量就不能为研究者提供充分的信息。本报告回顾了
一致性和相关性的概念，并讨论了几种常用方法在应
用中的差异。

关键词：积差相关性，内部一致性，Kendall's tau，非
线性相关，Pearson's 相关性，Spearman's rho
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