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Abstract

Recently, a link between the biological activity of CD73 and tumorigenicity in solid

tumors has been proposed. We previously reported that the generation of

adenosine (Ado) by the activity of CD73 in cervical cancer (CC) cells induces

transforming growth factor‐beta 1 (TGF‐β1) production to maintain CD73

expression. In the present study, we analyzed the participation of TGF‐β1 in

CD73 expression and the development of protumoral characteristics in CaSki CC

cells cultured as tumorspheres (CaSki‐T) and in monolayers (CaSki‐M). Compared

with those in CaSki‐M cells, CD73 expression and Ado generation ability were
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significantly increased in CaSki‐T cells. CaSki‐T cells exhibited enrichment in the

CSC‐like phenotype due to increases in the expression levels of stem cell markers

(CD49f, CK17, and P63; OCT4 and SOX2), greater sphere formation efficiency (SFE),

and an increase in the percentage of side population (SP) cells. Interestingly,

compared with CaSki‐M cells, CaSki‐T cells produced a greater amount of TGF‐β1

and presented a marked protumor phenotype characterized by a significant decrease

in the expression of major histocompatibility complex class‐I (MHC‐I) molecules, an

increase in the expression of multidrug resistance protein‐I (MRP‐I) and vimentin,

and an increase in the protein expression levels of Snail‐1 and Twist, which was

strongly reversed with TGF‐β1 inhibition. These results suggest that the presence of

TGF‐β1−CD73–Ado feedback loop can promote protumoral characteristics in the

CC tumor microenvironment.

K E YWORD S

cancer stem‐like (CSC‐like) cells, CD73, cervical cancer, protumor phenotype, TGF‐β 1,
tumorspheres

1 | INTRODUCTION

Cervical cancer (CC) is the fourth most common type of cancer in

women and represents a major public health problem worldwide. In

2020, approximately 600,000 new cases and 340,000 deaths were

reported, more than 80% of which occurred in developing countries.1

Persistent infection by high‐risk human papillomavirus (HR‐HPV) is

one of the main risk factors for the development of low‐grade

squamous intraepithelial lesions (LSILs), which can progress to high‐

grade lesions (HSILs) and eventually to CC.2 The immune response

against HPV antigens can eliminate most infections and precursor

lesions; however, some women exposed to HR‐HPV will develop

cancer, suggesting that other risk factors may be involved.3 Recently,

intrinsic factors related to the generation of adenosine (Ado) and the

signaling of this nucleoside in tumor cells have been proposed to play

important roles in tumor growth, immunosuppression, evasion of the

immune response, metastasis, and chemoresistance, among other

mechanisms.4–7 Ado is produced at sites of metabolic stress

associated with hypoxia, ischemia, trauma, or inflammation and even

in the tumor microenvironment (TME) through the adenosinergic

pathway. In theTME, high concentrations of adenosine triphosphate/

adenosine diphosphate (ATP/ADP) greater than 50 μM are hydro-

lyzed to adenosine monophosphate (AMP) by the ectoenzyme CD39

(ectonucleoside triphosphate diphosphohydrolase‐1, ENTPD1;

EC 3.6.1.5) and subsequently to Ado by the activity of

5′‐ectonucleotidase (CD73, EC 3.1.3.5).8–10 Most of the extracellular

signaling activities of Ado are mediated by receptors on the cell

membrane that are coupled to G proteins; these receptors are

divided into four subtypes (A1R, A2AR, A2BR, and A3R).11–13

Purinergic signaling has been associated with the development

and maintenance of cancer stem‐like (CSC‐like) cells, which have the

ability to initiate tumors due to their property of self‐renewal and

unlimited proliferation and play critical roles in tumor metastasis,

relapse, and resistance to therapy.14 Recent evidence indicates that

transforming growth factor‐beta 1 (TGF‐β1) is one of the most

prominent extrinsic factors of the microenvironment in solid tumors

and initiates a transcriptional program in carcinoma cells that

participates in cellular plasticity toward the epithelial‐mesenchymal

transition (EMT).15 After EMT activation, cells generally eliminate the

expression of epithelial markers, such as E‐cadherin, and instead

express mesenchymal markers, including vimentin, fibronectin, and

certain master transcription factors that induce EMT, such as Zeb1,

Twist, Snail, and Slug, which regulate the expression of genes

associated with most mesenchymal states of carcinoma cells to

facilitate their invasiveness and motility.16–18 In addition, TGF‐β1

present in theTME is a driver of CD73 expression, and the activity of

this nucleotidase has been suggested to positively regulate the

expression of genes associated with stem cells19,20 and cellular

plasticity in solid tumors.6

Several studies have reported that in nonadherent and serum‐

free conditions, the in vitro tumorsphere formation assay is a

functional method to produce tumor cultures enriched in

Significance statement

This study provided the first evidence that high CD73

expression associated with high TGF‐β1 production by

cervical cancer cells cultured as tumorspheres strongly

contributes to the induction of protumoral characteristics

related to tumor progressions, such as migration and

invasiveness, immune evasion, immunosuppression, and

chemoresistance.
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subpopulations of CSC‐like cells and a microenvironment where

cell behavior can be studied under different experimental

conditions.21–25 In addition, a positive correlation has been reported

among CD73 expression in tumor cells, the ability to form tumor-

spheres in vitro, and tumor progression,26 suggesting a link between

increased CD73 expression and tumorigenesis. Our research group

has reported that HR‐HPV‐positive CC tumor cells highly express

CD73 in the cell membrane and have a high capacity to generate

Ado27 and that Ado signaling in these tumor cells promotes TGF‐β1

production to maintain CD73 expression.28 Therefore, in this study,

we analyzed the participation of TGF‐β1 in the expression of CD73

and protumoral markers in CaSki cells cultured as tumorspheres

(CaSki‐T) and in monolayers (CaSki‐M). We found that CSC‐like

characteristics, including a stem cell phenotype, sphere formation

efficiency (SFE), and side population (SP) cells, increased in CaSki‐T

cells. Likewise, compared with CaSki‐M cells, in CaSki‐T cells, we

observed a significant increase in CD73 expression and the capacity

to hydrolyze AMP and generate Ado. Interestingly, CaSki‐T cells

produced a greater amount of TGF‐β and presented a marked

protumor phenotype, which was reversed when these cells were

cultured in the presence of neutralizing anti‐TGF‐β, suggesting that

the TME is important for maintaining CD73 expression and

potentially the production of immunosuppressive factors such as

TGF‐β1 to favor the protumor phenotype in CC cells. This study

provides the first evidence that the TGF‐β1−CD73–Ado feedback

loop strongly contributes to the induction of protumoral character-

istics in CC and may have clinical importance as a therapeutic target.

2 | METHODS

2.1 | Tumor cell culture

CC CaSki (HPV‐16+) cells obtained from the American Type

Culture Collection (ATCC) were cultured under adherent

conditions as a monolayer/2D using RPMI‐1640 medium

(Sigma‐Aldrich) containing 10% fetal bovine serum (FBS; Gibco),

100 U/µl penicillin, and 100 U/µl streptomycin (Gibco) and

maintained under sterile conditions at 37°C with 5% CO2 in a

saturated humidity environment. For culture in tumorspheres,

CaSki cells were seeded (1 × 104 cells per well) in ultralow‐

adhesion six‐well plates (Corning Costar) using 2 ml of reduced‐

serum medium (Opti‐MEM; Gibco) containing 0.5% FBS, 100 IU/ml

penicillin, 100 μg/ml streptomycin (Gibco), 1% nonessential amino

acids, GlutaMAX (Gibco), and 20 ng/ml rhEGF and rhFGFb (R&D

Systems) and maintained under sterile conditions at 37°C with 5%

CO2 in a saturated humidity environment. On Day 7 of culture, the

tumorspheres were mechanically disaggregated and reseeded

under the same conditions. After two consecutive reseedings

(Day 21 of culture), the tumorspheres were characterized, and the

tumor cells within each sphere were analyzed to determine their

phenotypic and functional characteristics; the same analyses were

conducted for the tumor cells cultured in monolayers.

2.2 | SFE

Cells from monolayer tumor cell cultures or tumorspheres were

seeded (1 × 104) in ultralow adhesion plates in Opti‐MEM medium

(2ml/well). After 14 days, the number of spheres with a diameter

greater than 200 µm was determined using the following formula: %

SFE = (total number of spheres/10,000) × 100.

2.3 | Characterization of tumorspheres

After 21 days of culture, the tumorspheres reached an approximate

diameter of 200–300 μm. Some were fixed for 24 h in a 4%

paraformaldehyde solution and embedded in paraffin, and then a

microtome was used to slice 5‐μm sections that were subsequently

processed for staining with hematoxylin‐eosin (H‐E). To analyze the

structure, the tumorspheres were fixed in 2.5% glutaraldehyde in

phosphate buffered saline (PBS) for 2 h. Subsequently, they were

incubated in 1% osmium tetroxide (OsO4) in PBS and embedded in

EPON resin, after which they were sliced into ultrathin sections and

stained with 4% uranyl acetate and 0.4% lead citrate. The sections

were evaluated in a JEOL 1010 transmission electron microscope

operated at 80 kV. Digital images were obtained with a Hamamatsu

camera.

2.4 | SP assay

Tumor cells from monolayers or tumorsphere cultures (1 × 106) were

incubated for 1 h in the presence or absence of 10 µM Hoechst

33342 (Sigma‐Aldrich). In some cases, to block Hoechst efflux, cells

were stained in the presence of 50 μM verapamil (Sigma‐Aldrich), as

previously described.29 The cells were then washed twice with PBS,

and the percentage of cells that excluded the dye was analyzed using

a FACSAria IIu flow cytometer (BD Biosciences). The data obtained

were analyzed using FlowJo 10 software.

2.5 | Flow cytometry

Tumor cells from monolayer cultures or tumorspheres were analyzed

by flow cytometry to determine the expression of core markers, that

is, CD49f, CK17, P63, OCT4, and SOX2, using the following

antibodies: anti‐CD49f‐APC (R&D Systems); anti‐CK17‐AF488

(Bioss); anti‐P63‐AF647 (Bioss); anti‐OCT4 (rabbit anti‐human;

Abcam); and anti‐SOX2 (mouse anti‐human, Abcam). For the analysis

of CD73, major histocompatibility complex class‐I (MHC‐I), MRP‐1,

E‐cadherin, vimentin, Snail, and Twist, the following antibodies were

used: anti‐CD73‐PE (mouse anti‐human, BD, Pharmingen); W6/32

(mouse anti‐human, which recognizes the conformational epitope of

the α chains of the human leucocyte antigen (HLA)‐A, HLA‐B and

HLA‐C molecules associated with β2‐microglobulin), which was

generously donated by Dr. Gerd Moldenhauer of the German Cancer
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Research Center, Heidelberg, Germany; anti‐MRP1 antibody Abcam;

anti‐E‐cadherin‐PerCP‐Cy 5.5 (BD, Pharmingen); anti‐vimentin‐Alexa

Fluor 488 (BD, Pharmingen; anti‐Snail Mouse monoclonal Abcam

(Cambridge); and anti‐Twist Mouse monoclonal Abcam (Cambridge).

The secondary antibodies used were goat anti‐rabbit PE (R&D

Systems) and goat antimouse Fuorescein IsoTioCyanate (Sigma‐

Aldrich). For intracellular staining, tumor cells were fixed for 10min

with a 2% paraformaldehyde solution (Sigma‐Aldrich) and subse-

quently permeated with 0.2% saponin (Sigma‐Aldrich) supplemented

with 2% FBS. For each determination, 3 × 104 events were obtained

in a FACSAria IIu cytometer (BD Biosciences), and the data were

analyzed using FlowJo 10.

2.6 | mRNA expression

To analyze the mRNA expression of CD73 in CC cells, RNA was

extracted with TRIzol (Invitrogen) according to the manufacturer's

instructions. cDNA was obtained from 500 ng of RNA using a High‐

capacity cDNA ReverseTranscription Kit (Applied Biosystems). CD73

expression was determined by end‐point reverse transcription‐

polymerase chain reaction (RT‐PCR). The G6PDH gene was used as

an internal control. RT‐PCR was performed in a volume of 25 μl in

accordance with the instructions of the manufacturer of Master Mix

PCR (Promega), and the reactions were run in TC1000‐G equipment

(DLAB NT). The amplified RT‐PCR products were electrophoresed in

a 2% agarose gel (Invitrogen). The gel was stained with GelRed

(Biotium), and a UV transilluminator (UVP Biodo‐H System) was used

to visualize the amplified products. The following primers were used:

CD73 sense, 5′GCACTATCTGGTTCACCGTGT'3 and CD73 anti-

sense, 5′CCTTCCACACCATTATCAAATTC′3; G6PDH sense, 5′

GCTACGCTCGGATCTTGTTC′3; and G6PDH antisense 5′

CCCAGTGCTTTTCGCTCT′3.

2.7 | Quantification of TGF‐β1 and inhibition of
TGF‐β1 activity

A Quantikine ELISA kit for human TGF‐β1 (R&D Systems, Inc.) was

used to quantify the TGF‐β1 content in the supernatants of CC cell

cultures. To neutralize the biological activity of TGF‐β1 produced in

the cell cultures, anti‐TGF‐β1, anti‐TGF‐β2, and anti‐TGF‐β3 neutral-

izing antibodies (anti‐TGF‐β, R&D) were added following the

manufacturer's protocol.

2.8 | Enzymatic activity of CD73

To analyze the hydrolytic activity of CD73 in tumor cells cultured in

monolayers or tumorspheres, 1 × 106 cells were cultured in the

presence of 5mM AMP in 100 μl of Opti‐MEM medium (Gibco)

supplemented with 1% dialyzed FBS. The supernatant was collected

after 4 h. The presence of Ado was detected by thin layer

chromatography (TLC) and ultraperformance liquid chromatography

(UPLC) (UPLC Acquity, Waters). To analyze the samples by TLC, 1 μl

of each supernatant was spotted on plates covered with fluorescent

silica gel (Sigma‐Aldrich Co.). The samples were eluted for 1 h using a

mobile phase composed of isobutanol:isoamyl alcohol:ethanol:am-

monia:water (9:6:18:9:15), as previously reported,27 and 5mM AMP,

Ado, and inosine (Ino) (Sigma‐Aldrich) were used as standard controls.

The compounds were visualized using a UV transilluminator (UVP

Biodo‐H System). A UPLC system (UPLC Acquity, Waters) was used

to quantify the amount of Ado generated in cell cultures in the

presence of AMP. Quantitative analysis of samples using standard

quantities of synthetic Ado was carried out with Empower 3 software

(Waters), as previously reported.27 Briefly, the mobile phase

consisted of 0.5% acetonitrile, 5% methanol, and 94.5% sodium

acetate buffer 0.25M, pH 6.3. Supernatant samples were centrifuged

at 13,000 rpm, filtered on Amicon membranes with a cutoff of

3000Da, and subsequently diluted 1:200 with the mobile phase

mixture. The run conditions were as follows: flow rate of 1.0 ml/min,

UV detection at 254–260 nm, 2.0 min retention time, room tempera-

ture, and a LiChrospher 5‐μm RP‐18e 100 A (size 125mmÅ~ 4mm,

5 μm particle size) reversed‐phase column. Ado was quantified by

comparing the retention time of the sample with that of the synthetic

Ado used as a standard.

2.9 | Statistical analysis

The numerical data are presented as the average value ± SEM of

three independent experiments. Comparisons were evaluated with

multivariate statistical analysis using GraphPad Prism version 7

(GraphPad Prism software). Differences were considered significant

when p < .05.

3 | RESULTS

3.1 | Culturing CC cells as tumorspheres enriched
the population with CSC‐like characteristics

The tumorsphere formation assay uses a functional approach to

analyze the self‐renewal capacity of cells in the presence of

subpopulations of CSC‐like cells.25 CaSki cells derived from an

epidermoid carcinoma of the cervix were maintained under standard

culture conditions, either as a monolayer/2D (CaSki‐M) or in ultralow

adhesion plates to form tumorspheres/3D (CaSki‐T) (Figure 1A). After

two consecutive reseedings (21 days of culture), the SFE of the tumor

cells was analyzed. Interestingly, compared with that of CaSki‐M

cells, the SFE of CaSki‐T cells increased significantly (Figure 1B). The

CaSki‐T cells formed through this culture system were compact and

generally showed a size greater than 200 μm (Supporting Informa-

tion: Figure 1A,B). Transmission electron microscopy revealed a large

number of intercellular focal adhesions (asterisks in Supporting

Information: Figure 1C,D). Compared with CaSki‐M cells, CaSki‐T
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cells exhibited greater expression of the stem cell markers CD49f,

CK17 and P63, OCT4 and SOX2 (Figure 2A). In addition, a higher

percentage of SP cells was present in CaSki‐T cells than in CaSki‐M

cells, 0.46% and 0.18%, respectively. Verapamil treatment strongly

reduced Hoechst efflux, reducing the percentage of SP cells among

CaSki‐T and CaSki‐M cells to 0.093% and 0.070%, respectively

(Figure 2B). These results suggest that CaSki cells cultured as

tumorspheres increase the CSC‐like characteristics of CaSki cells and,

therefore, their self‐renewal capacity.

3.2 | CC cells cultured as tumorspheres exhibited
increased expression of CD73 and adenosinergic
activity

The expression and activity of CD73 in tumor cells are influenced by

conditions in the cellular microenvironment.30 To determine whether

CD73 expression was different in CaSki cells cultured in monolayers

or as tumorspheres, CD73 expression in CaSki‐M and CaSki‐T cells

was analyzed by flow cytometry. Compared with CaSki‐M cells,

CaSki‐T cells exhibited increased levels of CD73 protein (Figure 3A)

and mRNA (Figure 3B). This increase was associated with a greater

capacity of CaSki‐T cells to generate Ado from AMP hydrolysis (black

arrows, Figure 3C upper). The Ado concentrations detected in CaSki‐

M and CaSki‐T supernatants were 81.9 ± 6.5 and 121.23 ± 8.9 nM,

respectively (Figure 3C down). However, the addition of APCP

(selective inhibitor of CD73) in both cell cultures strongly decreased

the ability of tumor cells to hydrolyze AMP. The Ado concentrations

detected in the presence of APCP were 19.6 ± 3.9 and

40.24 ± 5.9 nM, respectively (Figure 3C lower).

3.3 | CC cells cultured as tumorspheres produce
high amounts of TGF‐β1

TGF‐β1 is an important factor in maintaining CD73 expression in CC

tumor cells.28 accordingly, TGF‐β1 levels were assessed in CaSki‐M

and CaSki‐T cultures. The TGF‐β1 content in the culture supernatant

of CaSki‐T cells was significantly higher than that in the culture

supernatant of CaSki‐M cells (Figure 4A). To determine the influence

of this factor on CD73 expression, a neutralizing anti‐TGF‐β antibody

was added to the cells when culturing. Interestingly, a significant

reduction in CD73 was observed in CaSki‐M (>25%) and CaSki‐T

(>15%) cells (Figure 4B), suggesting that TGF‐β1 produced by CC

cells helps maintain CD73 expression in an autocrine manner.

On the other hand, we have previously reported that CaSki cells

downregulated CD73 expression by using a pSIREN vector contain-

ing a siRNA targeting CD73 (CaSki‐pS‐siRNA‐CD73), which strongly

reduced TGF‐β production.28 Therefore, we analyzed TGF‐β1

production by these cells when cultured as tumorspheres. Interest-

ingly, compared with tumorspheres formed by CaSki cells transfected

only with pSIREN vector (CaSki‐pS‐T), CaSki‐pS/siRNA‐CD73‐T

cells formed only noncompact cellular aggregates (Supporting

Information: Figure 2A) and showed a reduced SFE percentage

(Supporting Information: Figure 2B). In addition, we detected lower

TGF‐β1 production in the culture supernatant of these cells than in

(A) (B)

F IGURE 1 CaSki cells in monolayer cultures and as tumorspheres and their sphere formation efficiency. (A) Microphotographs
(×40 magnification) of CaSki cells in a monolayer culture (CaSki‐M) and as tumorspheres (CaSki‐T). (B) Sphere formation efficiency (SFE) of the
cells maintained in each culture condition and photographs of the cells after 21 days of culture in ultralow adhesion plates. Representative data
from three independent experiments ±SEM. *Significant difference at p < .01.
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(A)

(B)

F IGURE 2 (See caption on next page)
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the culture supernatant of CaSki‐pS‐T cells (Supporting Information:

Figure 2C).

3.4 | TGF‐β favors a protumor phenotype in CC
cells cultured as tumorspheres

TGF‐β plays an important role in the plasticity of tumor cells,

including the regulation of EMT and the induction of protumoral

mechanisms such as evasion of the immune response, migration,

invasion, and chemoresistance, among others.31,32 Therefore, to

determine whether this factor, produced in greater quantities by

CaSki‐T cells than CaSki‐M cells, was important for maintaining the

protumoral phenotype, the expression levels of E‐cadherin, vimentin,

MHC‐I, MRP‐1, Snail‐1, and Twist were analyzed in CaSki cells

maintained in both culture conditions.

Compared with CaSki‐M cells, CaSki‐T cells exhibited a signifi-

cant increase in the expression levels of proteins related to the EMT

state, such as vimentin, Snail, and Twist, and a reduced expression

level of N‐cadherin (Figure 5A). In addition, compared with CaSki‐M

cells, CaSki‐T cells exhibited a significant decrease in the expression

of MHC‐I molecules and increased expression of MRP‐1 (Figure 5B).

Interestingly, the addition of neutralizing anti‐TGF‐β antibody to the

tumorsphere cultures significantly modified the expression of the

F IGURE 2 Stem markers and side populations among CaSki cells cultured in monolayers and as tumorspheres. (A) The expression of stem
cell markers (CD49f, CK17 and P63, OCT4, and SOX2) in CaSki cells cultured in monolayers (CaSki‐M) and as tumorspheres (CaSki‐T) is shown.
CaSki‐AF, autofluorescence of CaSki cells. Representative results from three independent trials. (B) CaSki‐M or CaSki‐T cells were stained with
Hoechst 33342 and analyzed by flow cytometry to assess side population (SP) cells, a subpopulation with a high dye exclusion capacity. Plots of
total cells and cells stained with Hoechst 33342 are shown; the SP cells are grouped in a quadrangle. Verapamil was used to block Hoechst efflux
from SP cells. Representative results from three independent trials are shown.

(A) (C)

(B)

F IGURE 3 Expression and activity of CD73 in CaSki cells cultured in monolayers and as tumorspheres. Expression of CD73 protein (A) and
CD73 mRNA (B) in CaSki cells cultured in monolayers (CaSki‐M), which was normalized to 1, or as tumorspheres (CaSki‐T). (C) The ability of
CaSki‐M and CaSki‐T cells to generate Ado via AMP hydrolysis was analyzed by thin layer chromatography (TLC) (upper) and ultraperformance
liquid chromatography (UPLC) using standard concentrations of synthetic Ado (lower). Representative data from 3 independent experiments
±SEM. CaSki‐AF, CaSki autofluorescence. *Significant difference at p < .01.
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protumoral markers, decreasing vimentin, Snail, Twist, and MRP‐1

expression and increasing E‐cadherin and MHC‐I expression to levels

comparable to those observed in CaSki‐M cells (Figure 5A,B).

Moreover, compared with CaSki‐T cells, we also observed that

CaSki‐pS/siRNA‐CD73‐T cells strongly modified the levels of

proteins related to the EMT state, decreasing vimentin, Snail, and

Twist and increasing E‐cadherin (Supporting Information: Figure 3).

These results suggest that TGF‐β1 produced in the micro-

environment of tumorspheres is important in the induction of

protumoral characteristics in CaSki‐T cells.

4 | DISCUSSION

The role of TGF‐β1 in the progression and metastasis of various types

of cancer, including prostate, breast, colorectal, liver, and CCs, is well

known.33–35 For CC, TGF‐β1 has been suggested to play a dual role

during disease development, either as an anti‐oncogenic factor in

precancerous cervical lesions or as a promoter in advanced

stages.36,37 In fact, the presence of TGF‐β1 in the tissue and plasma

of patients with CC is positively correlated with the expression

of HR‐HPV oncogenes38 and with the degree of disease

progression.39–42 However, the molecular mechanisms by which

the production of TGF‐β1 promotes tumorigenesis in CC have not

been completely elucidated. A growing body of evidence supports

the protumorigenic role of CD73 and Ado signaling in solid tumors.6

In this context, we provided evidence that CC cell lines positive for

HPV‐AR infection, mainly CaSki cells, express significantly higher

levels of CD73 on the membrane than cells negative for HPV

infection, which is associated with a greater ability to generate Ado

and to inhibit the proliferation, activation, and effector function of

cytotoxic T lymphocytes (CTLs) through interactions with its A2AR.27

In addition, we also reported that Ado signaling through A2AR and

A2BR in CC tumor cells plays an important role in the induction of

TGF‐β1 secretion and expression. Likewise, we demonstrate that

TGF‐β1 produced through this pathway maintains CD73 expression

in CC tumor cells.29 Therefore, in this study, we analyzed the

participation of TGF‐β1 in CD73 expression and in the development

of protumoral characteristics in CC CaSki cells cultured as tumor-

spheres (CaSki‐T) and in monolayers (CaSki‐M). CaSki cell tumor-

spheres are compact structures formed by cells joined together by

focal adhesions. The expression of CD73 and the capacity to

generate Ado were significantly higher in CaSki‐T cells than in

CaSki‐M cells. As reported in previous studies,43–45 CaSki‐T cells

were enriched in CSC‐like characteristics due to increases in the

expression of stem cell markers (CD49f, CK17 and P63, OCT4 and

SOX2), greater SFE, and an increase in the percentage of PS cells.

CaSki‐T cells also produced higher amounts of TGF‐β1 than CaSki‐M

cells and exhibited a markedly protumoral phenotype characterized

by a significant increase in the expression levels of proteins related to

the EMT state, such as vimentin, Snail, and Twist, and a reduced

expression level of N‐cadherin. In addition, CaSki‐T cells exhibited a

significant decrease in the expression of MHC‐I molecules and

increased expression of MRP‐1. Interestingly, these phenotypes were

reversed when a neutralizing anti‐TGF‐β antibody was added to the

tumorsphere cultures, decreasing vimentin, Snail, Twist, and MRP‐1

expression and increasing E‐cadherin and MHC‐I expression to levels

comparable to those observed in CaSki‐M cells. These results suggest

that the three‐dimensional microenvironment generated in tumor-

spheres is important for maintaining the expression of CD73 and

(A)

(B)

F IGURE 4 Transforming growth factor‐beta (T1GF‐β1) produced by CaSki cells cultured in monolayers and as tumorspheres and their CD73
expression. (A) The contents of TGF‐β1 in the culture supernatants of CaSki cells cultured in monolayers (CaSki‐M) or as tumorspheres (CaSki‐T).
(B) CD73 expression in CaSki‐M and CaSki‐T cells cultured in the presence or absence of a neutralizing anti‐TGF‐β antibody. Representative
data from three independent experiments ±SEM. *Significant difference at p < .05. AF, autofluorescence; MFI, mean fluorescence intensity.
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potentially the production of immunosuppressive factors such as

TGF‐β1 to favor a protumor phenotype in CaSki cells. In fact, the

transcriptional activation of CD73 within the TME is primarily

influenced by hypoxic conditions mediated by the activation of

hypoxia‐inducible factor 1α (HIF‐1α)46 and the presence of immuno-

suppressive factors, such as TGF‐β 1, that can stabilize HIF‐1α.47

A large number of studies conducted with different types of

cancer have shown that the biological activity of CD73 is closely

related to stem cell promotion and the expression of genes

associated with EMT,19,20 metastasis,48,49 evasion of the immune

response,6 and tumor escape.50,51 However, unlike that in most solid

cancer types, CD73 expression in cervical tumors, as well as tumors

of the genitourinary system such as ovarian serous cystadenocarci-

noma (OV), testicular germ cell tumors (TGCT), uterine corpus

endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS), blad-

der urothelial carcinoma (BLCA), kidney chromophobe (KICH), and

prostate adenocarcinoma (PRAD), is decreased compared to normal

tissues, probably due to the common embryological origin (the

intermediate mesoderm) of the reproductive and urinary systems.4,6

Nevertheless, we have observed that independent of the HPV

genotype, cell lines derived from CC tumors can exhibit different

CD73 expression levels and Ado generation capabilities.27 Addition-

ally, differences in cellular phenotypes have been reported, probably

due to the microenvironment of origin; for instance, SiHa and HeLa

cell lines show a mesenchymal‐like phenotype, while CaSki cells,

which were obtained from omentum metastases, exhibit an epithelial

phenotype.52 In addition, CD73 function can differ in the same cell

type from different tissues and within tumors, and the tumor cells

themselves can differ in relation to CD73 expression compared to

adjacent stromal cells. The expression and activity of CD73 may also

diverge depending on the stage of tumor development and different

factors in the microenvironment leading to tumor progression.4,6

On the other hand, in nonadherent and serum‐free conditions,

the in vitro tumorsphere formation assay has been considered a

functional method to produce tumor cultures enriched in subpopula-

tions of CSC‐like cells and a microenvironment where cell behavior

can be studied under different experimental conditions.21–25 How-

ever, a recent in silico analysis carried out by Iser et al.43 related to

CD73 expression on cells derived from CSC‐enriched tumorspheres

using microarray gene expression profiles of 7 GSE datasets from the

(A) (B)

F IGURE 5 Anti‐TGF‐β reverses the protumor phenotype in CaSki cells cultured as tumorspheres. Cultures of CaSki cells in monolayers
(CaSki‐M) or as tumorspheres (CaSki‐T) were maintained for 14 days in the presence or absence of neutralizing anti‐TGF‐β antibody⊡ (A)
Expression levels of proteins related to the EMT state: E‐cadherin, vimentin, Snail, and Twist. (B) Protein expression levels of MHC‐I and MRP‐1.
Representative data from 3 independent experiments ±SEM. *,**Significant differences at p < .05 and p < .01, respectively. EMT, epithelial‐
mesenchymal transition; MHC‐I, major histocompatibility complex class‐I; MRP‐1, multidrug resistance protein‐1; TGF‐b1, transforming growth
factor‐beta 1.
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Expression Omnibus Database (GEO) reported that protocols for CSC

induction or isolation, as well as the maintenance conditions or

exposure to treatments, presented significant differences among the

studies analyzed. In addition, similar to their results obtained from

SiHa cells, they reported that in human primary cervical cells isolated

from healthy tissue, the human anaplastic thyroid cancer cell line

(THJ‐11 T cells),53 and breast cancer cell lines from human primary

tumors,54 a decrease in the CD73 expression of CSC‐enriched

tumorspheres compared to monolayer cells was evident. In contrast,

the CaSki CC cell line55 and human prostate cancer stem cell

(PCSC)56 primary lines showed enhanced CD73 expression in spheres

compared to monolayers, while in a cell line derived from human

primary HPV‐negative pharyngeal squamous tumor cells57 and

primary cells from human pancreatic ductal adenocarcinoma

(PDAC),58 no significant differences were observed between spheres

and monolayers. However, in accordance with the study by Bajaj

et al.,55 we also found enhanced CD73 expression in CaSki tumor-

spheres compared to monolayers; however, we detected a significant

increase in TGF‐β1 production in spheres than in monolayer cell

cultures, which was associated with an increased expression level of

proteins related to the EMT state in these cells, such as vimentin,

Snail, and Twist, and a reduced expression level of N‐cadherin.

Interestingly, this phenomenon was reversed when neutralizing anti‐

TGF‐β1 was added to cell cultures, and when CaSki cells with

downregulated CD73 expression were cultured as tumorspheres,

lower TGF‐β1 production was detected in the culture supernatant,

which was associated with decreased levels of vimentin, Snail, and

Twist and an increased level of E‐cadherin in these cells, indicating

the importance of CD73 expression and increased TGF‐β1 produc-

tion to promote the protumoral characteristics of CaSki cells when

cultured as tumorspheres.

Similar results were obtained in tumorspheres formed by ovarian

cancer cells, where high expression of CD73 and increased

expression of transcription factors related to EMT, such as Snail‐1,

Snail‐2, and Twist‐2, were observed when compared with those in

epithelial cells of the Fallopian tube.20 In addition, deregulation of the

CD73 gene resulted in the low expression of key EMT genes, such as

Snail‐1, Twist‐2, and Zeb‐1, and a decrease in the mesenchymal

phenotype of tumor cells, allowing a decrease in N‐cadherin and

vimentin and an increase in E‐cadherin.20 In our study, the increase in

protumoral characteristics observed in CaSki‐T cells was largely

dependent on the autocrine production of TGF‐β1 because inhibition

of this factor in cell cultures strongly reversed the manifestation of

these characteristics in tumor cells. Indeed, TGF‐β signaling is a key

event contributing to the invasion and dissemination of tumor cells

because of the induction of genes associated with EMT (Snail‐1,

Snail‐22, Zeb‐1/2, and Twist) and transcriptional repression of

E‐cadherin.59 In CaSki‐T cells, a significant increase in the expression

of vimentin and the transcription factors Snail‐1 and Twist was noted,

which was significantly higher in CaSki‐T cells than in CaSki‐M cells.

Snail‐1 expression is correlated with the degree of tumor evolution,

lymph node metastasis in various types of tumors, and a poor

prognosis for patients with metastatic cancer. Recent studies indicate

that Snail‐1 causes metabolic reprogramming, induces CSC‐like traits

in tumor cells, and promotes drug resistance, tumor recurrence, and

metastasis.60 Therefore, the increase in protumor characteristics

observed in CaSki‐T cells may be related to Snail‐1 overexpression

resulting from the culture conditions. Therefore, in subsequent

studies, analyzing whether high CD73 expression and the promotion

of protumoral characteristics, such as overexpression of proteins

related to EMT associated with high TGF‐β1 production, occur in

other CC cell lines cultured as tumorspheres will be interesting.

In the context of tumor development and progression, at least

two important functions of CD73 have been described: (a) the

catalytic activity of this enzyme to generate Ado from AMP

hydrolysis and (b) the ability of CD73 to promote adhesion and

modulate cell migration. Accordingly, the low CD73 expression

found in CC spheres has been hypothesized to be related to tumor

progression, leading to tumor migration and invasiveness.43

Interestingly, our results provide evidence that high CD73

expression in CC spheres, which is related to high TGF‐β1

production, also results in the promotion of protumoral character-

istics related to tumor progression, such as migration and

invasiveness, immune evasion, immunosuppression, and chemore-

sistance, suggesting that both functions of CD73 can be relevant in

CC progression.

In a comprehensive molecular study of CC, the TGFBR2 gene,

which is present exclusively in cervical squamous tumors, was

reported to be significantly mutated in more than 70% of the tumors

analyzed,61 illustrating the clinical importance of this route as a

therapeutic target. In agreement with the present study, the

alterations reported in the TGF‐β signaling pathway in CC61 can

contribute significantly to the activity of the adenosinergic pathway

and therefore promote tumorigenesis in the CC TME.

5 | CONCLUSION

This study provided evidence that high CD73 expression associated

with high TGF‐β1 production by CC cells cultured as tumorspheres

strongly contributes to the induction of protumoral characteristics

related to tumor progression, such as migration and invasiveness,

immune evasion, immunosuppression, and chemoresistance.
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