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Abstract

Medicinal plants represent a significant reservoir of unexplored substances for early-stage

drug discovery. Of interest, two flowering Mediterranean plants have been used for thou-

sands of years for their beneficial effects on nervous disorders, including anxiety and mood.

However, the therapeutic potential of these plants regarding their ability to target ion chan-

nels and neuronal excitability remains largely unknown. Towards this goal, we have investi-

gated the ability of Lavender and Rosemary to modulate T-type calcium channels (TTCCs).

TTCCs play important roles in neuronal excitability, neuroprotection, sensory processes

and sleep. These channels are also involved in epilepsy and pain. Using the whole-cell

patch-clamp technique, we have characterized how Lavender and Rosemary extracts, as

well as their major active compounds Linalool and Rosmarinic acid, modulate the electro-

physiological properties of recombinant TTCCs (CaV3.2) expressed in HEK-293T cells.

Both the methanolic and essential oil extracts as well as the active compounds of these

plants inhibit Cav3.2 current in a concentration-dependent manner. In addition, these prod-

ucts also induce a negative shift of the steady-state inactivation of CaV3.2 current with no

change in the activation properties. Taken together, our findings reveal that TTCCs are a

molecular target of the Lavender and Rosemary compounds, suggesting that inhibition of

TTCCs could contribute to the anxiolytic and the neuroprotective effects of these plants.

Introduction

Medicinal plants have been identified and used throughout human history [1]. Because of

their ability to synthesize a wide variety of chemical compounds (alkaloids, polyphenolics, ter-

penoids, fatty acids and lipids, etc.) either for their normal development or against stressful

and threatening conditions, they have been suggested to be an interesting pharmaceutical

industry. Moreover, because of the potential side and adverse effects of synthetic drugs, scien-

tists interested in drug discovery have turned their attention to herbal medicines as effective

lead compounds for the management of health ailments including inflammatory, cardiovascu-

lar and neurological disorders[2, 3]. It’s worth noting that 49% of the new chemical drugs that
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were introduced between 1991 and 2002 had a natural origin witnessing the popularity of

medicinal plants use worldwide [4].

Lavender and Rosemary are the most popular medicinal plants cultivated and grown nowa-

days. Native to the Mediterranean basin and Southern Europe, they have been used either

dried or as essential oil for a variety of culinary, cosmetic and therapeutic purposes [5–7].

Studies have reported the existence of approximately 28 species and over than 200 varieties of

Lavender (Lavandula sp.). The genus Lavender belongs to the Labiatae/Lamiaceae family and

is divided into four main species: Lavandula latifolia, Lavandula angustifolia (LA); Lavandula
stoechas (LS) and Lavandula x intermedia [8]. Lavender essential oil is generally produced by

steam distillation and contains a complex mixture of mono- and sesquiterpenoid alcohols,

esters, oxides, and ketones, in which the major components are the monoterpenoids linalool

and linalyl acetate [5]. Lavender oil was suggested to possess anticonvulsant, anxiolytic, analge-

sic and neuroprotective properties [5, 9–11].

Rosemary (Rosmarinus officinalis, RO) is one of the most interesting medicinal plants

known for its promising medicinal use. Rosmarinus officinalis (Lamiaceae) oil consists of high

percentages of biologically active compounds such as phenolic acids (Rosmarinic acid, chloro-

genic acid), phenolic diterpenes (e.g. carnosic acid, carnosol), and flavonoids (e.g. derivatives

of apigenin and luteolin) [12, 13]. A developing body of evidence suggests Rosemary to be a

powerful remedy for various medical purposes thanks to its anti-oxidant, antinociceptive, and

neuroprotective properties [14–17]. Rosmarinic acid, one of the major components of RO, is a

polyphenolic compound and has been shown to possess anti-inflammatory, anti-oxidant and

anxiolytic/antidepressive-like properties [18–20].

The precise mode of action of these two medicinal plants remains unclear. Studies to unveil

the molecular mechanisms implicated in their therapeutical effects have recently suggested the

modulation of GABAergic [21], serotonergic neurotransmission [22], as well as voltage-gated

calcium channels including high voltage-activated (HVA) calcium channels by Lavandula
angustifolia [10]. However, it has not been investigated whether Lavender (Lavandula angusti-
folia and Lavandula stoechas) and Rosemary can also affect low voltage-activated (LVA), T-

type calcium channels (TTCCs).

Compared to HVA calcium channels, TTCCs are specifically activated by small membrane

depolarization that allow calcium entry near the cell membrane resting potential [23, 24]. Het-

erogeneity in the functional properties of TTCCs is supported by molecular studies that have

described three genes encoding these channels: the CaV3.1, CaV3.2, and CaV3.3 subunits [23,

25]. These subunits are differentially expressed throughout the body, especially in the brain

[26]. TTCCs are broadly involved in many physiological processes including sleep [27], prolif-

eration [28, 29], neuronal firing, epilepsy [30, 31] and pain [32, 33]. Furthermore, recent stud-

ies have reported TTCCs to be an interesting molecular target for various natural substances

like bioactive lipids and lipoaminoacids [34–36], toxins [37] and natural products from plants

including the genera Cannabis, Curcuma and Syzygium [38–40].

In the present study, we have searched for plant extracts modulating TTCCs and we

describe the pharmacological inhibition of TTCCs by Lavender and Rosemary using Cav3.2

channels expressed in HEK-293T.

Materials and methods

Ethics statement

Lavandula stoechas, Rosmarinus officinalis, Ricinus cummunis and Citrullus colocynthis were

collected at National Institute of Agronomic Research (INRA), Agadir, Morocco. No specific

permissions were required for these locations/activities. The botanical identity of each plant
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was determined and authenticated by Dr. R. Bouharroud, taxonomist at INRA, Agadir,

Morocco.

Methanolic extraction protocol

Fresh plant materials were dried at 40˚C during 48 to 96 hours, then homogenized to fine pow-

der by grinding and sieving until the stabilization of weight. 20 g of dried plant materials were

extracted with 200 ml of pure methanol and kept on a rotary shaker for maceration for a total

duration of 72h. Thereafter, the extracts were filtered and evaporated to dryness in Rotava-

por1 vacuum (60 rpm at 40˚C). The final extracts were stored at 4˚C for further studies.

Plant essential oil and active principles

Essential oils of Lavandula steachas, Lavandula angustifolia Miller and Rosmarinus officinalis
were purchased from Vitalba (Sartène, France). Rosmarinic acid (RA) and Linalool were pur-

chased from Sigma-Aldrich.

Cell culture and transfection protocols

HEK-293T cells stably expressing the CaV3.2 channels isoform (kindly provided by Dr. E.

Perez-Reyes, University of Virginia) were cultivated in Dulbecco’s Modified Eagle’s Medium

supplemented with GlutaMax, 400μg/ml G418 (Life Technologies) and 10% fetal bovine

serum (Invitrogen). In some experiments, HEK-293T cells transfection with plasmids ex-

pressing human CaV3 constructs was performed using jet-PEI (QBiogen) with a DNA mix

containing 0.5% of a GFP encoding plasmid and 99.5% of the Cav3 constructs. Two days after

transfection, HEK-293T cells were dissociated with Versene (Invitrogen) and plated at a den-

sity of ~35x103 cells in 35 mm Petri dish for electrophysiological recordings performed the fol-

lowing day.

Electrophysiological recordings

Whole-cell calcium currents were recorded at room temperature using an Axopatch 200B

amplifier (Molecular Devices). For recording macroscopic T-type calcium currents, the extra-

cellular solution contained the following (in mM): 135 NaCl, 20 TEACl, 2 CaCl2, 1 MgCl2, and

10 HEPES (pH adjusted to 7.25 with KOH, ~330 mOsm). Borosilicate glass pipettes have a typ-

ical resistance of 1.5–2.5 MOhm when filled with the internal solution containing the following

(in mM): 140 CsCl, 10 EGTA, 10 HEPES, 3 Mg-ATP, 0.6 GTPNa, and 3 CaCl2 (pH adjusted to

7.25 with KOH ~315 mOsm). Recordings were filtered at 2 kHz. During the CaV3.2 current

recordings, the chamber was constantly perfused (~100 μl/min) with the control or with the

drug solutions using a gravity-driven homemade perfusion device. Data were analyzed using

the pCLAMP9 (Molecular devices) and GraphPad Prism (GraphPad) softwares. The dose-

response curves were obtained from fitting data to the Hill equation, I/IMAX = 100/(1+10^
((LogIC50-Log[compound])�HillSlope). Current-voltage (I-V) curves were fitted using a com-

bined Boltzmann and linear Ohmic relationships, where I = Gmax x (Vm-Vrev)/(1+exp((Vm-
Vm0.5)/slope factor)). Correspondingly, steady-state inactivation curves were fitted using the

Boltzmann equation where I/Imax = 1/(1+exp((Vm-Vm0.5)/slope factor).

Statistical analysis

Results are presented as the mean ± SEM, and n is the number of cells used. Statistical signifi-

cance was evaluated by Student’s unpaired t-test (� P<0.05, �� P<0.01 and ��� P<0.001)
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Results

Modulation of CaV3.2 calcium channels by medicinal plant methanolic

extracts

In a first set of experiments, we tested the ability of several Mediterranean medicinal plants to

modulate TTCCs. These experiments were performed using recombinant CaV3.2 channels.

CaV3.2 channel modulation was determined by measuring the T-type current in whole cell

configuration on cells stepped from -80 to -30 mV following superfusion of the extracts at a

concentration of 30 μg/ml. Fig 1 illustrates the efficacy of four methanolic plant extracts by

showing typical CaV3.2 current trace recordings and the corresponding time plots. Application

of Lavandula stoechas (LS) inhibited significantly CaV3.2 channels (Fig 1A and 1B). The aver-

age current inhibition induced by 30 μg/ml of LSwas 85% (I/Ictrl = 15 ± 5.2% p<0.01, n = 6).

LS developed a fast inhibitory effect that did not readily reverse upon wash-out. Similarly, a

42% inhibition (I/Ictrl = 68 ± 2% p<0.01, n = 6) was obtained following application of the

methanolic extract of Rosmarinus officinalis (RO) on CaV3.2 currents (Fig 1C and 1D). On the

contrary, no significant inhibition was obtained after the application of Ricinus cummunis
(RC) (Fig 1E and 1F, I/Ictrl = 95.7 ± 1.5%, n = 7) and Citrullus colocynthis (CC) extracts (Fig

1G and 1H, I/Ictrl = 95.4 ± 2.1%, n = 6). These data led us to further investigate the efficacy of

Lavandula and Rosmarinus species to modulate CaV3.2 channels.

CaV3.2 channel inhibition by Lavandula species and Linalool is

concentration-dependent

Next, we characterized the effect of two Lavandula species essential oils; Lavandula stoechas
(LS), Lavandula angustifolia Miller (LA) and their active principle Linalool. CaV3.2 current

recordings were performed during application of increasing concentrations of LS, LA and Lin-

alool (Fig 2). T-type current inhibition by these three compounds was concentration-depen-

dent. Analysis of the dose-response curve after treatment with LS essential oil revealed IC50

values of 16.9 ± 2.9 μg/ml (n = 7) with a Hillslope value of 0.9 ± 0.1 (Fig 2A). TTCCs were also

inhibited by serial concentrations of LAMiller essential oil solutions (Fig 2B). The IC50 value

for LAMiller inhibition of CaV3.2 currents was 34.1 ± 2.9 μg/ml (Fig 2B, n = 8) with a Hillslope

factor of 1.9 ± 0.4. For CaV3.2 current inhibition by Linalool, the IC50 value was 84 ± 8.8 μM

(~12.6 μg/ml) with a Hillslope factor of 1.01 ± 0.08 (Fig 2C, n = 7).

Effects of Lavandula essential oils and Linalool on CaV3.2 channel

activation

Inhibition of CaV3.2 channels by Lavender and its natural constituent Linalool may be related

to specific modifications in CaV3.2 channel gating properties. Hence, we investigated whether

TTCC inhibition by Lavender could be related to change in channel availability or activation

properties. Toward this goal, the inhibitory effect of these natural compounds on CaV3.2 cur-

rent was studied for a wide range of depolarizing test potentials (TPs) from -80 to +10 mV.

Representative CaV3.2 current traces before and after the application of 30 μg/ml LS are shown

in Fig 3A (top and bottom panels respectively), as well as the corresponding current-voltage

(I-V) curves (Fig 3B). These average I-V curves show that 30 μg/ml of LS inhibit the amplitude

of CaV3.2 currents similarly at all membrane potentials (Fig 3B, n = 6). Moreover, application

of LS did not significantly shift the activation curve of CaV3.2 channels. The V0.5 for activation

was -53.8 ± 0.4 mV for control condition and -54.9 ± 0.4 mV during LS application, respec-

tively, revealing no significant change in steady-state activation in the presence of LS (n = 6,

p = 0.11, Fig 3B). In addition, fitting of the individual current traces, as presented in Fig 3A,
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revealed that neither activation nor inactivation kinetics of CaV3.2 channels were changed

after Lavender treatment (Fig 3C and 3D). Similar results were obtained with 50 μg/ml LA
Miller essential oil (Fig 3E, n = 5) and 100 μM Linalool (Fig 3F, n = 6). Inhibition of CaV3.2

currents following treatment with LAMiller essential oil and Linalool was conserved over the

complete range of test potentials. Also, the threshold potential for activation and the mem-

brane potential of the maximum peak current were the same before and during the application

of LAMiller, with no significant shift in the activation curve of CaV3.2 currents (V0.5Ctrl =

-54.8 ± 0.4 mV and V0.5LAMiller = -54.1 ± 0.3 mV, n = 5, p = 0.19), and Linalool (V0.5Ctrl =

-50.5 ± 0.7 mV and V0.5Linalool = -52.3 ± 0.8 mV, n = 6, p = 0.14).

Effects of Lavandula on CaV3.2 current steady-state inactivation

We next examined whether Lavender and its constituents could modify the steady-state inacti-

vation properties of CaV3.2 channels. A representative family of CaV3.2 currents evoked by the

protocol designed to measure steady-state inactivation is depicted in Fig 4A before (top traces)

and during the application of 30 μg/ml LS (bottom traces). LS (30 μg/ml) produced a depres-

sant action of the maximal conductance of CaV3.2 channels as well as a significant hyperpolar-

izing shift of steady-state inactivation from -75.8 ± 1.1 mV in control conditions to -81.3 ± 1.0

mV in LS (n = 6, p<0.05, Fig 4B). Similar results were obtained after application of LAMiller
(50 μg/ml, Fig 4C) and Linalool (100 μM: ~15 μg/ml, Fig 4D) with a significant shift in the

steady-state inactivation from -75.9 ± 0.7 mV to -83.1 ± 0.8 mV for LAMiller (n = 5, p<0.001)

and from -74.6 ± 0.7 mV to -81.3 ± 0.6 mV for Linalool (n = 6, p<0.001). These data demon-

strate that Lavender constituents inhibit CaV3.2 current by decreasing the maximal conduc-

tance of CaV3.2 channels and induce a negative shift of CaV3.2 steady state-inactivation curve,

suggesting that Lavender compounds could interact with the inactivated state of TTCCs. In

addition, we have investigated the modulation of Cav3.2 current in the presence of 100 μM

Linalool at three different frequencies of stimulation (1, 0.2 and 0.033 Hz). These experiments

(see Fig 5) show that, although the percentage of inhibition at the steady-state was not signifi-

cantly different in all three conditions (Fig 5A–5C), the time course of inhibition was signifi-

cantly faster in experiments done at 1 Hz (time for 50% inhibition ~ 5 s, Fig 5D), compared to

slower frequencies: 0.2 Hz (~15 s) and 0.033 Hz (~40 s). These data, support further state-

dependent inhibition of Cav3.2 channels by Linalool.

Inhibition of CaV3.2 calcium channels by Rosmarinus officinalis and

Rosmarinic acid

Next, we studied the effects of Rosmarinus officinalis (RO) and its active principle Rosmarinic

acid (RA), a caffeic acid ester compound, on the modulation of CaV3.2 channels. The CaV3.2

current was inhibited by RO in a concentration-dependent manner (Fig 6A, n = 6). CaV3.2

current inhibition by RO yielded an IC50 was of 53.5 ± 3.7 μg/ml with hillslope value of

0.7 ± 0.05 (Fig 6B, n = 6). Furthermore, RA similarly inhibited CaV3.2 current in a concentra-

tion-dependent manner. The IC50 value was 48.2 ± 1.4 μM (~18 μg/ml) with a Hillslope value

of 1.5 ± 0.2 (Fig 6C and 6D, n = 6).

Fig 1. Modulation of CaV3.2 channels by medicinal plant methanolic extracts. Whole-cell patch clamp recordings of T-type

calcium current were obtained on HEK-293T cells stably expressing recombinant human CaV3.2 channels. Currents were elicited

by stepping from a holding potential (HP) of -80 mV to a test pulse (TP) of -30 mV applied every 10 seconds. Effect of the

methanolic extracts (30 μg/ml) of the medicinal plants Lavandula stoechas (A-B), Rosmarinus officinalis (C-D), Ricinus cummunis

(E-F), or Citrullus colocynthis (G-H) are illustrated with representative current traces collected before (open triangle) and during bath

application (filled triangle) of the extracts (left panels). The corresponding time plots (right panels) illustrate the time-course of the

inhibitory effect and washout of the extracts. Each extract panel is representative of 6 to 7 experiments.

https://doi.org/10.1371/journal.pone.0186864.g001
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Effect of Rosmarinus officinalis and Rosmarinic acid on CaV3.2 channel

activation and inactivation

Similar to that described for Lavender compounds, we then studied the effect of RO and RA on

CaV3.2 activation and inactivation properties. Analysis of current traces and I-V curves revealed

that RO (50 μg/ml) inhibited CaV3.2 currents at all tested potentials without changing the

steady-state activation properties (V0.5Control = -52.8 ± 0.4 mV, V0.5RO = -53.5 ± 0.5 mV, n = 7,

p = 0.3, Fig 7A). Similar results were obtained after treatment with 50 μM RA (V0.5Control =

-51.8 ± 0.6 mV, V0.5RA = -50.6 ± 1.3 mV, n = 6, p = 0.4, Fig 7C). To further elucidate the block-

ing mechanisms of RO and RA, steady-state inactivation was determined in the absence and

presence of these natural substances. These experiments showed that treatment with 50 μg/ml

RO both reduced the maximal conductance of CaV3.2 channels and negatively shifted the mid-

point of voltage-dependence of inactivation for CaV3.2 towards negative potential (V0.5Control =

-73.7 ± 0.9 mV, V0.5RO = -77.8 ± 1.1 mV, n = 7, p<0.05, Fig 7B). The application of 50 μM

(~18 μg/ml) of RA induced a shift towards more negative membrane potentials (V0.5Control =

-77.4 ± 0.8 mV, V0.5RA = -82.4 ± 1.2 mV, n = 6, p<0.01, Fig 7D). In addition, activation and

inactivation kinetics were unchanged after either RO or RA treatment of CaV3.2 channels.

Lavandula steochas and Rosmarinus officinalis preferentially bind to the

inactivated state of T-type calcium channels

A growing body of reports suggested that TTCC blockers bind to / stabilize the inactivated

state of these channels [38, 41, 42]. Indeed, the negative shift induced by Lavender and Rose-

mary in the channel availability suggests that these natural compounds preferentially bind to

the inactivated state of CaV3.2 channels, thus shifting the equilibrium away from states from

which channels can open [43]. To evaluate further whether Lavender and Rosemary com-

pounds bind to the inactivated state of TTCCs, we have measured the inhibition of CaV3.2 cur-

rents by LS and RS at HPs -100 and -80 mV (Fig 8, upper graphs). If the effects of LS and RO
on channel inactivation would contribute significantly to the inhibition of the CaV3 channels,

then applying LS and RO to cells voltage-clamped at potentials significantly more negative

than -80 mV would produce less current inhibition. As expected, the inhibition by LS (20 μg/

ml) was significantly more pronounced when cells were held at HP -80 mV (70 ± 4.4%, n = 6)

than at HP -100 mV (51 ± 5.3%, n = 6, p<0.05). Similar data were obtained after the applica-

tion of RO (20 μg/ml) with 41.3 ± 1.7% of inhibition at HP -80 mV and 23.4 ± 1.7% inhibition

at HP -100 mV (n = 6 p<0.01). The efficacy of washout was examined for the two extracts at

HPs -100 and -80 mV (Fig 8, lower graphs) and, conversely, washout appeared significantly

more efficient at HP -100 mV (LS Washout = 91.6 ± 1.8%, RO Washout = 87.7 ± 3.0%) than at HP

-80 mV (LS Washout = 32.6 ± 3.1%), RO Washout = 51.7 ± 2.5%, p<0.001). Taken together, the

results suggest that these natural compounds preferentially bind to, and stabilize, CaV3.2 chan-

nels in the inactivated state.

Discussion

In this study, we describe several important findings. First, among a selection of Mediterra-

nean medicinal plants including Lavandula stoechas, Rosmarinus officinalis, Ricinus cumunis

Fig 2. Inhibition of CaV3.2 channel by Lavandula essential oils and Linalool. Dose-response curves of the inhibitory effect of Lavandula

steochas (LS) (A) Lavandula angustifolia Miller (LA) (officinalis) (B) and Linalool (C) on CaV3.2 current. Inhibition of CaV3.2 channel currents

was obtained by serial increase in concentrations of Lavandula sp. extracts. The IC50 for Linalool (84 μM) corresponds to ~12.6 μg/ml.

Percentages of inhibition were averaged and plotted against compound concentrations (right panels; n = 7–8). Each point represents the

mean ± SEM.

https://doi.org/10.1371/journal.pone.0186864.g002
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and Citrullus colocynthis, we have identified that Lavender and Rosemary compounds could

significantly inhibit the CaV3.2 TTCCs in a concentration-dependent manner. Importantly,

Lavender and Rosemary are widely used medicinal plants. Second, our results provide evi-

dence that their active principles, Linalool and Rosmarinic acid respectively, also inhibit

CaV3.2 channels. Third, we report that these compounds induce a negative shift in the steady-

state inactivation properties and we show that their inhibitory effect on CaV3.2 channels is sig-

nificantly enhanced in the range of physiological membrane potential (HP -80 mV), compared

to more negative potential (HP -100 mV). Taken together, our findings support a pharmaco-

logical modulation of TTCCs by Lavender and Rosemary and we suggest that TTCC inhibition

by these natural components may contribute to the neuroprotective and anticonvulsant activi-

ties of these medicinal plants.

Lavender (Lavandula stoechas, Lavandula angustifolia Miller) and Rosemary (Rosmarinus
officinalis) all inhibit the amplitude of CaV3.2 current in a dose-dependent manner. The IC50

values of L. stoechas, L. angustifolia Miller and R. officinalis were estimated to be 16.9, 34.1 and

53.5 μg/ml respectively, suggesting that CaV3.2 channels are more sensitive to Lavandula spe-

cies and in particular to Lavandula stoechas. Furthermore, Lavender and Rosemary also inhibit

the other TTCC isoforms, CaV3.1 and CaV3.3. The IC50 values for LAMiller inhibition were

26.1 ± 4.8 μg/ml (n = 7) for CaV3.1 and 86.2 ± 18.1 μg/ml for CaV3.3 (n = 7). Interestingly, the

percentage of inhibition obtained after treatment of the various TTCCs with 10 μg/ml of LA
Miller (31% for CaV3.1, 16% for CaV3.2 an 10% for CaV3.3) is similar to that obtained after

treatment of HVA, P/Q-type calcium channels with Silexan (25%), a patented active substance

produced from L. angustifolia flowers by steam distillation and consisting of the main active

constituents linalool and linalyl acetate [10]. Altogether, our data extend previous electro-

physiological studies describing the effect of Lavender and its active principle Linalool on

other voltage-gated calcium channels [10, 44]. Importantly, we report for the first time to our

knowledge, inhibition of voltage-gated calcium channels, in particular TTCCs, by Rosmarinus
officinalis and its active principle Rosmarinic acid.

Linalool is a monoterpene compound reported to be the major component of Lavender

essential oil. It has been reported to trigger glutamate activation in response to NMDA re-

ceptors modulation in the cerebral cortex [45] and reduces acetylcholine release at mouse neu-

romuscular junction by modifying nicotinic receptors kinetics [46], suggesting possible

pathways in sedative and anticonvulsant effects in mice [47, 48]. Other studies to investigate

the molecular mechanisms associated with linalool therapeutic use revealed that Linalool

could interact with voltage-gated channels, in particular voltage-gated calcium channels [10,

44]. Narusuye et al. found that Linalool non-selectively suppressed the voltage-gated currents

ICa,L, IK, IA, and IKa in retinal horizontal cells as well as the currents INa, ICa,L, IK, IA, and IK(Ca)

in retinal ganglion cells. Fura-2-based calcium imaging technique was used to test the effect of

linalool on newt olfactory receptor cells (ORC) expressing both ICa,L and ICa,T [44] and showed

that 3 mM Linalool reversibly inhibited calcium currents in ORC by 44.9 ± 2.6%. Similarly,

Schuwald et al. reported a decrease on KCl-induced calcium influx in murine synaptosomes

Fig 3. Lavandula stoechas, Lavandula angustifolia and Linalool do not affect activation of CaV3.2 channels. Representative current

traces of the current-voltage (I-V) relationship (A) before and after the application of 30 μg/ml Lavandula stoechas on CaV3.2 channel (HP -80

mV). Cells were stepped to serial depolarizing 150 ms TP ranging from -80 to +50 mV (-80, -70, -65, -60, -55, 50, -45, -40, -35, -30, -25, -20, -10

and +10 mV). (B) I-V relationship of CaV3.2 channels before and after 30 μg/ml Lavandula stoechas (LS). Note that the I-V curve in the

presence of LS is normalized to the control I-V curve (dotted line) for a better comparison. (C-D) Analysis of activation and inactivation kinetics

(two-exponential fitting of the current traces obtained as in panel A) after treatment with LS showed small shifts between control and LS-treated

recordings. (E) Representative I-V relationship of CaV3.2 channels before and after 50 μg/ml Lavandula angustifolia Miller. (F) Representative

I-V relationship of CaV3.2 channels before and after 100 μM Linalool (~15 μg/ml). For a better comparison, the I-V relationships in the presence

of the compounds are normalized (panels E and F, dotted curves). Data represents the mean ± SEM, n = 6.

https://doi.org/10.1371/journal.pone.0186864.g003
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Fig 4. Lavandula stoechas, Lavandula angustifolia Miller and Linalool effects on steady-state inactivation of CaV3.2 channels. To measure

steady-state inactivation (at TP -30 mV), cells were voltage-clamped for 5 seconds at potentials between -110 and -40 mV (10 mV increments). (A)

Representatives traces before and after treatment with 30 μg/ml Lavandula steochas essential oil (LS EO). (B) Steady-state inactivation before and

after 30 μg/ml Lavandula stoechas essential oil (LS EO). (C) Steady-state inactivation before and after 50 μg/ml Lavandula angustifolia Miller

essential oil (LA EO). (D) Steady-state inactivation before and after 100 μM Linalool (~15 μg/ml). Normalized steady-state inactivation curve in the

presence of the compounds are represented by dotted curves in panels B, C and D. Data represents the mean ± SEM (n = 5–6).

https://doi.org/10.1371/journal.pone.0186864.g004
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after treatment with linalool and linalyl acetate concentrations (1 μM), suggesting potent anxi-

olytic properties of linalool via modulation of voltage-dependent calcium channels [10]. Our

electrophysiological study confirms the inhibition of voltage-gated calcium channels, specifi-

cally TTCCs, by Linalool. Linalool attenuates CaV3.2 currents in a dose-dependent manner.

The IC50 for Linalool inhibition of TTCCs estimated to be 84 μM is found to be lower than the

IC50 obtained for the inhibition of other ionic channels in different preparations. As an exam-

ple, the IC50 values of Linalool blockade for the voltage-gated sodium is estimated to be around

560 μM [49], suggesting that Linalool is more potent in inhibiting CaV3.2 channels.

Rosmarinic acid has been shown to exert neuroprotective effect against antioxidative stress

and excitotoxicity and to possess anxiolytic/antidepressive-like effects [20, 50]. The mecha-

nism by which RA exerts its anti-inflammatory effects is not well understood, although it has

been shown that RA inhibits lipoxygenase [51] and cyclooxygenase activity [52], block comple-

ment activation [53] and T-cell antigen receptor (TCR)-mediated signaling [54]. Whether Ros-

marinic acid could modulate ion channels, especially voltage-gated channels, was currently

Fig 5. CaV3.2 channel inhibition by Linalool at various frequency of stimulation. (A-B) Representative examples of

Cav3.2 current inhibition by 100μM Linalool after 5 s (near half inhibition by linalool) and 90 s (near maximum inhibition by

linalool) at 1 Hz (A) and 0.033 Hz (B). (C) Percentage of Linalool inhibition at three the frequencies tested, 1 Hz, 0.2 Hz and

0.033 Hz. (D) Time course of Linalool inhibition (Time for 50% inhibition) at the three frequencies tested, 1 Hz, 0.2 Hz and

0.033 Hz.

https://doi.org/10.1371/journal.pone.0186864.g005

Lavender and Rosemary extracts modulate T-type Ca2+ channels

PLOS ONE | https://doi.org/10.1371/journal.pone.0186864 October 26, 2017 12 / 21

https://doi.org/10.1371/journal.pone.0186864.g005
https://doi.org/10.1371/journal.pone.0186864


unknown. Our study therefore reveals that TTCCs, are inhibited by Rosmarinus officinalis and

Rosmarinic acid in a dose- and voltage-dependent fashion. Consequently, TTCCs may there-

fore represent a novel molecular target for Rosmarinic acid, although further experiments are

needed to characterize the efficacy of Rosmarinic acid to possibly modulate other ion

channels.

Inhibition of TTCCs is highly dependent on their inactivation state. Analysis of the bio-

physical properties of CaV3.2 channels before and after Lavender (Lavandula stoechas, Lavan-
dula angustifolia Miller and Linalool) and Rosemary (Rosmarinus officinalis and Rosmarinic

Fig 6. CaV3.2 channel inhibition by Rosmarinus officinalis essential oil. Dose-response curves for Rosmarinus officinalis essential oil (RO EO)

(A-B). and Rosmarinic acid (C-D). Representative current traces before and after application of serial concentrations of RO EO are superimposed, as

shown on the left panels of each concentration-response curve. Each point represents the mean ± SEM. n = 6. The IC50 for Rosmarinic acid (49.9 μM)

corresponds to ~18 μg/ml.

https://doi.org/10.1371/journal.pone.0186864.g006
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acid) treatments showed that these natural compounds not only reduced the maximal conduc-

tance of CaV3.2 channels but also shifted the steady-state inactivation properties towards more

negative membrane potentials without having effect on the activation properties. Our study

describes that inhibition of CaV3.2 channels by Lavender and Rosemary was significantly

Fig 7. Rosmarinus officinalis and Rosmarinic acid affect steady-state inactivation but not activation of CaV3.2 channels. (A)

Representative I-V relationship of CaV3.2 channels before and after treatment with 50 μg/ml Rosmarinus officinalis. (B) Representative curve of

the steady-state inactivation before and after 50 μg/ml Rosmarinus officinalis. (C) Representative I-V relationship of CaV3.2 channels before and

after 50 μM (~18 μg/ml) Rosmarinic acid. (D) The steady-state inactivation before and after 50 μM Rosmarinic acid. Normalized I-V and steady

state inactivation curves in the presence of RO and RA are represented by dotted curves in the four panels. Data represents the mean ± SEM

(n = 6–7).

https://doi.org/10.1371/journal.pone.0186864.g007
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enhanced for HP -80 mV, compared to HP -100 mV (Fig 7). Indeed, the blocking effect was

more efficient at a HP mimicking resting’s membrane potential, at which a large fraction of

TTCCs are inactivated [42, 55]. This suggests an interesting mechanism by which Lavender

and Rosemary could attenuate the cell excitability by decreasing intracellular calcium concen-

tration and inducing sedative and/or anticonvulsant-like effects, as well as other various thera-

peutic effects such as neuroprotective properties. Our results showing that these compounds

negatively shift the inactivation state suggest that these natural compounds interact with inac-

tivated TTCCs and stabilize them in the inactivated state. This is reminiscent to that reported

for phenylalkylamines and dihydropyridines that bind preferentially to the inactivated state of

L-type calcium channels (HVA), conferring tissue-selectivity of these drugs that are useful as

antihypertensive and antiarrhythmics treatments [56, 57].

Compounds selective on TTCCs could have unexpected therapeutical utility, particularly to

treat the various disease states in which TTCCs are up-regulated. For instance, up-regulation

of CaV3.2 channels was observed in both cardiac myocytes and chromaffin cells maintained

under chronic hypoxic conditions [58, 59]. Cav3.2 channel overexpression was also found

associated to neuroendocrine differentiation of prostate cancer cells [60]. Importantly, TTCCs

represent novel interesting molecular targets for pain and epilepsy [31, 33, 43, 61–63]. Inhibi-

tion of TTCCs has been reported to play an important role in the therapeutic action of many

drugs [64]. For example, Gomora et al. confirmed the hypothesis that the blockade of TTCCs

may underlie the therapeutic usefulness of succinimide antiepileptics [65]. In the same context,

Fig 8. Efficacy of CaV3.2 inhibition by Lavandula steochas and Rosmarinus officinalis is dependent of the

resting membrane potential. Inhibition and washout of Cav3.2 channels by 20 μg/ml Lavandula stoechas, or

20 μg/ml Rosmarinus officinalis was examined for HPs of -100 mV and -80 mV. Each bar represents the average of

five to six similar experiments. Data represent the mean ± SEM.

https://doi.org/10.1371/journal.pone.0186864.g008
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Tringham and coworkers have identified two high affinity TTCC blockers that were able to

attenuate burst firing of thalamic reticular nucleus neurons in the Genetic Absence Epilepsy

Rats from Strasbourg (GAERS) [66]. Blockade of TTCCs is suggested to be useful in a wide

variety of neurological disorders such as neuropathic pain [67, 68]. Indeed, Jagodic and collab-

orators have demonstrated that TTCCs are significantly upregulated in small dorsal root gan-

glion (DRG) during chronic constriction injury (CCI)-induced neuropathy [69]. Therefore,

the inhibition of TTCCs by NNC 55–0396, a selective TTCC inhibitor [70] was suggested to be

useful in decreasing pre- and postsynaptic transmission and the neuronal activity in anterior

cingulate cortex after a CCI leading to the attenuation of neuropathic pain [71]. ABT-639 is a

peripherally acting TTCC blocker that selectively inhibits TTCCs in a dose-dependent man-

ner. In preclinical studies, oral administration of ABT-639 was reported to alleviate nociceptive

and neuropathic pain in rat models [72]. However, phase 2 clinical studies using microneuro-

graphy, a relevant technique that assesses abnormal spontaneous activity in C-nociceptors as a

marker for spontaneous pain, revealed that administration of ABT-639 100 mg twice daily did

not reduce neuropathic pain in diabetic patients [73, 74]. Interestingly, Z944, a potent selective

blocker of TTCCs (50–160 nM) was shown to be effective in reducing pain in preclinical mod-

els as well as in human patients [75].

Other studies have also suggested TTCCs as interesting molecular targets for natural com-

pounds. Eugenol, a local analgesic used in clinical dentistry that naturally present in cloves

(Syzygium aromaticum) modulates TTCCs in a dose-dependent fashion with IC50 of 500 μM.

The depressant effect of Eugenol on TTCCs was suggested to inhibit action potentials and the

neuronal conduction of sensory signals in TG neurons leading to eugenol pain-relieving action

[38]. Furthermore, Ross et al. have demonstrated that Δ9-tetrahydrocannabinol and cannabi-

diol, the most prevalent biologically active constituents of Cannabis sativa, inhibit recombi-

nant as well as native TTCCs [39]. Interestingly, Cannabidiol is currently under development

as an antiepileptic drug [76]. It is likely that attenuation of TTCC conductance causes the

decrease in neurotransmitter release mediated by these compounds contributing to the well-

known psychoactive actions of cannabinoids, as well as the anti-nociceptive and anticonvul-

sant properties [39, 76–78].

Conclusion

Our data show that Lavender and Rosemary extracts efficiently inhibit TTCCs by preferentially

binding to inactivated channels. Altogether, this study demonstrates that TTCCs represent a

novel molecular target for Lavender and Rosemary likely to be involved in some of the Medi-

terranean medicinal plants’ therapeutic use.
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